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Oc2=0). On the other hand, (fr+rndty+dHi—nPA*) 
does not allow for any realistic physical interpretation 
as a local current density. The third term dMG is not a 
physical quantity. The fourth term — nfiA*1 is actually 
the mass term of the vector particle; to look at it as a 
part of a current density is just too artificial. Thus, we 
have to conclude that when the scalar field acquires a 
bare mass, no physically meaningful conserved local 
current density can be constructed (when £ i n t=0, 
dllj

fi=0 follows). 
(A3) is modified into 

(d2-K2)</>+ (K2/M)G+J=0 , 
where 

/=(8£int) / («*) . 

I. INTRODUCTION 

WE wish to discuss the energy dependence of the 
partial-wave amplitudes for many coupled two-

body channels. We assume that these amplitudes satisfy 
the coupled N/D partial-wave dispersion relations. The 
purpose is to obtain a simple effective-range theory by 
removing the right-hand cuts explicitly and approximat­
ing the rest of the scattering matrix that contains only 
the left-hand singularities. We assume that only n 
channels need be considered explicitly. The inverse of 
the nXn scattering matrix T(=NDr~1) can be written 
from unitarity as T~1=M(s)—ip(s) (s is the square of 
the total energy in the center-of-mass system), where 

* Supported in part by the U. S. Air Force through Air Force 
Office of Scientific Research Contract AF 49(638)4389. 

f Supported in part by the U. S. Atomic Energy Commission. 
The major portion of this work was done while the author was at 
the Institute of Theoretical Physics, Stanford University, Stan­
ford, California. 

Together with (Al) and (A2), we have 

dpj"=tnJ, 

which is the counterpart of (10) in the massless case. 
We can define 

J^(x) = j!i(x)+mdfi / D(x-x')J(xf), 

-d2Z>=l, 

as a conserved current density: 

but it is nonlocal. 

p(s) is a diagonal right-hand cut function. The matrix M 
is both real and symmetric to the right of the left-hand 
singularities. Over an approximately small physical 
region of energy, therefore, an effective-range expansion 
in M can be carried out. 

We propose an effective range formula for M, M(s) 
= B~1(s)~-P(s)J where B(s) contains the unphysical 
singularities of the scattering amplitude T and P(s) is 
a diagonal matrix and contains most of the energy 
dependence of M(s). If the left-hand singularities 
carried by M(s) do not lie very close to the energy 
region of interest, a further simplification in the 
effective-range formula for M follows. The nondiagonal 
effective ranges in this situation are small (the effective-
range matrix R is approximately diagonal), and for 
small value of k2 (see the computer experiment in 
Sec. Il l) we have the linear relationship M—M(Q) 
+%R[k2—k2(0)2- The diagonal effective ranges can be 

P H Y S I C A L R E V I E W V O L U M E 1 3 8 , N U M B E R 3 B 10 M A Y 1 9 6 5 

Multichannel Effective-Range Theory from the N/D Formalism* 
PRAN NATHJ 

Department of Physics, University of California, Riverside, California 

AND 

G. L. SHAW 

Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 
(Received 28 December 1964) 

An effective-range theory for systems of many coupled two-body channels is given using the N/D formal­
ism. The effective-range expansion is carried out in the amplitudes M%$ (where M is essentially the matrix 
T~l with the right-hand cut removed). Quite in analogy with the single-channel effective-range theory, the 
diagonal elements Mu are given by an expression quadratic in fa, the relative momentum in channel i. The 
effective ranges Ru are given by certain principal-value integrals which depend on the position of the left-
hand singularities in the corresponding channels and can be taken to be energy-independent to the same 
extent as in the one-channel theory. The nondiagonal elements Ma, in general, have a weak energy de­
pendence and can approximately be treated as constants. A two-channel computer experiment is performed 
to test these proposals in detail. Three different situations for the left-hand cut are considered: (i) a set of 
monopoles, (ii) a set of dipoles, and (iii) the left-hand cut produced by the exchange of scalar particles in the 
"crossed" t reactions. For a large number of situations considered, the simple features proposed for the 
multichannel effective range theory were found to exist. The above formalism is similar to the multichannel 
effective-range theory of Ross and Shaw in the potential model. 



