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The relativistic completion of SU(6) discussed in a foregoing paper is extended so as to take account of a 
more general form of the meson matrix. Low-frequency phenomena are discussed further. To order v/c all 
recoil effects are now included. The 70~ fermion representation is briefly treated. 

I. INTRODUCTION 

IN a previous paper1 we have begun a study of the 
following question: To what extent is it possible to 

impose simultaneously the requirements of Lorentz 
covariance and of SU(6) invariance in a theory of 
strong interactions? For this purpose a procedure was 
described called "relativistic completion." Given the 
question, we gave the minimal requirements necessary 
for the interpretation of results obtained so far. In the 
present paper we discuss the completion process in 
some further detail. Where earlier we had considered its 
application only in the presence of axial-vector form 
factors (for pseudoscalar mesons) and vector form 
factors (for vector mesons), we now include also the 
presence of Pauli terms or tensor form factors (for 
vector mesons) and pseudoscalar form factors (for 
pseudoscalar mesons).2 As a result, we are now able to 
give a more general discussion of fermion recoil. As in I, 
we find it convenient to discuss these questions first for 
interactions of the fundamental SU(6) sextet of 
fermions. Thereafter we treat the interaction for the 
case of the 56 representation of baryons (Sec. II). In 
Sec. I l l we discuss recoil effects to order v/c. We find in 
particular that the relation3 gA = Sg/3 still holds true in 
the presence of the tensor and pseudoscalar form factors. 
In Sec. I l l we also comment briefly on the relativistic 
completion for the S£7(6)-covariant electromagnetic4 

and semileptonic5 interactions. In Sec. IV we indicate 
how to construct the completed 70~ representation and 
the effective vertex for the corresponding baryon (56+)-
meson (35~) decay. 

Just as was done in I, we shall consistently use the 
following definition: The terms "SU(6) representation" 
and "SU(6) invariance" shall refer exclusively to 
the structure of one-particle states with zero three-
momentum. 

Nevertheless, it was shown in I that the SU(6) theory 
can give unique predictions for the structure of certain 

1 M . A. B. Beg and A. Pais, Phys. Rev. 133, B1514 (1965). This 
paper will be referred to as I. 

2 For the meson-baryon (spin J and f) vertex, with baryons on 
the mass shell, one of course has only one form factor for the 
coupling of pseudoscalar particles and three for the coupling of 
vector particles, in the symmetry limit. The inclusion of the 
quadrupole form factor for vector mesons involves a "breakdown" 
of the completed SU(6). 

3 F. Giirsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 13, 
299 (1964) Eq. (8). 

4 M. A. B. Beg, B. W. Lee, and A. Pais, Phys. Rev. Letters 13, 
514 (1964). 

5 M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 51 (1965). 

effectivem&trix elements, vertices, etc., which involve one 
or more particles with nonzero three-momentum. Ex
amples are the decay matrix element for N* —> N+w, 
and its relation to the p-w&ve vertex N —> N+w and to 
the s-wave vertex N—>N-{-p, even though all these 
quantities vanish if all the particles involved have zero 
three-momentum. Such predictions came about through 
a fully specified interplay of the SU(6) group (as defined 
above) and the Lorentz group, leading to unique 
answers in the static limit. When in the following we use 
terms like "completed SU(6) structure" we shall mean 
that particles are involved which obey the SU(6)-growp 
requirements as defined above (in other words, they 
form supermultiplets) and to which the completion 
procedure (boosting) dictated by the Lorentz group has 
been applied. 

In I it was found necessary to make a sharp distinc
tion between the applicability of the completion of 
SU(6) to effective matrix elements on the one hand and 
to local Lagrangian field theory on the other. In the 
latter case, completed SU(6) can not apply. The origin 
of the breakdown of the completion could be pinpointed 
as the kinetic energy in the free-particle part of the 
Lagrangian.6 

This raises the main dynamical problem now to be 
understood. If the effective matrix elements and vertices 
discussed above arise from an underlying local field 
theory, and if the latter cannot be SU(6) completed, 
then why should at least some of these effective matrix 
elements, etc. give evidence at all of patterns prescribed 
by 5Z7(6), as they apparently do? A possible answer 
would appear to be that in strong interactions there 
must be a strong damping of high virtual frequencies. 
This means for approximate reconciliation of SU(6) and 
local field theory was illustrated7 by a naive field-
theoretical comparison of the self-energy of a spin-1 and 
a spin-0 meson, both belonging to the same SU(6) 
supermultiplet. 

