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We have formulated a theory of massive electrodynamics which admits gauge invariance of the second 
kind. In so doing, a massless scalar field is needed. However, if the conserved-current condition dfljf

i = 0 is 
satisfied, this scalar field has no dynamical consequences. This theory then reduces to the conventional 
theory. When the conserved-current condition is not satisfied, a generalized current must still be conserved 
in order to have consistency of the theory. In an addendum, a brief discussion of the generalized Stueckel-
berg formulation is given. 

THE connection between gauge invariance1,2 of the 
second kind and the observed mass of a vector 

particle has been a subject of discussion recently. There 
are essentially two schools of thought: 

(1) I t is proposed that a (bare) massless vector field 
can generate a nonvanishing observed mass through 
interaction.3-4 In this program, explicit gauge invari
ance5 is never a problem. The situation is exactly the 
same as in quantum electrodynamics. We have nothing 
to add to this approach, except to point out the probable 
computational difficulty. 

(2) This applies only to a conserved-vector-current 
theory.6-7 There is the view that since only the (four-
dimensional) transverse components of a vector field 
are coupled to a conserved vector current, one may as 
well confine one's attention to gauge invariance of these 
components only. Whereas physically this is the correct 
picture, nonetheless, some modifications are necessary 
for our purpose later. 

I t is our intention to give another approach to this 
problem here. We shall see that it is indeed possible to 
present a formulation, such that the vector field can 
have a nonvanishing bare mass and that all observables 
in the theory will be explicitly gauge-independent. In 
so doing, it is necessary to introduce a massless scalar 
field as a vehicle to maintain gauge invariance. This 
scalar field can be gauged away when we have a con
served (conventionally defined) vector current. We 
shall prove that, in this case, our theory is exactly the 
same as the conventional massive electrodynamics. 
Indeed, its gauge invariance is trivial. In general, when 
such a vector current does not exist, a generalized vector 
current, as we shall define below, must still be conserved 
in order to have consistency of the theory. 

In a separate note, we shall discuss the implication 

1 C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954). 
2 See also, R. Utiyama, Phys. Rev. 101, 1597 (1956). 
3 J. Schwinger, Phys. Rev. 125, 397 (1962). 
4 D. G. Boulware and W. Gilbert, Phys. Rev. 126, 1563 (1962). 
5 By this we mean that all physically relevant expressions must 

be gauge-independent. 
6 G. Feldman and P. T. Matthews, Phys. Rev. 130,1633 (1963); 

132, 823 (1963). 
7 V. I. Ogievetskii and I. V. Polubarinov, Zh. Eksperim. i Teor. 

Fiz. 41, 247 (1961) [English transl: Soviet Phys.—JETP 14, 
179 (1962)]. 

of this conserved current concept on elementary inter
actions.8 In particular, we shall show how this massless 
scalar field makes contact with a model recently pro
posed by Lee9 to explain the apparent CP violation.10 

MASSIVE ELECTRODYNAMICS 

Gauge invariance of the second kind of massive 
electrodynamics has been discussed previously by 
several authors.6,7 When one deals with a conserved 
(conventionally defined) vector current, which acts as 
the agent that generates these massive photons, one 
can still bypass the gauge problem by explicitly 
coupling the current to the 4-dimensional transverse 
photons only. In order to have a local Lagrangian 
density, an indefinite metric has to be introduced to the 
longitudinal photons. Since the longitudinal photons 
are not coupled to the physical observables through the 
conserved current anyway, this process does not raise 
any difficulty in probability interpretation. On the other 
hand, when a nonconserved vector current is involved, 
this method obviously fails. We would like to give a 
different formulation of this problem here, in which no 
such difficulty may arise. We shall see that all physically 
meaningful quantities—Hamiltonian density, currents, 
etc.—are explicitly gauge invariant. 

The Lagrangian density of a massive spin-1 field 
coupled to a spin-J field is11 

where 

is the conventionally defined current. Except for the 
mass term, it is invariant under the gauge trans-

8 Y. P. Yao (to be published). 
9 T. D. Lee (to be published). 
10 J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, 

Phys. Rev. Letters 13, 138 (1964); A. Abashian, R. J. Abrams, 
D. W. Carpenter, G. P. Fisher, B. M. K. Nefkens, and J. H. Smith, 
Phys. Rev. Letters 13, 243 (1964). 