M U L T I C H A N N E L E F F E C T I V E - R A N G E T H E O R Y B703 

related to the position of the singularities in the corre­
sponding channels. These features of the multichannel 
effective-range theory obtained from the N/D formalism 
are common to the multichannel effective-range theory 
of Ross and Shaw1 obtained in the potential model. 

In order to test our proposals for the multichannel 
effective-range theory we perform a two-channel com­
puter experiment. The calculations described in Sec. I l l 
are done for the case when both the channels are con­
sidered to be in relative P waves and three different 
situations for the left-hand cut are considered. The 
three different situations considered for the left-hand 
cut are (i) the left-hand cut is replaced by a set of 
monopoles, (ii) it is replaced by a set of dipoles, and 
(iii) it is produced by the exchange of scalar particles in 
the crossed t reactions of the corresponding channels. 
For a large number of situations investigated, the 
simple features of the multichannel effective-range 
theory were supported by the two-channel computer 
experiment. 

In a many-coupled channel problem where a full 
analysis of the problem, numerical or otherwise, is in 
general very complicated, effective-range approximation 
can be of considerable value. Effective-range theory 
provides a useful tool for studying the general features 
of multichannel reactions as well as for an efficient 
parametrization of reaction cross sections. It may be 
stressed that all channels near the energy region of 
interest must be considered explicitly in order that the 
effective-range theory be accurate. 

II. MULTICHANNEL EFFECTIVE-RANGE THEORY 

Let us consider the usual N/D equations for a system 
of n strongly coupled two-body channels. The invariant 
partial-wave amplitude T is defined in terms of the 
5 matrix by2 

~SQ 

T=ND-l=p-
5 - 1 

• I /2_ 

1% 
- 1 / 2 (2.1) 

where the numerator function N has only left-hand cuts 
and the denominator function D has only the right-hand 
cuts, p is a diagonal matrix. 

Pij — 8%j , (2.2) 

hi and k are the momentum and orbital angular momen­
tum in channel i. The N and D equations are3 

N{s) 
1 /*°°r s-sQ I 

= B(s)+- / B M ~ B(s) 
wJo L s'— so J 

ds' 
XOpWNis')—-, (2.3) 

s —s 
1 M. H. Ross and G. L. Shaw, Ann. Phys. (N. Y.) 13,147 (1961). 
2 We use units h—c — mr=\. 
3 J. Uretsky, Phys. Rev. 123, 1459 (1961); D. Y. Wong, ibid. 

126, 1220 (1962). 

ds' 
D{s) = \ -Pj dp(sf)N(sf)- , w / N 

7T J o (s' — S)(s' — So) 

-idp(s)N(s), (2.4) 

where the "generalized potential"4 B (s) is regular in the 
physical region and the function 6 ensures that the right-
hand cuts in T~l start at the appropriate thresholds s%: 

dij^difiis-Si). (2.5) 

Note that the solutions T are independent of the sub­
traction point So in Z>.5 Moreover, A (s) is symmetric if 
the input B(s) is symmetric as required by time-
reversal invariance.6 In order that a unique solution to 
(2.3) may exist, the kernel of the integral equation 
should be L2; then (2.3) is an inhomogeneous Fredholm 
equation of the second kind. 

Now we introduce the M matrix defined by 

T~1^M(s)-ip(s) (2.6) 
so that 

M(s) = Re(D)N~1-i(6-l)p(s), (2.7) 

where 6 is given by (2.5). Thus, M is symmetric, real to 
the right of the singularities in B(s), and due to the 
second term in (2.7) remains an even function of all the 
momenta ki as one continues in energy below a threshold 
s^ In the one-channel case, M=kn+1/s1/2 cot5. 

Solutions to coupled integral equations are in general 
complicated. However, if the left-hand cut is replaced 
by a set of poles, the solution to the integral equation 
(2.3) reduces to quadrature. 