It will be shown in Sec. II that the inclusion of Pauli 
terms and of pseudoscalar terms necessitates a more 
refined treatment of the relativistic completion for the 
12X12 meson matrix already introduced in I. The need 
for this refinement can perhaps be made clear by first 
considering the following simple problem in SU(2). 
Take two 2 representations (spinors) of SU(2). Then it 

6 This observation was also made by K. Bardakci, J. Cornwall, 
P. Freund, and B. W. Lee, Phys. Rev. Letters 13, 698, 1964. 

7 See I, Sec. III. 
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is elementary to construct from these a bilinear form 
which behaves as the (adjoint) 3 representation (vector). 
This construction is unique. Likewise, take a 6 (sextet) 
and a 6* (antisextet) representation of SU(6). The 
process of constructing the (adjoint) 35 representation 
from these is still elementary and unique. At this point 
let us emphasize once more that SU(6) here refers to 
zero 3-momentum. Now we wish to bring into play a 
second group, the Lorentz group. Thus we now take a 
relativistically completed 6 and a similar 6*. These 
boosted representations are now not only representa
tions of SU(6) but also of the Lorentz group. 

Problem: Construct out of these boosted representa
tions the corresponding boosted 35. This is a somewhat 
novel problem in that we apply two noncommuting 
groups. We wish in particular (extending at this point 
the construction of I) to give the more general boosted 
form of 35, where the 35 also carries a prescribed parity 
(parity itself being defined relative to the (6*,6) sys
tem). This is the problem we discuss in the next section. 

In the course of the derivations in Sec. II, we find it 
illuminating to perform an elementary unitary trans
formation which casts the 12 X12 meson matrix derived 
in I in the form of a direct sum of two 6X6 matrices; 
see Eq. (2.37) below. Each of these 6X6 matrices 
separately represents actually a boosted 35 representa
tion with the required covariance properties under the 
proper Lorentz group, but with indefinite properties 
under reflection. The joining of these two 6X6 matrices 
then ensures having definite (in our case, odd) parity of 
the meson representation. 

Quite independently of any SU(6) aspects such a 
doubling (from 2X2 to 4X4) is met in the charac
terization of the representation SDt1/2*1/2] of the Lorentz 
group (4-vector) in the SL(2,C) language,8 if one assigns 
a definite parity to such a representation. Corre
spondingly, there is only one group SU(6) in the present 
game, as is also evident from the fact that the relativistic 
completion of the 35 does not involve the introduction 
of new fields (but only of additional field components 
that can be eliminated for q=0). In particular, the 
completed SU(6) does not involve parity doubling. 

We conclude the Introduction by summarizing the 
role of symmetries, exact and approximate, as they 
appear in the SU(6) theory. 

(1) SU(6): refers to a zero-three-momentum prop
erty of one-particle states. 

(2) Completed SU(6): refers to the way, prescribed 
by the homogeneous Lorentz group, in which an SU(6) 
representation behaves for nonzero three-momentum. 
In general, vertices, 5-matrix elements, etc. are definable 
only with reference to the completed SU(6). 

While orbital angular momentum is alien to the defini
tion of SU(6), the dictates of Lorentz invariance have 
shown that SU(6), by completion, leads nevertheless to 
certain unique P-wave predictions which are in reason-

8 See, e.g., R. F. Streater and A. S. Wightman, PCT, Spin and 
Statistics and All That (W. A. Benjamin, Inc., New York, 1964). 

able agreement with experiment. Our completion pro
cedures are not the same as saying that an arbitrary 
spurion of the type (cr-q) has been introduced, as is 
readily seen in the following. (<r«q) transforms like the 
(1,3) part of a 35. Applied to the P-wave interaction of 
mesons with baryons, the spurion language would lead 
to the algebraic structure 1C(56*056(g)35®35). As9 

35 x 35 contains 35 twice and also 405, it follows that 
the spurion device would generally not be unique. [See 
further the end of Sec. 11(a).] This uniqueness is main
tained, however, in the completed SU(6) picture. 