11 We use the metric ( - 1 , 1,1,1). M = 0, 1, 2, 3. jfe=l, 2, 3. 
{7M>7V} = — 2&M,, 7fct=— 7*, and Yot=7o. Appropriate symmetri-
zation and antisymmetrization over the Bose-Einstein and Fermi-
Dirac fields, respectively, are implicitly assumed. 
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formation 

An(x)-*Ap(x)+dMx), .(1) 
and 

where A(x) is an arbitrary function of space-time 
coordinates x. 

The Lagrangian density of a spin 0 field is 

where <£int' is the interaction density of 0, A", and ^. 
I t is seen that we can have a gauge-invariant Lagrangian 
density, if we choose 

and, under a gauge transformation, 

0(#) —»</>(#)+wA(#), 

^(x) -> 0*(aO+wd*A(a;). (2) 

JSint is invariant under the gauge transformation (1) 
and (2). We then have the following gauge-invariant 
Lagrangian density,12 

^-Ky,{yi)^+M)^-hG^{d,Av-dvA,) 
+iG*vGp9-%m2A»At-<l>»dlrf>+i4>'l4>lt 

+All(j"+md"4>)+£int. 

In order to have gauge invariance for a massive vector 
field, we have to introduce a massless scalar field. 

We must hasten to point out, however, that this 
Lagrangian density cannot yield a consistent theory. 
The equation 

dkG
ok+m2A0=f+md°(t> 

or 
(-d°(t>+?nA0)= - (l/m)(dkG

0k-f) 

is inconsistent with the fundamental commutation 
relation between <j> and its conjugate momentum: 

(l/i^WX-d^+mA^ix'^dix-x'). 

The reason is that the commutator can also be written 
as 

( i A " ) C * , - ( i / « ) O t G B * - j 0 ) ] , 

which must vanish, because 0, G0k, and \f/ are all different 
independent degrees of freedom. 

The cause for this inconsistency is familiar. Due to 
the derivative coupling mA ^ 0 , we have made 

A°= (l/tn2)(j°+?nd0<t>-dkG
0k) 

an independent dynamical variable. (The time deriva-
12 This Lagrangian resembles that of D. G. Boulware and W. 

Gilbert (Ref. 5), if we replace our mA^ti term by mA^. How
ever, in so doing, the theory possesses gauge invariance only when 
m—0. We have the freedom of multiplying iG^G^ by a dimen-
sionless number g2 which can be used to vary the relative coupling 
strengths of A^j* and <£jnt- We shall assume minimal coupling 
Apfr between A^ and rp. Hence, £int=£intD/','?v£]. 
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tive d° appears explicitly on the right-hand side.) On 
the other hand, we have not assigned an independent 
conjugate momentum to it. The situation here re
sembles that in the Lorentz gauge electrodynamics. The 
solution is also well known13: We introduce a gauge 
operator G, which as the property that it annihilates 
all the gauge-invariant states ^ ; i.e., 

These comprise of all the physically relevant states. To 
ensure that this condition be satisfied at all space-time 
points, we impose the condition 

d2G=0 

on G. Consequently, all higher time derivatives of G 
vanish when applied to a gauge-invariant state. 

The extended Lagrangian density is 

£=-Hy»(Vi)^-\-M)yl/--hG»v{dllAv-dvA») 
+\G»vGlk9-^

2AyA*-4>*dl4>+follfr» 
+Afi(j

tx+fnd>*<l>)-GdfXAt*. 

We have let £ i n t = 0 ; we shall continue with this 
assumption for the rest of this paper. 

We shall agree, under a gauge transformation, 

G-+G. 
Then, 

£ - > £ - G d 2 A . 

By the action principle, the generator of an infinitesimal 
gauge transformation (1) and (2) is given by 

G5X= / (d*x)(Gdo8\-5\d0G). 

Because we are dealing with Abelian gauge fields here, 
the order of performing two successive gauge trans
formations at a common time is immaterial. This 
implies the relation 

[G5X1,G5\2] = 0 , 

which can be satisfied if 

[G(x),G(x')]= LG(x),doG(x')2 
= ZdoG(x),d0G(x')~]=0. 

