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Spontaneous breakdowns of symmetries have been examined for a system of two charged fields of zero 
bare mass (the "muon" and "electron" fields) interacting minimally with the electromagnetic field. Upon 
arranging the two fields into an "isotopic" doublet, the Lagrangian is seen to possess SU{2) symmetry. 
Three possibilities are available: (a) no spontaneous breakdown of the SU(2) symmetry is allowed and the 
muon-electron system remains a degenerate doublet; (b) a partial breakdown occurs in which a mass split
ting develops but the heavier muon remains stable; (c) a complete breakdown occurs in which the muon 
decays into an electron plus a photon. Using the high-energy scheme of Baker, Johnson, and Willey, approxi
mate solutions for the one-fermion Green's function and vertex function are examined. (The approximation 
scheme has the advantage that no ad hoc cutoffs need be invoked.) The solutions obtained permit case (b) to 
occur but not case (c), provided improper Lorentz in variance is imposed. I t is shown, at least for the 
one-fermion Green's function, that no solutions breaking P, C, or T invariance can arise. 

I. INTRODUCTION 

ONE of the more remarkable features of particle and 
resonance phenomena is the large number of con

servation laws that appear to govern the interactions. 
Aside from the conserved quantities arising from the 
space-time invariances (i.e., energy, momentum, angular 
momentum), perhaps only charge conservation has at 
present a reasonably fundamental theoretical basis. 
Further, with the exception of heavy particle number, 
the remaining quantities are not exactly conserved, 
breakdowns occurring in varying degrees. The "classi
cal" way of accounting for a breakdown in conservation 
laws is, of course, to assume that in addition to the part 
invariant under the corresponding symmetry group, the 
Hamiltonian has a (presumably small) noninvariant 
perturbing term. Indeed, there exists experimental evi
dence that such an approach is at least phenomeno-
logically correct in a number of cases. Thus, conserva-
sion of total isotopic spin and of strangeness is violated 
by the order of electromagnetic and weak interactions, 
respectively. On the other hand, some symmetries 
appear to be broken without any obvious dynamical 
agency being present. For example, consider interchange 
of muon and electron fields (with corresponding inter
change of their neutrinos). As far as is known, the entire 
Lagrangian is invariant under this transformation ex
cept for the mass terms. However, the mass splitting is 
a hundred times larger than any known dynamical in
teraction in which leptons participate. It has also re
cently been suggested1 that another example of "non-
dynamical" symmetry breakdown might be the loss of 
SU(3) symmetry. 

* Supported in part by the National Science Foundation. 
f Supported in part by U. S. Air Force Office of Scientific 
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1 S. L. Glashow, Phys. Rev. 130, 2132 (1963). 

Some time ago, Nambu and Goldstone2 pointed out 
that a given symmetry might indeed break down spon
taneously (i.e., without introducing a dynamical per
turbation) if solutions to the field theory could be found 
with a nonsymmetric vacuum state. A number of field 
theories, exhibiting this phenomenon in approximate 
solutions, have been examined. More recently, Baker 
and Glashow have suggested that the muon-electron 
mass splitting might arise in this fashion.3 

The purpose of this paper is to investigate the possi
bility of such spontaneous breakdowns in the electro
magnetic interactions of the muon-electron system.4 

If the muon-electron mass degeneracy is lifted, the 
decay 

/*=*=-> *H-7 (1.1) 

is, of course, feasible energetically. As is well known, this 
decay cannot proceed via weak interactions owing to 
the existence of two neutrinos, i.e., weak interactions 
conserve fi number and e number separately. Experi
mentally, the branching ratio for this mode is now less 
than about5 2X10~8. The purely electromagnetic inter
action between the electron, muon, and photon also 
gives rise to separately conserved JJ, and e currents. Thus, 
the only way reaction (1.1) could arise electrodynami-
cally would be if a spontaneous breakdown of the muon-
electron symmetry could occur. In Sec. II, possible types 

2 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); 
124, 246 (1961); J. Goldstone, Nuovo Cimento 19, 154 (1961). 

3 M . Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962). 
The mass splitting problem is discussed by a perturbation analysis. 

4 The possibility that massless-boson modes may be associated 
with such spontaneous breakdowns is not discussed here. It 
would seem to be an open question at present, with some evidence 
that in gauge theories such modes do not develop: See P. W. 
Higgs, Phys. Letters 12, 132 (1964); and M. Baker, K. Johnson, 
and B. W. Lee, Phys. Rev. 133, B209 (1964). 

5 S. Parker, H. L. Anderson, and C. Rey, Phys. Rev. 133, B1768 
(1964). 
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of electromagnetic breakdowns are analyzed. It is seen 
that three a priori possibilities can occur: (a) the muon-
electron system is completely degenerate; (b) a mass 
splitting can exist but decay (1.1) is forbidden; (c) both 
a mass splitting and decay (1.1) occur. These possibili
ties correspond to increasingly asymmetric vacuum 
states. Clearly case (b) is what exists in nature. 

In Sec. Il l , an approximate solution of the one-
fermion Green's function is discussed. The approxima
tion used is the high-energy scheme of Baker, Johnson, 
and Willey.6 This scheme has the advantage of leading 
to finite results and thus not requiring ad hoc cutoffs. 
If one limits the analysis to those solutions possessing 
improper Lorentz covariance, it is seen that case (c) is 
forbidden, while case (b) can indeed occur. Actually, as 
is shown in Appendix A, all solutions automatically pre
serve6 a P, C, and T. In Sec. IV, a higher approximation 
involving a spontaneous symmetry breakdown occurring 
first in the vertex function is examined. Again improper 
Lorentz covariance appears to preclude possibility (c) 
while still allowing possibility (b). To within the validity 
of the approximation scheme used, then, the spon
taneous breakdown idea seems capable of accounting 
for the existing facts in the muon-electron system. 

II. INVARIANCE CONDITIONS ON 
GREEN'S FUNCTIONS 

In this section we investigate the conditions imposed 
upon the muon-electron-photon Green's functions by 
the different invariances of the Lagrangian. Denoting 
the "muon" and "electron" fields by \pi(x) and faix), re
spectively, the Lagrangian with minimal electromag
netic coupling reads7 

+eQ$i(x)yhpi(x)A»(x)—$2(x)(y»-d»+MoJ 

XMx)+e$*frhN'2(x)Ai*(x)+LM, (2.1) 

where A»(x) is the electromagnetic potential and LM 
is the free Maxwell Lagrangian. We have taken wo 
and e0, the bare mass and charge, to be the same for the 

6 M. Baker, K. Johnson, and R. Willey, Phys. Rev. Letters 11, 
518 (1963); Phys. Rev. 136, B209 (1964). See also lectures by K. 
Johnson, Brandeis Summer Institute, 1964 (Prentice-Hall Inc., 
Englewood Cliffs, New Jersey, 1965). This work will be referred 
to as BJW in text. 

6 aA previous statement by the authors that parity-breaking 
terms could also arise [Phys. Letters 13, 256 (1964)] is incorrect, 
as such terms can actually be rotated away by means of Eq. 
(A. 10). We are grateful to Dr. Th. A. J. Maris, Dr. V. E. Herscovitz, 
and Dr. G. Jacob for bringing this to our attention. 