(3) Broken completed SU(6): exemplified1 by the 
precepts of local field theory. The completion does not 
work for the free kinetic energy. Thus a local Lagrangian 
for which the interaction is SU(6) -complete will in 
higher order give SU(6)-violating effects. For example 
it will generate mass splittings within supermultiplets. 
An example was given in I, Sec. III. These mass split
tings are all of the "first stage" kind.9 Recouplings 
which could lead to recurrences of SU(6) supermulti
plets10 may perhaps also be generated. 

(4) Broken SU(3): the kinetic energy does not in
trinsically violate SU(3). Note that the requirement of 
invariance under3 SU(4) (T)XSU(2) (X) XW(Y) is per
haps a natural physical way to break SU(S) ("second 
stage"9). 

(5) Embeddings of SU(6): SU(6) can readily be 
embedded in11-13 U(6)®U(6). For the low-frequency 
phenomena which led to the recognition of SU(6) as a 
useful group, U(6)®U(6) does not play any role of 
practical importance. Indeed, U(6)®U(6) can have 
meaning only if one neglects all fermion masses. The 
procedures in I and in the present paper, on the other 
hand, do not at any stage require such a drastic neglect 
which, moreover, complicates14 the assignment of mas
sive physical particles to specific representations. How
ever, this group could possibly be relevant for weak 
interactions.14 

II. THE MESON MATRIX 

(a) General Discussion 

In this section we consider the general construction 
of the meson wave function at finite momentum q. This 
wave function satisfies the following criteria: 

(i) It transforms in a well-defined way under 
L®SU(3). For example, the meson matrix of I trans
forms according to 

©(L) (1 /2 '1/2)(8)3D(3) (2 '1)e3D(L) (1 /2 '1/2)0^(3) (o 'o) 

e^112*11®®®^, (2.1) 
9 A. Pais, Phys. Rev. Letters 13, 175 (1964). 
10 Reference 9, footnote 14. 
11R. Feynman, M. Gell.-Mann, and G. Zweig, Phys. Rev. 

Letters 13, 678 (1964). 
12 K. Bardakci, J. Cornwall, P. Freund, and B. W. Lee, Phys. 

Rev. Letters 13, 698 (1964). 
13 K. Bardakci, J. Cornwall, P. Freund, and B. Lee, Phys. Rev. 

Letters 14, 48 (1965). 
14SeeRef. 5, footnote 18. 
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where the representations of the Lorentz group 
are labeled in the usual manner8 and the notation 
<£)(n)(Ai,A2---Att-i) j s u s e c [ for representations of SU(n), 
(X1>X2>-.->Xn__i). 

(ii) At q = 0 it transforms irreducibly under SU(6) 
according to 3>(6)(2,1,1»1,1). 

(iii) I t is characterized by a definite parity and this 
parity is to be taken as odd. 

The construction proceeds most smoothly by starting 
with 

®(L)[m>0]®®(L)im>°] 

= 2SDwt°.°l©2a)(jD)ti/2,i/2]©aD(^)[i,o] # (2.2) 

In order to implement discrete operations (C, P , and T) 
we take 3)(L)ll/2,01 to be an irreducible representation of 
the extended Lorentz group and thus a reducible repre
sentation of the proper part Z +

f . The sixteen Dirac 
matrices 1, 75, 7M, 757^, o> furnish a complete basis for 
the representation matrices. Hence they also furnish a 
basis for tensors transforming according to £) (L) [ 1 / 2 , 0 1 

® £ ) ( D I 1 / 2 ' 0 1 . Suppressing 517(3) indices, the meson 
wave function may therefore be written as 

m/(q) = a+by5+c^yfi+d^ybyfi+e'iVa^, (2.3) 

where, in the absence of any preferred direction in 
space-time, a, • • •, e depend only on the 4-vectors q and 
e, e being a polarization vector such that q- e=0. Hence 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

a=a{q2)J 

b=b(q2), 

cfi=c1(q
2)qfi+c2(q

2)e^ 

d^d1(q
2)q^+d2(q

2)e^ 

e»v= *i(g V ' + W f f 2 ) (&qv+*vq») 
+hz(q2)(€flqv-evq»)+eA(q2)q»q\ (2.8) 

Collecting terms we find 

OT(q) = ^(q)+3TCi(q; €o ,e) , (2.9) 

where 
9frco(q) = a + 4 Y B + c i ( ? - 7 ) + i m ( ? - 7 ) , (2.10) 

9fTCi(q; eo)t) = c2(e'y)+d2yb(e-y)+eze»qvcrfiV. (2.11) 