Let us consider first the simplest situation in which 
the left-hand cut is replaced by g/(s+m), where g is an 
nXn matrix of constants,7 

B(s) = -
(s-\-m) 

(2.8) 

Now choose the subtraction point so= — tn. The kernel 
3Z(s/) = 0 so that solution to (2.3) and (2.4) can 
immediately be written down; 

(s+m)2 /•* dp(s')dsf 

M(s) = g-l(s+m) P 
7T Jo (s'+mW-s) 

-i(6-l)p(s)9 (2.9) 

where P implies a principal value integral in (2.9). The 
integrals in (2.9) can be explicitly evaluated and the 
relativistic result for the S-wave case and particles of 
equal mass Mi in channel i is 
MiM=(g-l)u(s+m) 

1 [m+s Si(s+m)+2m(si+m) (m-\-Si)ll2—m112 

+ — + - In • 
2w { m 2m[m(m+Si)2112 (m+Si)ll2+m112 

/ssA1'2 sli2+(s-Si)lf2} 
+ (-7-) lnTT— —\ (2'10) (s—Si) 

4 G. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961). 
B A. W. Martin, Phys. Rev. 135, B967 (1964). 
6 J. D. Bjorken and M. Nauenberg, Phys. Rev. 121,1250 (1961). 
7 See, e.g., W. Frazer, S. Patil, and N. Xuong, Phys. Rev. 

Letters 12, 178 (1964). 
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for s>Si. For i^j, 

(2.11) 

A simple (and familiar for the single-channel case) 
nonrelativistic result can be obtained (where we define 
4:kio2=Si+m): 

Ma=U{rl)iM—-)+(Hg-1h+ W.(2.i2) 

The relativistic P-wave scattering produced by (2.8) is 
given by 

1 f s 
Mij{s) = {g~l)ij{s+in) 8ij — ( s + m ) (m+st) 

Sw imsi 

+ 
m+sA112 s(si+m)+3m(si—s) (m+Si) m+Si\ 

* ( — ) 
\ m J 

/ U / 2 _ ~ l / 2 

-ki­
rn (m-\-Si)ll2+m112 

+ ( ~ ) 

1/2 ^ / 2 _ _ ^ _ _ 5 . ) l / 2 l 

In [ , (2.13) 
s^+is-Si)1'2 

s>Si. If one considers higher order poles for the left-
hand cut, an explicit solution to M can, in principle, 
be written down. However, the solutions become in­
creasingly cumbersome. Furthermore for any given 
potential B(s), the kernel of the integral equation (2.3) 
would in general be nondegenerate, and one would be 
required to solve the coupled integral equations (2.3) 
numerically. Effective-range theory, on the other hand, 
is known to provide a useful tool for the purpose of 
studying the general features of the many coupled 
channel problems as well as for a purely phenomeno-
logical analysis of multichannel reactions.1 Such a 
theory in multichannel N/D formalism would be 
equally interesting. We have just seen that for the 
situation in which the left-hand cut is replaced by a 
matrix of monopoles, of the form g/(s+m), a simple 
effective-range expansion in M can be written down. We 
would therefore like to examine the effective-range 
expansion in M for more general situations. Let us 
assume that the potential B(s) has the form 

B(s)=g/f(s), (2.14) 

where again g is an nXn matrix of coefficients. We solve 
the N/D equations using the Fulton-Shaw approxima­
tion.8'9 This approximation has the same degree of 
simplicity as the determinantal method, but avoids the 
subtraction-point dependence and the lack of symmetry 
of the determinantarmethod.^Defme 

N(s) = B(s)C(s). (2.15) 

We substitute (2.15) in (2.3) and (2.4) and replace 

8 T . Fulton, in Elementary Particle Physics and Field Theory 
(W. A. Benjamin, Inc., New York, 1963), Vol. I, p. 55. 

9 G. Shaw, Phys. Rev. Letters 12, 345 (1964). 
10 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958). 

C(sf) by C(s) in all integrals over N(s') to get 

M(s) = B-1(s) 

r i r p{s)eP{s')ds' 
- - p / 

Lw Jo P(s')(s'-s) 
i(d-l)p(s)\. (2.16) 