7 Units such that h=l = c are used. Greek indices run from 0 
to 3, x° = d, Latin indices over 1, 2, 3. The Dirac matrices are 
defined by the anticommutation relations {yfi,yv} = —2^% where 
if is the Lorentz metric with signature (—1, -j-1, + 1 , +1)- The 
symbol f(x) means \p^(x)y° where "f" means Hermitian conjugate 
and 75=7°717273(75^== —75). 

electron and muon, so that the Lagrangian possesse 
the maximum symmetry. 

Owing to the fact that the electron and muon do not 
interact directly but only via the photon field,8 there 
exist separate phase invariances for the electron and 
muon fields: 

^ i - » ^ i , \f/2-*ei€ty2. 

Consequently, the electron and muon currents, Ji(x) 
and Jz{x) [Jiix^ypa^i], are separately conserved and 
a decay such as (1.1) can only occur if there is a spon
taneous breakdown of these phase symmetries. To facili
tate the discussion, let us introduce the "isotopic" nota
tion ^{x)^(\pi(x),\p2{x))\ then <£ takes the form 

<£= -$(x)( 7M-cVf-WoV(>) 

+e$(x)y^(x)Atl(x)+LM (2.3) 

showing that <£ is invariant under the symmetry group 
£7(2) of arbitrary unitary rotations in the "isotopic" 
space: 

\P(x) -> eie0 exp(if<v)\l/(x); 

$(x) —> \p(x) exp(—ie"c)e~ie0. 

Here e0 and em {m~ 1, 2, 3) are arbitrary real constants 
and the rw are the usual 2X2 Pauli matrices. The full 
group £7(2) contains the factor 27(1), the one-dimensional 
group of phase transformations exp(ieo). Invariance 
under U(l) gives rise to conservation of total electro
magnetic charge (i.e., the sum of fx and e number). The 
relative properties of the muon and electron are thus 
governed by SU(2), and we will restrict our discussion 
to this group (as we do not wish to consider breakdowns 
of charge conservation). 

We begin by considering the one-fermion propagator, 
Gn(x—x'), defined by 

Gi3{x-x')^i(0\ Tfyi(x)hW)l\0), (2.5) 

where 10) is the physical vacuum state and T represents 
the usual fermion time-ordering operation. 

It is convenient to view the Ga of Eq. (2.5) as a 2X2 
isotopic matrix. It can then be written in terms of 
Pauli matrices as 

G(x-x') = Go(x-x')l+G(x-xf)-T:, (2.6) 

where Go and Gm are, respectively, the isotopic scalar 
and isotopic vector form factors. Spontaneous sym
metry breakdown occurs when the vacuum state does 
not share in the operator invariances of the Lagrangian 

8 As shown by G. Feinberg, P. Kabir, and S. Weinberg, Phys. 
Rev. Letters 3, 524 (1959), and N. Cabbibo and R. Gatto, Phys. 
Rev. 116, 1334 (1959), any gauge-invariant off-diagonal terms 
that might be added to £ (e.g., fiiyfdn—ieAJfa) can always be 
eliminated by taking new linear combinations of the fermion 
fields which reduce the Lagrangian again to diagonal form. Thus 
(2.1) represents the most general minimally coupled Lagrangian. 
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so that vacuum expectation values of operators will not 
necessarily be invariant under (2.4). Let Um be the uni
tary transformations generating the group transforma
tions of SU{2)\ 

UrnXpixWrrT^e^^ix), 

Umf(x) Um'1 = 4<(x)e-iem7m. 

Inserting factors of Um~lUm between all the operators of 
Eq. (2.2) leads to the identity 

G(x- xf) = <5"»*»i<01 Um-lTty{x)$(x')) 

XUJifye-**"*, tn= 1,2, 3. (2.8) 

The degree of invariance of G depends upon the effect 
of Um on the vacuum. Three possibilities are available: 
(a) The vacuum is symmetric under the entire group 
SU(2). (b) The vacuum is symmetric only under a sub
group of SU(2). For SU(2), the only subgroups are the 
one-dimensional rotation groups. Without loss of gen
erality, we may call the preferred symmetry axis m=3 
and consider only the subgroup of rotations around this 
axis, (c) The vacuum is not symmetric under the entire 
517(2) group. We begin with possibility (a) which 
implies (with the conventional choice of phase factor) 

Um\0)=\0), m=l,2,3. (2.9) 

Equation (2.8) then reduces to 

[ W 7 > 0 , f»= 1, 2, 3 (2.10) 

for infinitesimal em. In terms of the notation of Eq. 
(2.6), this implies that the entire isotopic vector form 
factor vanishes, £ m = 0 , and hence 

Gij(x) = G0(x)8ij. (2.11) 

Thus the electron and muon Green's functions are 
identical and a completely degenerate doublet remains. 
This is the familiar situation when no symmetry break
down occurs. Case (b) corresponds to Eq. (2.9) [and 
consequently Eq. (2.10)] holding only for m=3. One 
finds now that only the w = l , 2 isotopic vector form 
factors vanish. Thus, 

Gij(x) = G0(x)8ij+Gd(x)(Tz)ij. (2.12) 

Choosing the conventional diagonal representation for 
T3, one has 

Gu=Go-\-Gz, Gm—Go—Gz, Gi2=0=G2i. (2.13) 

The electron and muon Green's functions are now dis
tinct, as would be the case if a mass splitting were to 
occur. However, since a representation can be found 
where Ga(x) is diagonal for all x, one would expect that 
no mixing could occur between the two particles, and 
hence decay process (1.1) is still forbidden. This will be 
borne out below. 

For the final case (c), Eq. (2.9) no longer holds at all, 
and consequently the group symmetry of the Lagrangian 
produces no a priori conditions on G#. In general, then 

Giv^Gm and Gn, G2i9z£0 here. We will see later that 
this situation allows both the mass splitting as well as 
the decay to occur. However, when G^ has off-diagonal 
matrix elements, it is no longer proper to interpret Gn 
as the electron propagator and G22 as the muon propaga
tor. Rather, the electron and the muon are the two 
poles of the matrix G in momentum space (the electron, 
by definition, being the lighter particle). The free par
ticle muon and electron spinors are thus determined by 
solving the eigenvalue equation G~1(p)u(p) = 0, where 
G~x{p) is the matrix inverse of G%j{p) and'G(^) is the 
Fourier transform of G(x): 

G(p)= / d*x e~l^G{x). (2.14) 

For simplicity, consider the case where parity invariance 
is maintained (the more general discussion is given in 
Appendix A). One may then write G~1(p)=yph(p2) 
+k(p2), where h and k are isotopic matrices and space-
time scalars. The spinor u(p) may be factored into a 
product of a Dirac spinor uD(p) [obeying (yp-\-m) 
XUD(P) = 02 and an isotopic spinor v. Then v obeys the 
relation 

[ - ^ ( - m 2 ) + £ ( - m 2 ) > = 0 . (2.15) 

Writing hrlk = a+b"v, one expects two solutions V(±) 
of Eq. (2.15) to exist,9 defined by the solutions of 

[ K - m ±
2 ) ^ b ( - m ±

2 ) - T > ( ± ) = 0. (2.16) 

The mass eigenvalues m ± are given by 

m±=a(-m±
2)±:b{~m±

2), &=(b2)1/2. (2.17) 

Note that in the limit when Gi3 is diagonal [cases (a) 
and (b) above], i.e., when for all momenta one can 
choose ^2=0=^i , z>(+) and *>(_), respectively, reduce to 
the orthogonal isotopic spin-up and spin-down functions 
appropriate for muon and electron. [y(+) is the muon 
spinor since m+>m_.] For the general situation, how
ever, V(+) and ?>(_) are not expected to be orthogonal 
since they represent two null eigenvectors of G~l(p) 
at two different momenta (i.e., at p2——tn+2 and 
p2=—m-.2). 