The parity of the mesons can be adjusted through 

74 t9^o(q)74=9^o(-q), Scalar (2.12) 

74t91Io(q)74= — 3Eo(—q), Pseudoscalar (2.13) 

74t9fTCi(q; €o,e)74=afHi(~q; e0, - e ) , Vector (2.14) 

74f9^i(q; €o,£)74=9flZi(—q; — eo, e), Axial-vector. (2.15) 

For negative parity we obtain, with a redefinition of 
the coefficients, 

r (0*7)1 
9TC(qH ifp7s-fA7s> \®P 

Moo -J 

+ ifv(*-y)+ifT: q»e 

Moo 
o> ® 7 , 

where P and V are tensors transforming according to 
Do/2*1* and 3D(3)

(O'O)0 £><8)(M), respectively. The relative 
weight of singlet and octet in V is determined by 
constraint (ii). This constraint also implies 

/pW)=/rW), 
fW)=fW). 

(2.17) 

(2.18) 

We postpone the proof of Eq. (2.17) and (2.18) until 
Sec. III(c) below. From now on the symbols fp, fT, fA, 
fv will be used only for the values on the mass shell. 

We are thus led to a one-parameter family of 12X12 
matrices as the requisite wave functions, the parameter 
being ( / V / F ) - The wave functions can be rendered 
unique only by imposing symmetries above and beyond 
SU(6). Such a symmetry was indeed implicit in I. The 
meson matrix quoted in I is in fact odd under the 75 
transformation. There is no reason to exclude parts even 
under 75 and the corresponding even-to-odd ratio is the 
free parameter ( / V / F ) - The significance of this parame
ter will be brought out more fully in Sec. I l l ; a t the 
moment it is sufficient to point out that all the 527(6) 
predictions hitherto quoted in the literature are inde
pendent of the value of this parameter and thus are not 
affected by giving it an explicit value. 

In the introduction we noted that our treatment is not 
equivalent to a spurion picture. We can now state more 
precisely what this inequivalence consists of. The 
following can be shown: (a) The double occurrence of 
35 in 35® 35 leads, and leads only to the arbitrariness in 
the ratio (fT/fv) mentioned above; (b) the completed 
SU(6) picture corresponds furthermore to the absence of 
contributions due to 405. 

(b) Vertices in the Restricted Case 

We first recapitulate some results obtained in I, 
referring to the treatment of the 35 given in I as the 
restricted case. 

In order to describe the 6 representation, we intro
duced in I a 12-component wave function wx(p), where 

w^(v)=u^A(v), X s ( t , M ) = l , 2 , • • •12. 
=uJaA(p). (2.19) 

i— 1, 2 refers to spin up, down, respectively; A = 1, 2, 3 
is the contragredient SU(3) index, and a is the index 
which doubles the number of components. The sub
script + (—) refers to particle (antiparticle) states. We 
have used the explicit representation15 

u+iaA(p)=N(p) «j.p tA, (2.20) 

lpo+M 

/0 7 \ 
uJ"A(v)=(yb)b"u+ibA(p), 75= f J . (2.21) 

(2.16) 15 See I Eqs. (22), (23). M is the common sextet mass, po 
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We define the adjoint wave function w\(p) by 

«x(p)=(w(p) t70x. (2.22) 

In this paper we work with four Hermitian Dirac 
matrices YM, JU= 1, • • •, 4. The following explicit repre
sentation is convenient: 

r = P 2 * > T4=P3 , 7 5 = — 71727374. (2.23) 

With the help of the bilinear product W\(p2)wll(pi) we 
construct the 12X12 matrix $TCM

x(q) for a meson 
supermultiplet with common mass juoo by imposing the 
following conditions. 

(i) The quantity 

^x(p 2V(pi)2TC/(q) , q = p 2 - p i , (2.24) 

shall have all the Lorentz-covariance properties of a 
meson-fermion vertex. 

(ii) For q—0, the only nonvanishing combination of 
PS and V fields which may occur in 9TC are given by 
MJ, a= (i,A), 13= (j,B), where 

MaB=it>JPAB+ («r • *)ijVAB. (2.25) 
Note that 

WVMJ=PABPBA+ (*VAB) (tVA
B). (2.26) 

(iii) 9TI shall be such that Eq. (2.24) contains only 
V(V) and PS(PV) vertices. This condition confines us 
to the restricted case and implies that yf~1(3tlys— —2flT. 