The canonical equations 

( i A ) [ ^ M , G 5 X ] = 6 y \ , 

( l /*)[^ ,G«x]=irf^ , 

etc. give us the following nonvanishing equal-time 
commutation relations: 

(l/*)[*(*),doG(*0]= -ie*P(x)5(x-xf), 

(l/i)[^(x)JdQG(xf)']===ie^(x)d(x-xf), 

(l/i)tA0(x)fi(x')-]=8(x-xf), 

(l/i)lAk(x),doG(x')l= - d * 5 ( x - x ' ) , 

( lA)[0(*) ,doG(^)]= - w 5 ( x - x ' ) , 
13 J. Schwinger, Phys. Rev. 130, 402, 406 (1963). 
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and 
(lA0C*o(*),G(«,)]=f«6(x-x/). 

G is the "conjugate momentum" to A 0 . 
I t is interesting to observe that 

Gax*=0, 

which shows that ^ are indeed gauge invariant. We 
also have the following commutators: 

^(x)^(xf)}=8(x-xf)1 

d 
a/i) (t>(x),—<l>(xf) = 5 ( x - x 0 

dt J 
and 

(l/i)lG0k(x))Al(x
f)2=hkB(x~xf). 

Let us emphasize that 

£A^-]^lAo,G>^=ZAo,A"2 

That is, A0 is truly an independent dynamical variable. 
Euler's equations are 

can be written as 

©oo= joo__ A kdkG__ Ao (dkGM+m2A°- f- md°<t>) 

and 

@o*= T0Js-A°dkG-Ak(diG0l+m2A0~f-md0(j>), 

where 

Tm=^yk((l/i)d
k~eAk)x//+M^ 

+i(Gkl)2+UG0k)2+^m2(Ak-(l/m)^k)2 

+\m2{AQ-{\/m)<tP)2 

is gauge-independent and positive definite in the integral 
spin variables. 

T°k=tf(l/idk-Ak)J,+G*lGki 

are again gauge-independent. 
Clearly, we have the reductions 

and 

@0(KJ> _ p o ^ 

QOkty— Tokty 

# 

8f 

8G»V 

8AV 

8<j>^ 

8(j> 

[ 7 M ( ( 1 A * ) ^ - ^ M ) + ^ > = 0 , 

C T M ( - ( I A ' ) ^ M - ^ M ) + ^ ] = O , 

{j"fiv~=z t/^^jL p OpJi. fi j 

dfi^-nPA "= - j'—mdv<t>— d'G, 

4>p=du4>, 

di<j>=mdliA"=0, 

8G: d ^ " = 0 . 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
and 

In particular, let us consider once again the equation 

dkG
k0-m2AQ= -j°-md0<j>-d°G. 

I t is now consistent with the commutation relations 

(l/i)l4>(x),(-dQ</>+mA°)(xf)2==8(x-xf) 

since the left-hand side is also 

-(l/i)(l/m)lJ>(x)id(iG(xf)2=8(x-xf). 

By introducing the gauge operator G, we have been 
able to write down a consistent set of equations and 
commutation relations. To proceed further, a natural 
query is whether such an extended formalism is Lorentz 
invariant, or whether the generators of the inhomo-
geneous Lorentz group of such an extended system obey 
the group commutation relations. The easiest way to 
investigate this aspect is to look into the commutators 
of the energy-momentum densities.13 After adding some 
irrelevant surface terms and making use of the Euler's 
equations, we find that the extended energy-momentum 
densities derived from the above Lagrangian density 

i.e., T00 and T0k are the true energy-momentum densi
ties of the realizable physical states. 

I t is now a matter of some algebraic manipulations 
to arrive at the equal-time commutation relations, 

-C©0H^),®00(^)]=-C@0H^)+©°H^)]^^(x-x) 

and 

-f[roo(*),roo(i»/)]= -[r°*(x)+r°H*0]w(x-x). 
Thus, the theory is Lorentz invariant. 

We shall now show how this theory goes into the 
conventional theory. We define the new variables 

and 

^ / = 0 - * ( « / » » ) ^ 

^ / = - 4 M — ( 1 / m ) ^ 

(which are, incidentally, all gauge-invariant quantities). 
Then, Eqs. (3)-(8) simplify to 

[yll((l/i)dfi-eA^)+M2f=-0, (3') 

f [ T M ( - (l/i)h~eA'»)+Ml=0, (40 

fl,G'"-mM''+a'G=-/'= -j>, (6') 

*M=3**> (70 
and 

dty=0. (80 

It is worth noting that we still have the gauge condition 

d„4'"=0. (90 
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The energy-momentum densities become 