The above analysis can be extended to the higher 
Green's functions. We consider briefly here the muon-
electron-photon vertex function Vijfax'; J) which may 
be defined by 

-e0 [Gik(x-tf')T'kl&',xr"; ^G^x'"-^) 

X Z V ( f - Q = (01 TlUx)hW)A»{m 10). (2.18) 

In Eq. (2.18) the function £>/(£-£ ' ) is the one-photon 

9 We are assuming that the transcendental equation (2.17) has 
only one physically acceptable solution for m+ and one for m— 
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propagator. In zeroth approximation (neglecting closed 
loops) it is given by 

-DM̂
0>(ft) = [V-V(*)* '~U*)* M ]C* 2 -w]" 1 , (2.19) 

where 

D/(k) = / d^ €-ik*D/(Q (2.20) 

and XM(&) is an arbitrary gauge function. The isotopic 
structure of T%- also depends on the three possible de
grees of symmetry of the vacuum state. Thus, for the 
totally symmetric vacuum of case (a) above, the three-
point function (Q\T(\{/4'jAli)\0} must be proportional 
to 8ij and hence Tft

ij=Ttl(o)(xx/^)8ij. For case (b), again 
choosing the in variance axis to be m=3, one has 
r%-==r^(o)5^+r/i(3)(r3)^. Finally, for case (c), where 
the vacuum possesses no symmetry, T^y can take on the 
general off-diagonal form r^=r^ 0 )$» ;+r ' 4 •(*)#. It is 
convenient to Fourier analyze the vertex function 
according to 

I ij\X,X ,£J 

= (2TT)-8 / frpdip'eM^e-Wte'-VT^ipj'). (2.21) 

The n-e-y decay amplitude is then proportional to 

u^ip^ip^UMip^ip-p'), (2.22) 

where e^k) is the polarization vector of the emitted 
photon. Expression (2.22) vanishes for cases (a) or (b) 
since then fl(_)fy(+) = 0 = fl(_)tr3fl(+). A nonzero decay 
probability can thus occur only for the completely 
asymmetric vacuum [case (c)] and provided the vertex 
function does not have a zero for p' on the muon mass 
shell or p on the electron mass shell.10 

Aside from the U(2) internal symmetry discussed 
above, the Lagrangian of Eq. (2.1) possesses other sym
metries. In the approximation scheme to be used in the 
next section, it is essential that the bare mass mo be set 
to zero. As discussed by Baker, Johnson, and Willey 
(B JW),6 the Lagrangian then possesses invariance under 
the 75 transformation: 

\p(x) -> e+t^\p{x), \j/(x) -> $ (x)e+e™ (2.23) 

where 75==7°717273 and y^= — 75. Writing Gij(p) in 
terms of spatial vector and scalar form factors, 

GdP^ypgdP^+MP2), (2.24) 
one sees that the condition that the vacuum be 75 
invariant reads6 

{T*,G*(#)>=0, (2.25) 

10 Accidental cancellations might also cause the vanishing of 
expression (2.22). As mentioned above, V(+) and *;<_) need no 
longer be orthogonal for case (c). Thus the isotopic diagonal part 
of T»a contributes to Eq. (2.22) and could conceivably cancel 
the off-diagonal parts. 

and so /# must vanish. This result would imply that 
the muon and electron have zero clothed mass. As 
pointed out by BJW, it is the possibility of a spon
taneous breakdown of this invariance that allows the 
fermions to grow a mass in the first place, though as 
seen above, a further breakdown in the SU{2) symmetry 
is needed for a mass difference to develop. 

We conclude this section by summarizing for future 
reference the properties of the fermion propagator ob
tained from the spectral representation. We write 

Gij(x— xf) = i[Wij(x— xf)6(x— xf) 
- Wji{xf-x)B(xf- x) ] , (2.26) 

where 0(x) is the step function [0(x) = l for x°>0 and 
zero otherwise] and W and W are the Wightman 
functions 

Wij(x-x')^(0\Mx)Mx')\0), 

Wji&-x)=(o\Mrf)U*)\o). 
Following the standard arguments,11 the assumptions of 
positiveness of the energy spectrum and proper Lorentz 
covariance leads to the spectral representation for Wif. 

Wij(x—xr) 

s - (2TT)-3 / d*p eMo-^Oi-p^Oip^pijip*), (2.28) 

where p# is given by 
Piajpipn)^— (2?r)3 Ln,m,pn (0\^ia(0)\pn,n) 

X r m ( ^ - | ^ ( 0 ) | 0 ) , pn*<0. (2.29) 

Here a and 0 are the Dirac spinor indices. We assume 
that the Hilbert space metric, gnm, is Hermitian 
(gnm* = gmn) and diagonal in the energy-momentum vari
ables pn**. Proper Lorentz covariance then implies that 

Pij(P)=LM-p2)+M-p2)y^ 
+7pZgiK-p2)+i7s9iA-p2)~], (2.30) 

where the form factors /, /, g, and g are scalar functions 
of p2. Equation (2.29) requires that p obeys the reality 
condition 

P ; ; * = ( Y 0 / W 0 ) ~ , (2.31) 

where the tilde means transpose in the Dirac spinor 
space. From this one sees that the form factors are all 
Hermitian isotopic matrices, i.e., 

Jij —Jji) Jij ~Jjiy CtC. \Z.6A) 

The further assumption of local commutativity allows 
one, as usual,12 to relate Wji to Wy and so to obtain 

11 S. S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Row, Peterson, and Company, New York, 1961), p. 672. 

12SeeRef. 11, p. 734. 
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the Lehmann representation for the Green's function df. 

/.00 

Gij(x-x') = (2T)~« / &2{[/ iX«2)+TB/i3(K
2)] 

Jo 

Xei^x-*')[p2+K2-ie~]-1. (2.33) 

Invariance under the discrete operations of charge 
conjugation, and space and time reflection also imposes 
conditions on the spectral functions. Thus, if the vacuum 
is invariant under spatial reflections, one finds that Gij 
obeys 

G « ( P ^ ° ) = 7 0 G « ( - P , ? 0 ) Y ° , (2-34> 

and hence the form factors that are coefficients of 75, 
fij, and Qij vanish. Invariance under time reflection 
implies 

Gi&,f) = [ C Y 6 7 ° G * ( - P , ?>)y*Y0C-lT, (2-35) 

where C is the charge conjugation matrix [Cy^C-1 

= - 7 " , C+=C~\ C=-C~]. Condition (2.35) states 
that fa, gij and gf# are symmetric isotopic matrices 
(and hence real), while fij is antisymmetric (and hence 
pure imaginary). Finally, invariance under charge con
jugation yields 

Gij(p) = [CGji(-p)C-^~ (2.36) 

which implies that fij, fij, and gij are symmetric, while 
g^ is antisymmetric.13 Finally we note that under 
charge conjugation invariance, the vertex function 
obeys the equation 