The conditions (i)-(iii) determine 9TC uniquely and 
one has16 

W ( q ) -[: 
«?0 

NJ(q), MJ(q) 

Jf««(q), NJ>(q) ]• (2.27) 

MJ(q) = —hi'PA*+ («r • e) <1V>, (2.28) 
Moo 

(tf-qV 
^«fl(q) = i PAB+h^VA

B. (2.29) 
Moo 

by introducing the Na
8 matrix. The same is true for the 

interaction with the 56 which can be written as17 

-BxM, t (P2)^X M € (Pi)^/(q) ; X , / i , i ' , € = l , 2 , • • • 1 2 . (2.32) 

It may also be noted that the odd parity of the mesons 
makes the no-fermion recoil approximation go entirely 
via NJ(q). For an even parity 35 the interaction would 
have gone via ifa

fi(q). 
It is quite instructive to consider the meson matrix 

also in a different representation defined by 

wx(py= (5w(p))x, 

s=2-^(74+75). 
C orrespondingly, 

3V(q)'=0S3Il(q)S)/, 

S = 745*74. 

We get 

-M<+\B(q), 

Jf<"V(q). 

In this equation, 0 is a 6X6 null matrix, while 

rlf<+V(q), 0 -i 

L 0 Jf<"V(q)J 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

fg- (±)„ ) .3 

JIf ( ± V ( q ) = T i — —PAB+ (<r^eM)^VA
B. (2.38) 

Here 

We have 

Moo 

*„<*> = *, ± i . l . 

M^J(0) = M^a
3(0) = MJ. 

(2.39) 

(2.40) 

Note that 

In the primed representation one can introduce the 
adjoint of 9fE' as follows.18 

S t / ( q ) , = [ 7 4 , ^ ( q ) V ] M X ; 7 / = 75. (2.41) 

Equation (2.41) is equivalent to 

M^J(q) = M™J(q). (2.42) 

One checks [using also Eq. (2.40)] that this definition 
of adjoint reduces to the one employed in Eq. (2.26) for 
q = 0 . We now have 

Ma>(0) = MJ>, NJ>(0) = 0. (2.30) iM«/(q)i lf<+) / 3«(q) = |M^^(q)i)f<-) / 3«(q) 

Equation (2.30) contains the implementation required 
by 517(6). 

Let us now go to the no-f ermion-recoil approximation. 
Here we still use Eq. (2.21) and (2.24) but we now put 

u+
iaA(p)->u+

iaA(0). (2.31) 

Thus in this approximation the interaction proceeds 
exclusively via iVa

fl(q), which contains the s-wave 
vector interaction and the ^-wave pseudoscalar inter
action in a prescribed mixture. This comes about be
cause of the interplay of SU(6) and the Lorentz group. 
The former prescribes the mixture of V and PS in the 
6X6 matrix MJ- The latter requires us to boost the 35 

16 Apart from some slight differences in the phase conventions, 
Eq. (2.9) is identical with I Eq. (27) with gl=g2=gz=l. 

= {*»VA
B){^VB

A) PABPBA. (2.43) 
Moo2 

This is the boosted SU(6) invariant encountered in 
Eq. (2.26); and it is a Lorentz scalar. On the mass shell 
the right-hand side of Eq. (2.43) reduces to Eq. (2.26). 

(c) Vertices in the Genera l Case 

We next discuss the vertices without restricting the 
behavior of 9Tl/(g) under the 75 transformation. This 
we call the general case. Thus we start again with Eq. 

17 Note added in manuscript. The meaning of Bx»e and its adjoint 
is given in detail in M. A. B. Beg and A. Pais, Phys. Rev. Letters 
14, 267 (1965). 
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(2.19)-(2.25), but now also admit, in addition to V(V) 
and PS(PV) vertices, V(T) and PS{PS) vertices for the 
same set of mesons. The procedure followed is a straight 
extension of the one used in I Sec. I I I . We shall first 
consider the vertex for the sextet in interaction with our 
set of mesons. 