] • 
When the potential B(s) does not have the form (2.14) 
a more general form for M{s) is expected11: 

M(s) = B-i(s)-P(s), (2.17) 

where 

r l r» piWWtf 
PiJ(s) = 8ij\~P 

+ms-Si)-l)Pi(s)\. (2.18) 

We equate certain principal-value integrals in obtaining 
(2.17) and (2.18). Equations (2.17) and (2.18) are ex­
pected to provide a useful effective-range theory for a 
large class of problems with relatively simple left-hand 
singularities. The energy dependence of the scattering 
matrix M(s) is given in terms of certain principal value 
integrals which can be easily determined by numerical 
integration. 

A very simple effective-range theory results if one 
makes a further simplifying assumption. We note that 
the matrix P(s) is diagonal and contains most of the 
energy dependence of M(s) if B(s) itself has a weak 
energy dependence. In such situations one may reason­
ably assume that the effective-range matrix R in the 
expansion of M (s) is diagonal and for small values of 
k2 (see the computer experiment in Sec. I l l ) we have 
the linear relation 

M(s) = M(so)+%R\:k2-k2(so)l, (2.19) 
where 

d ! 

dki2 
(2.20) 

If the left-hand singularities are very close to the energy 
region of interest, B(s) may significantly dominate the 
energy behavior of M such that it would necessitate the 
use of a full effective-range matrix R. The effective-range 
formulas (2.19) and (2.20) allow us to relate the slope 
of the scattering amplitudes Ma's (and hence the 
effective ranges i?/s), directly to the position of the 
singularities. In simple cases like (2.12), one can 
directly see the analytic dependence of the slope on the 
position of the singularities. In more complicated 
situations, however, the slope is given by the derivative 
of a principal-value integral (see 2.20) and this depend­
ence may not be immediately clear. 

11 P. Nath, Ph.D. thesis, Stanford University, 1964 (un­
published). 
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III. NUMERICAL TEST OF THE MULTICHANNEL 
EFFECTIVE-RANGE APPROXIMATION 

We have proposed in Sec. II a simple effective-range 
formula for systems of coupled two-body channels with 
angular momenta k. The familiar scattering matrix M 
(which carries only the left-hand singularities and is 
thus real and symmetric for real energy to the right of 
the left-hand singularities) is used for an effective-range 
expansion and we find that, quite in analogy with the 
one-channel effective-range theory, the diagonal ele­
ments Ma are given by expressions quadratic in 
momenta k* and the effective ranges Ru can be taken 
to be energy-independent to the same degree as in the 
one-channel theory. The nondiagonal elements M%j are, 
to a good approximation, expected to be energy-
independent. 

In this section we test these proposals in detail for the 
case of two coupled channels. In the present calculation 
we consider P-wave scattering (li=h=l=l) and the 
approximations (2.19)-(2.20) are tested under a variety 
of different conditions. Later in this section we shall 
demonstrate our results by some typical cases. The 
quantity of interest to us to compute numerically is the 
matrix M, Eq. (2.7). To compute M(s) we solve the 
following set of coupled N/D integral equations 

Nij(s) = Bij(s)+-Z / U U O Bik(s)\ 

and 

Nh,is')ds' 
Xetf-sMs') (3.1) 

(s'-s) 

s-s0 r" PiWNijWds' —so r w pi{. 
P — 

7T J8i (Sf 
ReDiAs^Bis P\ . (3.2) 

si (s'-s)(s'-s0) 

For a given potential B(s), the coupled integral equa­
tions (3.1) are solved by matrix inversion11 (after replac­
ing the s' integration by a sum over a discrete set of 
values of sf) to obtain the N functions. Once the N 
functions are known, the D functions are given by the 
principal-value integral (3.2). To test the accuracy of 
our solution, we check the stability of the solutions 
against variations on the mesh size and symmetry as 
well as subtraction-point independence of the iy(ReZ>)_1 

solutions. The accuracy of the calculations is verified 
by substituting the values of N and D thus obtained in 
the equation 

N(s) = B(s)ReD(s) 

p r ds' 
+ - / B(s>)eP(s')N(s')—-. (3.3) 

7T J o S —S 

In addition, the solutions to case (i) below were obtained 
by quadrature and checked against the full computer 
program. 