T%(p,p')=-lCT^(-p', -p)C~^~. (2.37) 

III. APPROXIMATE SOLUTIONS FOR Gi; 

In the previous section, a discussion was given of the 
symmetries that might possibly undergo spontaneous 
breakdown for the muon-electron system. Whether or 
not a given breakdown actually occurs depends, of 
course, on the dynamical equations of the theory, e.g., 
the coupled Green's function equations. In this section 
we given an approximate solution of these equations 
for the one-fermion Green's function Gij. The approxi
mation we will use is the high-energy scheme of Baker, 
Johnson, and Willey.6 This method has the advantage 
of giving finite answers at each stage of approximation 
for all quantities, at least when closed loop vacuum 
polarization effects are neglected.14 We shall deal here 
with the first (BJW) approximation for Gij. (The cor-

13 One sees that Gij is automatically invariant under the product 
TCP (even if not under T, C, and P separately) since this in
variance is already implied in the Lehmann representation [Eq. 
(2.9)] for the Green's function with Feynman boundary condi
tions. The proof of invariance uses, of course, only proper Lorentz 
invariance in its derivation. 

14 It is possible that the vacuum polarization effects are also 
finite when four-sided closed loops are included in the calcula
tions. See K. Johnson, Ref. 6. 

responding approximation for the vertex function will be 
examined in the next section.) Assuming the convergence 
of the successive approximations, the first approximation 
should give the rigorous form for Gij in momentum space 
as p2—>cc. I t is as good as second-order perturbation 
theory for G~1ij(p) in the vicinity of poles of Gij. The 
accuracy of the approximation is, however, unclear in 
the vicinity of the origin in momentum space. Un
fortunately, it is necessary to impose a boundary condi
tion on Gij(p) at p2=0 and so the structure of the solu
tion there does enter into our considerations. We will 
see, though, that the boundary condition itself, at least, 
is actually a property of the rigorous Gij and not just an 
accident of the approximation used. 

We begin with a brief summary of the (BJW) scheme 
and its extension to our system. The Schwinger-Dyson 
equation for Gij(p) reads 

G~1ij(p) = (yp+m0)8ij 

ieQ
2 r 

+ 7 — \d*pVGUpf)T*mj(pf,p)Dv»(p-p'), (3.1) 
(2TT)4 J 

where Gif1(p) is the Dirac and isotopic matrix inverse 
of Gij(p). If, indeed, the integral on the right-hand side 
of Eq. (3.1) were convergent, one might hope that it 
would vanish in the limit p2—><x>. Then G(p) would have 
the following asymptotic form: 

G~\j{p)^ (yp+m0)8ij, (3.2) 

a result which also is expected from the Lehmann rep
resentation (2.33) and the canonical commutation 
rules. In general, D^(k) has the form 

D^) = Lv^-K(k)k9-K(k)kjD(k2), (3.3) 

where XM(&) is an arbitrary gauge function. If again, 
vacuum polarization effects were finite, the gauge-
invariant function D(k2) should behave, for large 
k2, as 

D(k2)~l/k2. (3.4) 

The convergence of the integral in Eq. (3.1) is governed 
by these asymptotic forms for Gij(pf) and D^p'—p) 
and also the one for T^p^p). Integral equations for 
the vertex function can be obtained conveniently by 
the device of introducing an external current JM(#), 
the Green's functions then becoming functional of 
J"(x). The left-hand side of Eq. (2.18) is then just 

-ZSGiiM/tiniQlr-.o. (3.5) 

Carrying out the indicated differentiation of Gij(xx'), 
one can obtain a series expression for T^p^p): 

ie0
2 f 

T M ( ^ ) = 7M / dAp"y« 
(2TT)4 J 

XG(p"-p+p')Y»(p"-p+pf, p") 

XG(p")T'(p",p)Dae(p-p")+ • • • • (3.6) 
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A successive iteration of this equation (i.e., first replace 
]> in the integrals by y*, etc.) gives rise to an alternate 
series for I>#: 

ie0
2 f 

Tlx(p',p) = yli / d*p"ya 

(2TT)4 J 

XG(p"-p+p')y»G(p")yVDafi{p-p")+ • • •. (3.7) 

The usefulness of Eq. (3.7) resides in the fact that it 
expresses I> as a functional of the rigorous one-particle 
Green's functions Gij and Dap. If this form were inserted 
into Eq. (3.1) and closed loop effects neglected, one 
would obtain a nonlinear integral equation for Gij. The 
approximation scheme of BJW corresponds to succes
sively inserting the first term only, the first two terms 
only, etc. into Eq. (3.1). Thus, to first approximation 
one has 

G~1(p) = yp+m0 

te0
z f 

/ d*p'y»G{pr )YDviX{p-p') (3.8) 

and so forth. Two possible infinities exist in the integral 
of Eq. (3.1): The wave function renormalization 
Zi{ — Z\) and the fermion self-mass 8m. By an appro
priate choice of gauge, BJW show that the former 
infinity can be removed. In the approximation of 
Eq. (3.8), this preferred gauge is the Landau gauge,15 

i.e., \p.= \kjk2 in Eq. (3.3). (Modifications in the gauge 
are needed for the higher approximations.) The self-
mass is gauge invariant, and cannot be eliminated by 
such a device. One finds, however, that if one makes the 
choice mo—0 (so that all the mass is dynamical in 
origin), then 8m is finite. This can be easily seen in the 
approximation of Eq. (3.8). The convergence of the 
integral is govern by the asymptotic form of Gij and 
D^v, i.e., Eqs. (3.2) and (3.4). If one inserts these into 
Eq. (3.8), the integral is easily seen to converge in the 
Landau gauge provided m0 is set to zero. BJW show that 
the same result holds in the higher approximations. In 
general, to any order of approximation, one finds that 
the form factors of Gij(p) behave asymptotically as 
(l/^2)X(eo). The first approximation (3.8) determines the 
constant X correct to order eo2, the second approxima
tion to order e0

4, etc. Thus, Eq. (3.8) gives rigorously 
the asymptotic form of Ga(p) with a presumably good 
approximation to the exponent A (assuming the series 
for X converges).16 

It is highly convenient, at each stage of the approxi
mation scheme, to maintain Ward's identity rigorously, 
so that no apparent violations of charge conservation 

16 More precisely, one can use any gauge that asymptotically 
approaches the Landau gauge sufficiently rapidly. 

16 Difficulties, of course, would arise if the bare charge were 
large (as might be the case in vector-meson models for strong 
interactions). 

appear. This can be achieved most easily by using 
neither Eq. (3.6) nor Eq. (3.7) to develop an approxima
tion scheme for T^ij(pr,p), but rather a third form. Thus, 
if G^ is to be calculated to a given approximation, then 
the Vij calculated by inserting that Gij into Eq. (3.5) 
will formally obey Ward's identity, 

(p'-p)^ij{p',p) = G-hi(p')-G-\Ap) • (3.9) 

Thus in the approximation of Eq. (3.8), the correspond
ing vertex function turns out to be the solution of the 
following equation: 

ieo2 f 
r * ( ^ ) = C7* / d*p"yG(p"-p+pr) 

(2xW 

X T"(p"-p+p', p")G(p")y»Da&{p"-p), (3.10) 

where G(p) is the solution of Eq. (3.8) and17 

C=l-(3e0
2/327r2). 