The effective coupling again takes the form as in 
Eq. (2.24) but where now 

if 

\C</(q) , DJ(q)J 

L an 

(2.44) 

•q 

Moo 
PAB~fveoVA

B 

+ifT~ 
<r-(qxe) 

Moo —*i 

(2.45) 

[« 
,?o 

BJ(q)=\ ifA—PAB+fv(o>t)VA
B+ifpPA

B 

Moo 

fT nj 

+—{qo(vz)VA
B-6o(<T.q)VA

B} 
Moo 

(2.46) 

CJ(q) = BJ(q), but with r ^ - f v ; fA~^-fA, (2.47) 

DJ(q) = AJ(q), but with r ^ - f v ; fT-^-fT. (2.48) 

A more transparent form of the meson matrix is ob
tained if one again makes the unitary transformation 
given in Eq. (2.33)-(2.36). This yields 

/K™J(q), Z ( + )</(q)\ 
3Tl / (q) '=( ) , (2.49) 

# ( ± V ( q ) = T i / -;fA Lp.B 

Moo 

+ / F W ± ) e „ ) F ^ 

L^J{q) = ±ifpPA
B+ifT F A

B 

Moo 

(2.50) 

(2 51) 

o-ik(±) = o-i, i, k, 1=1, 2, 3, cycl; 

<r«f±) = =fc<ri. (2.52) 

K^J(q) = f1M^J(q), (2.53) 
We have 

if 

fA = fv=fi- (2-54) 

Thus, if Eq. (2.54) is fulfilled, we have in particular 

K^a
8(0) = f!MJ. (2.55) 

Next we note that 

LWa*(O) = f*&«0, (2.56) 

F=f=f2- (2.57) 

With the help of Eq. (2.49)-(2.57) we now give the 
following interpretation to the general meson matrix in 
SU(6). Each of the four 6X6 matrices K^a

s(q); 
L(±)J(q) are boosted 35's with respect to the proper 
Lorentz group, as long as the Eqs. (2.54) and (2.57) are 
satisfied. For then we have the zero-momentum-limit 
property for both the K's and the Us given in Eqs. 
(2.55) and (2.56), which is what we mean by SU(6). 
While this identification is particularly transparent in 
the representation Eq. (2.49) for the meson matrix, this 
interpretation is actually independent of any particular 
representation. The same results would have been found 
had we applied the reasoning to the separate matrices 
A,B, C, ZHnEq . (2.44). 

We again define18 the adjoint of SfTC' by Eq. (2.41). 
Hence, 

i?<±V(q) = i ^ V ( q ) , (2.58) 

Z<*««(q) = 2 W ( q ) . (2.59) 

Thus, 

i ^ + ) / ( q ) i r ( + ) ^ ( q ) = | X ^ ^ ( q ) ^ - > ^ ( q ) 

= | / i | 2 ( e , F ^ ) ( e M F ^ ) PA
BPB* , (2.60) 

Moo ] • 
§LW.»(,)iM,»(<|) = j I < - l « « ( , ) i H , - ( , ) 

-l/.l{- <e,VA
B) (€,VBA)+PBAPAB . (2.61) 

Motf5 

Equation (2.60) is the same as Eq. (2.43). Equation 
(2.61) represents a second Lorentz scalar which is a 
boosted SU(6) invariant. On the mass shell, Eqs. (2.60) 
and (2.61) are of course identical apart from a constant 
factor. 

Note that the case fa=0 corresponds to the notion of 
"minimal vertex" introduced earlier.3 We now must ask 
in what respects the case / i ^ O , f^O differs from the 
restricted case. This is done in the next section. 

III. RECOIL EFFECTS 

The meson matrix Eq. (2.45) may be used to write 
down an effective meson-baryon coupling17 with com
pleted SU(6) structure and more general than the 
coupling exhibited in Eq. (2.32), 

3 v f B h M B ^ ( v i ) m i / ( q ) . (3.1) 

I t is instructive to investigate this coupling in the 
brick-wall frame defined by P i+p2=0. In this frame the 
vertex depends only on the single momentum q and the 
v/c limit is uniquely specified by the requirement that 
we retain terms only up to the first power in | q |. On 
dimensional grounds, these v/c terms occur either in the 
form | q|/MOO or | q|/Moo. Terms of the latter set are 
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fermion recoil terms which do not survive in a purely 
static theory. 