We consider three different situations for the potential 

B(s): 

(i) B(s) is a 2X2 matrix of monopoles with elements 

Bij(s) = gi3/ (s+ntij); (3.4) 

(ii) B(s) is a 2X2 matrix of dipoles with elements 

Bute) = gij/(s+mij)2; (3.5) 
(iii) Bij(s) is produced by the exchange of a scalar 
particle (whose mass-squared is w,ij) in the "crossed" 
t reaction of the scattering channel ij, i.e., 

Bij{s) = hgijkc%~*QA 
*\s — m£— Mj2+Mij 

jLK/ilKj ) • 

(3.6) 

To perform the numerical test we first choose a particu­
lar B(s) and fix the kinematical conditions: the masses 
in channels 1 and 2, the orbital momenta (we choose 
h=h=l=l) as well as the coupling constants ga and 
the constants mij. Equations (3.1)-(3.2) are then solved 
to compute M(s). Such calculations are performed for 
each 5($) (3.4) through (3.6). 

Typical results are shown in Figs. 1-5. The matrix 
elements Mu, M22, and M12 (=M2i) are plotted against 
ki2. We find the relation (linear in k2) 

M=M(so)+%RLk2-k2(so)~] (3.7) 

for significantly large values of k2. The nondiagonal 
element M12 (=-^21) is almost constant, so that the 
nondiagonal effective range Ru~0. The effective-range 
matrix R is thus diagonal and, in the region investigated, 
independent of energy as expected. The effective-range 
formula (3.7) was found to be good even for the diagonal 
effective ranges being significantly different. In addition, 
we note that the theoretical estimate of the diagonal 
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FIG. 1. Energy dependence of the M matrix using monopoles for 
the left-hand cut. The relative orbital angular momentum (in all 
the examples considered) is taken equal to one in both channels. 
The masses of the particles in channel 1 are 6.6 and 6.6; those in 
channel 2 are 7.0 and 7.0. The position of the monopoles is 5.0. 
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FIG. 2. Energy dependence of the M matrix using dipoles for the 
left hand.cut. The masses in channel 1 are 6.0 and 6.0; those in 
channel 2 are 6.1 and 6.1. The position of the dipoles is 20.0. 

effective ranges as given by Eqs. (2.18) and (2.20) is 
reasonably good for a wide range of cases. For example, 
the "range" R% obtained from the slope of M22 in Fig. 5 
is ^—0.6, whereas the theoretical estimate of R% is 
~ - 0 . 5 . 

In conclusion, we can say that for relatively simple 
left-hand singularities, the effective-range formulas 
(2.19)~(2.20) is a respectable approximation at least 
for low fa If the left-hand singularities of M are not very 
close to the energy region of interest, the nondiagonal 
elements of M exhibit a weak energy dependence 
relative to the diagonal ones, and the effective-range 
matrix, therefore, is approximately diagonal. Moreover, 
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FIG. 3. Energy dependence of the M matrix with the left-hand 

cut given by the exchange of scalar particles. The masses of the 
particles in channel 1 are 1.0 and 1.0; those in channel 2 are 1.05 
and 1.05. The masses of the scalar particles exchanged are 
wu = 3.1, W22 = 3.9, and mn — l.l, 
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FIG. 4. Same as Fig. 3 (except for the values of the 
coupling constants ga). 
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FIG. 5. Same as Fig. 3 except 7^2=3.1. The effective range R2, 
obtained from the slope of M22 is « — 0.6. The theoretical estimate 
of R2. calculated using Eqs. (2.18) and (2.20), is « - 0 . 5 . 

tinder the same conditions the diagonal effective ranges 
are independent of energy over significantly large values 
of the relative momenta. Under more general circum­
stances, the use of relation (2.17) may be more 
appropriate. 