[Note that Eq. (3.10) is neither the first two terms of 
Eq. (3.6) nor of Eq. (3.7).] To maintain Ward's identity, 
then, a linear integral equation must be solved for 
Y^ij. Solutions to Eq. (3.10) will be examined in the 
next section. 

We turn now to the solution of Eq. (3.8) (with mo=0) 
in the approximation when D^ is replaced by its high-
energy form18 Z>M„(0). We restrict ourselves to parity-
conserving solutions. (The effects of parity violation are 
discussed in Appendix A.) One may therefore write 

Gij(p) = ypgij(p2)+fij(p2) (3.11) 
and similarly 

G-lij{p) = yphij(p2)+kij(p2). (3.12) 

Equations (2.8) and (2.9) show that the form factors 

17 One would have expected the numerical factor C to be unity 
since the y» term arises from the usual replacement of yp by 
y(p—eoA) in Eq. (3.8) when an external field Ap, is present 
[i.e., r * = -5G-1/5(eoA(l)']. As discussed by BJW, the result CV1 
arises as follows: While the integral in Eq. (3.8) is convergent in 
the Landau gauge, it is not absolutely convergent for the parts 
proportional to yp. Consequently, translations of integration 
variables, e.g., p'i' = kti-\-pfi, change the value of these terms 
(by a finite amount). Further, just such translations are needed 
in verifying Eq. (3.9), and if one chose C = l , Eq. (3.9) would be 
valid only upon using k^ as the integration variable in the mass 
operator. As we shall see below, however, the choice of p*' as the 
integration variable is uniquely determined by the requirement 
that the Lehmann asymptotic form be satisfied for G~l{p) (i.e., 
asymptotically, the coefficient of yp in G~l is unity). Then the 
choice of C7^1 is needed to compensate for the translation k —> p' 
so that Ward's identity actually be satisfied. As pointed out by 
BJW, the coefficient of y* in Eq. (3.10) is somewhat ambiguous, 
anyway, since it arises from taking the variational derivative of 
the singular function Gij(x,x') [Eq. (3.5)]. Some condition, such 
as Ward's identity, is thus needed to determine its value. Actually, 
none of the results of this paper are effected by the value of C. 

18 For the one-field case, the solution of Eq. (3.8) has been 
examined in the asymptotic domain by BJW. An approximate 
solution for the one-field case (with D»v replaced by ZV„(0)), valid 
both in the vicinity of the pole and in the asymptotic domain, 
has also been given by Th. Maris, V. Herscovitz, and G. Jacob, 
Phys. Rev. Letters 12, 313 (1964). 
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gij, fij, hij, kij are Hermitian isotopic matrices for space
like p2, i.e., p2>0. Inserting Eqs. (3.11) and (3.12) into 
Eq. (3.8), one finds, in the Landau gauge, that 

ieo2 f 
yph(p2)+k(p2) = yp-\ / d*p' 

(2TT)4 J 

X Lg(Pf2){yflypfyli-~yqyp,yqq~'2}q~2l 

_3JfL_ (d^f(pf2)q-2, (3.13) 
(2TT)4 J 

where qv^p'^—p*. The analysis is simplified by the 
following device6: When all momenta are space-like, 
one is free to make the analytic continuation to the 
Euclidean metric by replacing p° by ip° and pf° by ip'°. 
The angular integrations are then easily performed in 
the four-dimensional Euclidean momentum space. (A 
list of relevant formulas is given in Appendix B.) One 
is left with only a radial momentum integration. The 
first integral in Eq. (3.13) vanishes and so 

A(*) = l , (3.14) 

while the remainder of Eq. (3.13) reduces to 

k(x) = 3\fx~1f dx'x'f(xf)+f dx'f(x')\- (3.15) 

Here x=p2>0, and \=a0/4:ir=eo2/l6T2. The functions 
k and / are, of course, related by the fact that G~x{p) 
is the matrix inverse of G(p). Thus one finds [using Eq. 
(3.14)] that g=-[x+k2']-1 and 

f(x) = k{x)[x+h2{x)~Yl. (3.16) 

In order that the integral in Eq. (3.15) converge at 
infinity, f(x) must vanish asymptotically no slower 
than l/x1+e, €>0. This implies that k(x) also vanishes 
at infinity and thus the solutions of the integral equa
tion automatically satisfy the Lehmann condition (3.2) 
(with w0=0). Equation (3.15) also enforces boundary 
conditions at the origin. Thus, for the first integral in 
Eq. (3.15) to converge, f(x) can be no more singular 
than l/x2~% €>0, at the origin and hence k(x) no more 
singular than l/xl~€. However, on inserting this limit 
on k(x) into Eq. (3.16) one sees that f(x) must actually 
approach a finite constant at the origin and then by Eq. 
(3.15), so must k(x). The fact that k(x) must be regular 
at the origin is not an accident of the approximation 
scheme. One would expect the same condition on the 
solution of the rigorous Eq. (3.1). Thus since k(p2) 
= itrG~1(p), one finds from Eq. (3.1) in the limit 
p-*0 

ieo2 f 
k(Q) = XI tr / d*p'y»G(p')Tip'fi)Dyfi(p'). (3.17) 

(2x)4. J 

Thus jfe(0) is finite provided the right-hand integral 

exists. One need only worry about an infrared diver
gence at p'=Q since if the integral did not converge 
elsewhere, k(p2) would not exist for pp^O. Since G(p') 
has singularities only at the fermion poles, it must be 
regular at pf=0. The photon pole requires that 
D{pf)~i/pf2 at the origin, while d*p'~p'Hp'. The in
tegral will thus converge provided T^p'fi) is not too 
singular at ^ '=0 . In fact, at least the series form (3.7) 
says that r(^',0) tends to a finite value19 at pf=0. 

As in the one-field problem,6 Eq. (3.15) may be con
verted into a second-order differential equation: 

(xk)"+3\k(x+k2)~1 = 0. (3.18) 

Here prime means derivative with respect to x=p2. Any 
solution of Eq. (3.15) is a solution of Eq. (3.18). The 
converse is, of course, not true. However, it is easy to 
see that any solution of Eq. (3.18) which obeys the pre
viously stated boundary conditions (both at infinity and 
at the origin) is indeed a solution of Eq. (3.15). This is 
verified by inserting — \jxk(x)~]" for 3\f(x) into the 
integrals of Eq. (3.15) and showing that the right-hand 
side correctly reduces to k(x) when the boundary condi
tions are satisfied. 