Our interpretation of SU(6) theory1 is not complete 
without a discussion of these recoil terms. In order to 
bring out their structure we reduce Eq. (3.1) and exhibit 
the relevant couplings through a phenomenological 
static interaction density. It is sufficient to consider the 
couplings of protons to TO and p0; other couplings are 
easily obtained by the methods of Refs. 4 and 5. For 
these couplings we have 

gelp*pPO°+(l/w)Z™*P**P' (VX^o) 
+ (l/»oo)gApfvp'VT0, (3.2) 

which contains three strong-interaction coupling con
stants given by 

gei=Uv+(m/2M0o)n, (3.3) 

^ a g = 5/3[(/xoo/2Moo)/y+/r], (3.4) 

gA = S/3[_fA+ (MOO/2M00)/P]. (3.5) 

(a) Note that since fA = fv and / p = / r , one retains 
the relationship3 

gA = SgGi/3 (3.6) 

also in the presence of fermion recoil. However, the ratio 
fv/fT is not determined by SU(6) and thus gmag is a 
parameter independent of ge\. 

(b) The arbitrariness of gm&g/gei in the SU(6) scheme 
is essentially the same as the arbitrariness of the 
isovector magnetic-moment-to-charge ratio, i.e. [_fx(p) 
—fj<(n)~]/e=5n(p)/3e. (Of course, the vanishing photon 
mass and considerations of gauge invariance make the 
two problems distinct in other respects.) 

Unless 517(6) is supplemented by further dynamical 
assumptions, the theory does not give a unique pre
diction for the magnitude of ix(p). This is precisely why 
it was not assumed in earlier work that the effective 
electric-charge operator and the effective magnetic-
moment operator are members of the same 35 repre
sentation4 of SU(6); and similarly for weak currents.5 

IV. COMPLETION FOR OTHER REPRESENTATIONS 

(1) Completed 517(6) and the Representation 70~ 

As a further application of completion we consider 
the 70~. This case is of interest for two reasons. First, 
the 70~~ is a likely candidate19 for the assignment of 
higher baryon resonances. Secondly, it is of interest to 
see how our methods apply to the (70~, 56+; 35~) vertex 
which describes the decay of the 70~~. In particular we 
shall see how the meson matrix has to be handled for a 
coupling to fermion supermultiplets of opposite relative 
parity. 

19 See Ref. 9 and M. A. B. Beg and V. Singh, Phys. Rev. Letters 
13, 509 (1964); I. Gyuk and S. F. Tuan, Phys. Rev. Letters 14, 121 
(1965); F. J. Dyson (private communication). 

20 Here again X, /*, p, T = 1, • • • 12. 

At zero three-momentum the 70 baryons are de
scribed by an SU(6) tensor tytefly. Here and below, the 
bracket £ ] denotes antisymmetry with regard to the 
enclosed indices. ̂  must satisfy 

T j r [ a /S ] y^ . ^ r [ 7a ] / 5 - j - ^ r [ /S7 ]«=0 . ( 4 . 1 ) 

This representation has the SU(3)®SU(2) content9 

70= (1,2)+(8,2)+(10,2)+(8,4). We find the following 
explicit form: 

1 V2 

J^^ABO^inkJ^^ABjC^ijk) (4.2) 

The first line gives the (1,2) part. eABC is the SU(3) 
Levi-Civita symbol, and 

1 
xdj)k = ( € *V+e y V) (4.3) 

V6 
is the spin-J function with the appropriate symmetry; 
eij is the SU{2) Levi-Civita symbol, and %* is a Pauli 
spinor. The second line describes (8,2). \j/^AB^c is an 
SU{3) octet tensor and satisfies a relation analogous to 
Eq. (4.1). The third line is (10,2), and 4>{ABC) is totally 
symmetric, while 

1 
y[ij]k — eijyk /A. A \ 

V2 
Finally, the last line of Eq. (4.2) gives the (8,4). ^AB^C 

has the same SU(3) properties as does \f/^AB] c, and x(ijk) 

is totally symmetric. Our definitions satisfy the right 
relative normalization conditions; we have 

LllxW)fclhLllxrafclh2, 
ZMiAB]C\\=ZU[Amc\\=z, ' 
Lllx(^)lh4; ZII*WBC)ll = io, 

where the summations go in each case over the range of 
all tensor indices. 

We can now go from tyiafty to the completed descrip
tion by a procedure similar to that17 for the 56. The 
vertex is given by 

*W(P2)£ (XMrHpi)(75^(<?))/. (4.6) 

Here (y£ftl(q))T
v is defined with the help of 75 as given 

in Eq. (2.21) and 901 as given in Eq. (2.27). Thus 

(xW{q))M _ I. (4.7) 
LAJiq), BJ(q)J 