T^=^yk((l/i)d
k-eAfk^f+M^f+l(G,kl)2 

+i(G'0k)2+im2((Afky+ (A'0)2) 
and 

rk=^((l/i)dk-Ak
fW+G,QlGk/ 
+m2AfQAk

f+dl(i/8^[yhyi^), 

in which expressions <f> does not appear. 
The fundamental commutation relations 

and 
(\/i)lAf\x)AiW)~]= ~ (l/nt2)dMx-x') 

are exactly like those in conventional massive 
electrodynamics.14 

Equations (3')~(6'), the gauge condition d^A'*1, and 
T0fX are all gauge-independent quantities, since \f/', Affi, 
and G'*1" are. Consequently, we can drop dvG in (6'), 
as long as we neglect (70 and (8'). (Remember G is a 
gauge operator. It has effects only on gauge-dependent 
quantities; but [ G ^ , ] = C ^ , / x ] = C ^ , / i I ' ] = = 0 . ) To 
put it differently, if we neglect (7') and (8'), all the 
above expressions can be derived from 

^=-^(y,{Vi)d^+MW-W"v{^Av
f-dvA;) 

+\Gllv'G
,<"-lfn2Al!A'»+jJA'», 

which is the Lagrangian density we used all along in 
massive electrodynamics. Let us repeat what we have 
proved: The conventional massive electrodynamics, 
derivable15 from <£', is a general gauge-invariant theory, 
since all field variables, x//', A'*, and Gf(iV are gauge 
invariant. 

Now it is obvious how the scalar field is used only as 
an artifice to introduce gauge invariance of the second 
kind. Once this purpose has been served, we can de
couple it from the rest of the system. The decoupling 
cannot be carried out in general, when i^nt^O. 

From (6) and (9), we have 

V = 0 , (10) 
where 

J^jv+mdty, (11) 

which we shall call generalized current. We would like 
to stress here that the conservation of charge is a 
consequence of the antisymmetric property of O", just 
as in electrodynamics the conservation of electric charge 
is a result of the antisymmetry of the field intensities 
pixvu N 0 dynamics can change this antisymmetry. 

14 E. g. K. Johnson, Nucl. Phys. 25, 435 (1961). 
15 We also have d ^ J ' ^ O ; which is to say that we have a con

served vector current theory. (See below.) 
16 This point has been emphasized by J. Schwinger in his 

Brandeis lectures (Summer, 1964) when he discussed baryon 
conservation. It may well be a fundamental property that all 
absolute Conservation laws (of internal symmetries) share. 

In this case, where we have assumed <£mt=0, Eq. 
(10) is consistent with Eq. (8) or (8') only if 

d^=dj^=0 (12) 

as we can also check directly by using the definition of 
j*=j'i> and Eqs. (3) and (4) or (3') and (4'). We have 
here a conserved (conventionally defined) vector 
current theory. This is because we have taken <£int=0. 
We shall show in a subsequent paper that there are 
examples in which (12) is not true. 
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ADDENDUM 

Upon completion of this work, it was brought to my 
attention that a generalized Stueckelberg formalism 
has been proposed.17 We would like to modify that 
formulation to fit into our development. Thus, we 
replace —Gd^A* in <£ by —G[dllA^—{K2/m)(j)']. In so 
going, the gauge condition (9) becomes 

d^4"-(K2/f»)^=0, (Al) 

and the gauge operator G has to satisfy the equation 

(d2-K2)G=0. (A2) 

The other changes are that Eq. (8) is replaced by 

dM0*-wd^M- (K2/m)G= 0, 
or 

(d2-n2)4>+ (K2/M)G= 0, (A3) 

upon using (A2).18 000 acquires an additional term 
— {K2/m)G<j>, but r00 remains unchanged. 

The consistency of canonical quantization in the main 
text still holds. Lorentz invariance of the theory can be 
checked as before. 

We would like to make a few remarks when 
JBintC^l^O. From (6), differentiating both sides by 
d„, we have 

dli(j
lx+mdli(t>+dliG-m2Aix) = 0, (A4) 

In general, no combination of the terms inside the 
parentheses can be made as a conserved local current 
density; we must take the whole object. This is, of 
course, a consequence of the gauge conditions (Al) and 
(A2). In other words, d^G and A1* are not 'conserved' 
separately, in contradistinction to the massless case 

17 E. C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938); Y. 
Fujii, Progr. Theoret. Phys. (Kyoto) 21, 232 (1959); S. 
Bonometto, Nuovo Cimento 28, 1855 (1963); Y. Fujii and S. 
Kamefuchi, Nuovo Cimento 33, 1639 (1964); Y. Fujii, Stanford 
Report (to be published). See also references quoted in these 
papers. 