Asymptotically, one easily finds the general solution 
to be 

k(x)^A1x-n+A2x~<<1-^, (3.19) 

where At and A% are two matrix constants of integra
tion. Under our general assumption that QJ0 is sufficiently 
small, both solutions satisfy the boundary conditions at 
infinity. A general solution near the origin may also be 
found easily. It takes the form 

k(x) = a-iX~1+ao+aix2+ • • •, (3.20) 

where all the am, tn^l can be determined by recursion 
relations in terms of the two independent matrices a_i, 
do. Regularity at the origin forces one to choose a_i=0. 
The am, m^ 1 are then real algebraic functions of only 
one matrix of integration a$: 

k = k(x;a0). (3.21) 

Since ka is an Hermitian isotopic matrix for x>0, and 
for that domain is a real function of a0, the matrix do 
must also be chosen Hermitian. Now, in deriving the 
GreenJs function equations, only the field equations and 
canonical commutation relations need be used. The 
fermion fields used in the definition (2.2) of G# still leave 
the freedom of making constant unitary transformations 
\l/(x) —> U\f/(x). Such transformations would change k(x) 
according to k(x)—>Uk(x; a0)U~'1 = k(x'} UaoU-1). By an 
appropriate choice of U (which corresponds to fixing the 
choice of fermion fields xf/i) one may diagonalize do and 

19 These results stress the fact that infrared divergences do not 
arise in the unrenormalized Green's functions. This is true even 
for the singular case in which the clothed mass of the fermion 
vanishes (i.e., a "charged neutrino"). From Eq. (3.7), T^ip'fi) 
could at worst be logarithmically divergent at the origin and 
hence the mass-operator integral of Eq. (3.17) still converges. 
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hence also ka(x) for all momenta. We may, therefore, 
write 

kij(x) = a(x)8ij+P(x)(n)ij. (3.22) 

Thus the solution for Ga(p) that we have found cor
responds to possibility (b) of Sec. I I . Full SU(2) sym
metry is not broken and there still remains invariance 
under rotations about the third isotopic axis. This is the 
type of situation that allows for a mass splitting [Eq. 
(2.17)] but not necessarily a decay (1.1). To see the 
latter fact, one can easily generate iteration solutions of 
Eq. (3.10) [starting with the zeroth approximation 
(Tttij)(°'> = Cyll5ij] after inserting the above solution for 
dj. Since G# is diagonal, the resultant ]># will also be 
diagonal, forbidding decay (1.1) by the discussion 
following Eq. (2.22). 

The diagonal nature of G# follows directly from the 
boundary condition at the origin. This forces kij to de
pend only on one matrix of integration. [Thus the two 
matrices A x and A 2 in the solution (3.19) at infinity must 
actually be related to each other, if the boundary condi
tion at the origin is to be maintained.]] If kij had de
pended upon two constant matrices, both could not in 
general be simultaneously diagonalized. Then kij would 
have an off-diagonal part which would permit decay 
(1.1). The boundary condition at the origin is a rigorous 
one. However, the fact that just one solution satisfies it 
has only been established within the framework of our 
approximation. 

As a final point, we might note that when a0 is put 
into diagonal form, Gij(p) depends upon two arbitrary 
constants (the diagonal elements of a0). These may be 
determined by requiring the two poles of G%j{p) to occur 
at the experimental masses of the muon and electron. 

IV. VERTEX INTEGRAL EQUATION 

In the previous section it was seen that Eq. (3.10) 
possessed a solution for Y^^p^p) diagonal in the iso
topic indices (the ordinary iteration solution). I t is 
natural to inquire whether Eq. (3.10) possesses any off-
diagonal solutions (even though G# is diagonal), such 
solutions allowing decay (1.1) to occur. From the general 
analysis of Sec. I I , it would appear doubtful that such a 
possibility could arise. I t is conceivable, though, that a 
symmetry breakdown of the vacuum state might 
"accidentally" produce no effects on the two-point 
function and be observable only beginning in the vertex 
function. The calculations of this section give no indica
tion, however, that this anomalous possibility occurs. 

While a full solution of Eq. (3.10) is technically possi
ble, the analysis necessary to produce it would be quite 
lengthy. A vector vertex function has twelve 2X2 iso
topic matrix form factors (assuming parity conservation) 
and so there are 48 independent form factors in all. 
While Ward's identity allows one to determine 16 of 
these, the problem remains fairly formidable. We will, 
therefore, restrict ourselves to a calculation of Y^p^p) 

in the limit as p' —-> p. More precisely, we consider an 
expansion of the following type: 

r»(P+ik:p-±k)=T»(p,p)+k«T»a(p)+'--, (4.1) 

the first nontrivial coefficient is T*a(p) and we will 
examine the solution of Eq. (3.10) for it. (There are 
still 16 independent form factors for this problem.) 
Ward's identity, 

k»Y»(p+ypJ) = G-\p+) - G-KP-) (4.2) 

(where ^±M=^M±i^M) , uniquely determines Yti(p,p), 
while it requires that k^Y»a(p) should vanish. Hence 
Tpa(p) must be antisymmetric in the tensor indices. 
Assuming parity invariance, there are then four inde
pendent structures for Tpa(p) • 

+ W W + W * Y * 7 ^ V ( 4 ) ( £ 2 ) , (4.3) 
where <rap=£ya,yp]> Y 5 = Y V Y 2 Y 3 > the Levi-Civita sym
bol has sign convention €0123=+ 1 and the notation 
A^a] means A^—Aa^ The four form factors y{a)(p2) 
are space-time scalars and isotopic matrices. In an ob
vious notation, one may write Ylia(p)=(a)Y(ia<p(a)(p2), 
The condition of charge conjugation invariance, Eq. 
(2.37), implies 

T"*ij(p)=-[cr^-^c-1]-. (4.4) 

This imposes the following isotopic symmetry conditions 
on the form factors20: 

9 ( i ) . . = _ ^ ( D . . ? (pwij== + (p(a)..j a = 2 , 3 , 4 . (4.5) 

Equation (3.10) may conveniently be rewritten as 

ieo2 f 
T»(p+,p„) = Cy»-—— d*p'y«G(p+') 

(2TT)4 J 

X T^(p+\pJ)G(pJ)y^a(p-pf). (4.6) 

Differentiating with respect to kv and setting kv to zero, 
one obtains 

(2TYJ 2L dp,v 

dG(p') -1 ieo2 f 
X ix*->v WDfia(p'-p) / fcp'T 

dp'* A (2TT)4 J 

XG{p')T,v(p')G(pf)ytDUp'-p) • (4.7) 

The first integral in Eq. (4.7) is diagonal in the isotopic 
indices since G# is. As we are interested here only in 
seeing if there exist any off-diagonal components in 
Y^ij which would give rise to the decay (1.1), one may 
ignore this integral. The form of the second integral of 

20 The amplitudes that violate charge-conjugation invariance 
of course have symmetries opposite to those of Eq. (4.5). Since 
Eq. (3.10) is consistent with charge-conjugation invariance, the 
equations for the C-violating amplitudes decouple from the C-
conserving ones. 
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Eq. (4.7) suggests that a convenient quantity to de
fine is 

M,r(p)^G(p)TUp)G(p). (4.8) 

M»v(p) may also be expanded in terms of form factors 
in a fashion similar to IV, i.e., M^p) = (a)IV(^)x(a) (p2), 
the x(a)# obeying the same symmetry conditions (4.5) 
as the ?<«V Since G~1(p) = yp+k(p2), Eq. (4.7) 
becomes 

(yp+k)^T(XV(p)xw(P2)(yp+k) 

eo2 f 
= 7 — / ^ r 2 [ T a ( a ) i W ) 7 « 

(2TT)4 J 

-iyq(a)T»v(p'hqq-21x(a)(p'2), (4.9) 

where X=OJ0/47T and x=p2>0. From Eq. (4.9) it is clear 
that the left-hand sides of Eqs. (4.11) are related to the 
form factors <p(a) of T^G^M^G-1. Writing 

<pV(p2)=<Pi(p2W, 

^a)(p2) = Pa{p2)l + <Ta{p2)TZ+VaTl (1=2,3,4, 

then the left-hand sides of Eq. (4.11) are just precisely 
the four form factors of the off-diagonal parts of IV, 
<pa, expressed in terms of the ^0. One may easily reduce 
Eqs. (4.11) to a set of four second-order differential 
equations for the \fra(%) > 

[x-l(xV4) /] /=2X^4, 

[><£>2+2<p3]//==— X^2, 

We investigate first the boundary conditions at the 
origin. From Eq. (4.7) it is clear that T^v(p) is regular 
at ^ = 0. [This follows from the fact that G(pf) is regular 
at pf = 0 and so the kernel of Eq. (4.7) behaves as 
^l/(p—p')2 near p' = 0 for small p.~\ From the defini
tion of the form factors, Eq. (4.3), one has then the 
following limiting behaviors for <pa(x): <pa(x)^(l/x)*a 

where Xi<|, X2<1, X3<0, X4<|. Since MfiV(p) = G(p) 
X Tflv(p)G(p) is also regular at the origin, the \//a(%) have 

where q^^p'^—p^. It is understood that Eq. (4.9) holds 
only for the antisymmetric isotopic parts since the first 
integral has already been neglected. (The transition 
to the Euclidean metric has also been made.) The angu
lar integrations may now be performed explicitly with 
the aid of the results of Appendix B. Upon introducing 
the following notation: 

Xa)(p2) = Hp2)T2, 

X(a)(p2) = PaW + CTa(p2)TZ+taTl, (4.10) 

k(p2) = a(p2)+p(p2)n (0=2,3,4) , 

one finds, after a lengthy but straightforward calcula
tion, that the off-diagonal parts of Eq. (4.9) reduce to 
four equations to determine the four \l/a(p

2)- These read 

an identical set of bounds at x=0. With these limits, 
one easily verifies that the right-hand sides of Eq. (4.11) 
actually approach a finite limit as x —» 0. Examination 
of the left-hand sides then allows one to conclude that 
all the \pa{%) [and hence all the <pa(#)] are actually regu
lar at the origin. The integral equation thus requires 
one to look for solutions of Eq. (4.12') which have the 
form 

*a(*) = EC f l(»)*n. (4-13) 
o 

Upon inserting Eq. (4.13) into Eqs. (4.12'), one obtains 
recursion relations among the Taylor coefficients. One 
finds that all the Ca(n) can be determined in terms of 
four arbitrary ones: G(0), C8(0), C8(l), C4(0). [The 
general solution of Eq. (4.12') has eight constants of 
integration which implies that four of these solutions 
are singular at the origin.] Thus Eq. (4.12') gives rise 
to a solution which depends linearly and homogeneously 
on these four constants. 

We next investigate the boundary conditions at 
infinity. In order that the integrals on the right-hand 
side of Eq. (4.11) converge, \pi(x) and xf/^x) must vanish 
no slower than l/xa, a>\, and ^{x) no slower than 
l/xb, b>2. In a fashion analogous to the discussion 
following Eq. (3.18) one can then show that any solu-

^ ^ [ x + ^ - ^ ^ ^ ^ ^ + ^ ^ x L ^ / dxfx'2\Pi{x')+ / dx'$i(xf) , 

cx \ f x'\2 f xf\ / xf\2 / 1 1\ l 
^2=[x+a2-/32>2+2^-Wi-c«A4=-X / te\(-) ( l W * 0 + 2 ( - J ( - — W a O , 

J Q I \ X / \ X / \ X / \ X X/ J 

r cx [/xf\2 x*/ x\ i r°° "i 
= [--x+a2-l32]fo+xafa==%\\ / dx' (— ) (x-x')fc(x') + 2--[ 1 W z ' ) | + / dx,(x-x,)fc(x') , 

LJ o [\X/ X\ X J ) J x J 

(4.11) 

<p4==[—x-\-a2—/32]^4—4a^3= — X / dx'l-)M*')+ dxW) \, 
Jo \x/ Jx J 
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tion of Eqs. (4.12') obeying the boundary conditions 
both at the origin and at infinity is a solution of the 
integral equations (4.11). Aside from the above bound
ary condition at infinity, we also impose a second condi
tion of regularity, i.e., that the integrals in Eqs. (4.7) 
or (4.9) actually converge absolutely at infinity. This 
requires that M^v(p) vanish faster than l/xa, a>2, 
since D(pr)^l/pf2 (and hence that TM„ approaches zero 
at infinity). From Eq. (4.3), one sees that the above 
conditions on yp\{x) and yf/^x) must be strengthened to 
read that they vanish faster than l/xa, a > f , and also 
that \pz(x) vanishes at infinity. 

Returning now to Eq. (4.12'), one can show that the 
general solution for large x begins as 

yplA^AlAx-l-*+BlAx-^+ • • • , 

*8 ^2+A,x-^+B8x~^+... , (4.14) 

Tp2^A2x-l-x+B2x-M-i , 

where Aa and Ba are the eight constants of integration. 
The boundary conditions at infinity then require that 
four of these, A2j B2, Ah and A 4 vanish,21 which repre
sents four conditions on the general solution. In terms 
of the solution (4.13) regular at the origin, there are 
then four constraints on the constants Ci(0), Cz(0), 
C3(l), C4(0), in the form of four linear homogeneous 
algebraic equations. In general the four C s must then 
vanish and hence so do all the \[/a(x). Thus, to the 
approximation considered, the off-diagonal parts of 
T^p) are zero and the vertex function equation does 
not allow a broken symmetry solution permitting decay 
(1.1) to occur.22 

V. DISCUSSION 

In the previous sections, the spontaneous breakdown 
of internal symmetries has been examined for a system 
of two charged fields of zero bare mass (the "muon" 
and "electron" fields) interacting minimally with the 
electromagnetic field. As was seen, a mass splitting be
tween electron and muon could develop. The masses 
appeared as two arbitrary constants of integration, and 
so the value of the mass splitting (i.e., the amount of 
breakdown) could not be predicted (a characteristic 
feature of spontaneous breakdowns). Since the one-
field analysis of BJW shows that a single charged fermion 
can develop an arbitrary clothed mass,23 it is perhaps 

21 The requirement of absolute convergence sets A1 and A 4 to 
zero. If it were not imposed, Eq. (4.9) would actually have 
divergent radial integrals in terms whose angular integrals aver
aged to zero. 

22 It should be noted that the off-diagonal terms in I \ / really-
had to vanish to forbid decay (1.1) as no further freedom of 
isotopic rotation is left to diagonalize T%: Once a basis which 
diagonalizes Gij is chosen, the fx and e field operators are completely 
fixed (except for the trivial isotopic rotations around the m = 3 
axis). 

23 The single arbitrary constant of integration in the one-field 
case may be used there to fix the mass, corresponding to our 
procedure for the two-field problem where two arbitrary constants 
remain. 

not surprising that a difference of masses can develop 
in the two-fermion problem. I t is gratifying, how
ever, that the stability of the heavier particle is still 
maintained.24 I t is also interesting that spontaneous 
breakdown of the discrete operations of the Lorentz 
group is forbidden (as discussed in Appendix A)." 