18 K2 can therefore be identified as the mass of the scalar field. 
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Oc2=0). On the other hand, (fr+rndty+dHi—nPA*) 
does not allow for any realistic physical interpretation 
as a local current density. The third term dMG is not a 
physical quantity. The fourth term — nfiA*1 is actually 
the mass term of the vector particle; to look at it as a 
part of a current density is just too artificial. Thus, we 
have to conclude that when the scalar field acquires a 
bare mass, no physically meaningful conserved local 
current density can be constructed (when £ i n t=0, 
dllj

fi=0 follows). 
(A3) is modified into 

(d2-K2)</>+ (K2/M)G+J=0 , 
where 

/=(8£int) / («*) . 

I. INTRODUCTION 

WE wish to discuss the energy dependence of the 
partial-wave amplitudes for many coupled two-

body channels. We assume that these amplitudes satisfy 
the coupled N/D partial-wave dispersion relations. The 
purpose is to obtain a simple effective-range theory by 
removing the right-hand cuts explicitly and approximat
ing the rest of the scattering matrix that contains only 
the left-hand singularities. We assume that only n 
channels need be considered explicitly. The inverse of 
the nXn scattering matrix T(=NDr~1) can be written 
from unitarity as T~1=M(s)—ip(s) (s is the square of 
the total energy in the center-of-mass system), where 

* Supported in part by the U. S. Air Force through Air Force 
Office of Scientific Research Contract AF 49(638)4389. 

f Supported in part by the U. S. Atomic Energy Commission. 
The major portion of this work was done while the author was at 
the Institute of Theoretical Physics, Stanford University, Stan
ford, California. 

Together with (Al) and (A2), we have 

dpj"=tnJ, 

which is the counterpart of (10) in the massless case. 
We can define 

J^(x) = j!i(x)+mdfi / D(x-x')J(xf), 

-d2Z>=l, 

as a conserved current density: 

but it is nonlocal. 

p(s) is a diagonal right-hand cut function. The matrix M 
is both real and symmetric to the right of the left-hand 
singularities. Over an approximately small physical 
region of energy, therefore, an effective-range expansion 
in M can be carried out. 

We propose an effective range formula for M, M(s) 
= B~1(s)~-P(s)J where B(s) contains the unphysical 
singularities of the scattering amplitude T and P(s) is 
a diagonal matrix and contains most of the energy 
dependence of M(s). If the left-hand singularities 
carried by M(s) do not lie very close to the energy 
region of interest, a further simplification in the 
effective-range formula for M follows. The nondiagonal 
effective ranges in this situation are small (the effective-
range matrix R is approximately diagonal), and for 
small value of k2 (see the computer experiment in 
Sec. Il l) we have the linear relationship M—M(Q) 
+%R[k2—k2(0)2- The diagonal effective ranges can be 
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Multichannel Effective-Range Theory from the N/D Formalism* 
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An effective-range theory for systems of many coupled two-body channels is given using the N/D formal
ism. The effective-range expansion is carried out in the amplitudes M%$ (where M is essentially the matrix 
T~l with the right-hand cut removed). Quite in analogy with the single-channel effective-range theory, the 
diagonal elements Mu are given by an expression quadratic in fa, the relative momentum in channel i. The 
effective ranges Ru are given by certain principal-value integrals which depend on the position of the left-
hand singularities in the corresponding channels and can be taken to be energy-independent to the same 
extent as in the one-channel theory. The nondiagonal elements Ma, in general, have a weak energy de
pendence and can approximately be treated as constants. A two-channel computer experiment is performed 
to test these proposals in detail. Three different situations for the left-hand cut are considered: (i) a set of 
monopoles, (ii) a set of dipoles, and (iii) the left-hand cut produced by the exchange of scalar particles in the 
"crossed" t reactions. For a large number of situations considered, the simple features proposed for the 
multichannel effective range theory were found to exist. The above formalism is similar to the multichannel 
effective-range theory of Ross and Shaw in the potential model. 