The electrodynamic system studied is a convenient 
one for examining symmetry breakdowns for several 
reasons. First the symmetry group involved, SU(2), 
is particularly simple. Second, since the analysis involves 
the gauge-invariant electromagnetic couplings, none of 
the usual field-theoretical infinities arise, at least in the 
approximations examined. Thus, no cutoffs need be 
introduced before physical interpretations can be made. 
On the other hand, the technique that gives rise to a 
finite electrodynamics automatically requires that at 
least one broken symmetry (75 invariance) occurs (so 
that fermions with zero bare mass can have nonzero 
clothed mass). Within such a framework, then, it is 
natural to consider seriously other possible spontaneous 
breakdowns. One of the original theoretical motivations 
for introducing two neutrinos was to prevent the photon 
decay of the muon. As we have seen, however, if spon
taneous breakdowns are to be allowed, two neutrinos 
would not automatically stabilize the muon as a purely 
electromagnetic decay would still be feasible. The fact 
that this possibility does not seem to materialize is a 
property of the detailed dynamics of the electromagnetic 
interactions, and not merely of the symmetry group 
imposed on the Lagrangian. 

APPENDIX A 

In this appendix, the analysis of Sec. I l l is extended 
to consider the possibility that P , C, or T is spontane
ously broken.25 I t will be seen that such breakdowns 
cannot, in fact occur. 

The general form of Gij(p) now is 

Gij(p)=yptgij(p
2)+iyr0gij(p

2)l 

+ Uij(P*)+y*?«(Pi)l, (AD 

whose inverse will be written as 

+ tkij(q*)+yMp2n- (A2) 

24 After completion of this paper, there has appeared an article 
by Th. Maris, V. Herscovitz, and G. Jacob, Nuovo Cimento 34, 
946 (1964) which reaches identical conclusions regarding the one-
fermion Green's function. 

25 The usual argument that gauge invariance, together with 
CP conservation, implies that P must be separately conserved 
does not apply here for two reasons. First, it does not apply to 
spontaneous breakdown, being an argument made on the Lagran
gian. Second, if, as is the case here, the bare mass vanishes, one 
may even have a "minimal/^ P-violating coupling term in the 
Lagrangian of the form efyy$+ia}l/yyrf$~]Aii, together with 
invariance with respect to the gauge transformation A^x) —> A M (x) 
+d„A(#), \J/ —> exp{i[l+toy5]A(V)}^(#). 
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Equation (3.&) now reads 

G~l(p)=yp 
ietf 

•]**• q
 2[yayp7a 

(2T) 

iyqypyqq-2Xg(p'2)-nf>g(p'2)l-
Sie0

2 f 

(2TT)4 J ( 2 T ) < . 

xr2U(P'2)-y*J(P'*)l, (A3) 

where q^^p^—p". Again the angular part of the first 
integral vanishes and so 

hij(p
2) = 8ij, & y =0 (A4) 

while the remaining terms reduce to 

f dx'(^\f{x')+I <fx7(*')], (A5a) 

k(x) = — 3X [[ dx'(-\f(x')+f dx'f(x')\, (A5b) 

where A=ao/47r. Converting Eqs. (A5) to differential 
form yields 

(xk)"=-3Xf(x), (A6a) 

(xk)"=3\f(x). (A6b) 

The relation betwben the form factors of G(p) and 
G~l{p) is slightly more complicated now. Using Eq. 
(A4), one finds 

g(x)=- [i -(XJ-'O+^+fc2]-1, 
0(«) = - & ( * ) , (A7) 

/(*) = - [k-ikQlg{x), }{x) = ik+ikQ)g{x), 

where Q is the abbreviation 

Q(x)= -i£x+k*+&J1i(x)M*)li- (A8) 

(The commutator is nonzero due to the isotopic depend
ence.) Asymptotically, then, f^k/x and f~ — (k/x), 
and so both k(x) and ft(x) have the form for large x 
given in Eq. (3.19). Near the origin, however, Eqs. 
(A6) are highly coupled. Again only regular solutions 
are allowed and so one may expand k(x) and k(x) near 
the origin: 

k(x) = J^ amxn, k(x) = £ bmxm (A9) 

where all the am and bm are Hermitian matrices. The re
cursion relations obtained from Eqs. (A6) show that all 
the Taylor coefficients can be determined in terms of the 
two arbitrary matrices a0 and bo. Thus we have for the 
form of the solution 

k = k\jc;ao,bo2, k=k[_x; #oAl- (A10) 

One may easily check that k vanishes in the limit 
bo —> 0 and then k correctly limits to the solution (3.21). 

In analogy with the methods given following Eq. 

(3.21) to diagonalize the parity-conserving case, one 
may seek a constant unitary rotation eliminating k(x). 
This can be accomplished if a rotation eliminating fc(0) 
exists, since then the whole series (A9) for k(x) vanishes. 
There is available, for this purpose, the counterpart of 
Eq. (2.4), 

yp —> exp[>oY5+ «• ^YB]^, 

yp —» $ exp[aoY5+a- vys], 

which transforms K=k~{-y$k by 

K{x) —> exp[o!oY5+ck:«TY5] 

XK(x) exp[ao76+a-vy6]. 

(A10) 

(Al l ) 

We write K(0) = Ao+A"t+yb(Bo-\-B"c) and proceed 
as follows. First we eliminate the Y J B ' T structure using 
a transformation with ao=0 and a = \ B where 

tcin2\(3=-B/Ao; B^(R2)^2. (A12) 

K(0) now has the following form: K(0) = AQ'+A'"Z 
+7&ZV. The elimination of all 75 terms is then completed 
by the following transformation, which eliminates the 
Y5iV term without reinstating any 7 5 8 ^ structure: 

a s p A ' , C2=Ao'2+BQ
f*-A'\ 

t&n2pA'= - [ C 2 ± (C'+M,2Bo,2)1^(2AfBof)-1
J 

tan2a0= - [ - (A^-B^-A'2) 

± (C4+4^ , 2^o , 2)1 / 2](2^o ,5o ,)-1 . 

(A13) 

Once the k(x) terms have been removed, the analysis 
proceeds as in Sec. 3, i.e., k(x) may be diagonalized 
using transformations (2.4). This automatically im
plies that C and T invariance are also preserved [by 
Eqs. (2.35) and (2.36)]. 

APPENDIX B 

In this section we list some of the formulas needed to 
perform the angular integrals of Eqs. (3.13) and (4.9). 
In the Euclidean metric, one may introduce four-
dimensional spherical coordinates d/Lp,=pr8dpfd^/, 
where fdztt'd*n'=J7r(47r) = 27r2. We therefore define 
the angular average of a function by 

• / • 
(f(P",prfs))= (2?r)-2J dm'f(p«,p'e). (Bl) 

In general, it is convenient to choose the polar axis in 
the direction of p* so that papa=pp' cos% where x is 
the polar angle. One can then expand the "potential 
function" l/q2=l/(pf—p)2 in terms of Gegenbauer 
polynomials26: 

q 2=P>~2T,oanCn1(z), *=cosx, (B2) 

26 C. F. W. Magnus and F. Oberhettinger, Functions of Mathe
matical Physics (Chelsea Publishing Company, New York, 1949). 
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where p> (^<) is the greater (lesser) of p, pf and 
a^p</p>. The Cnx= [sin(w+l)x]/sinx obey the con
venient orthogonality condition 

(CnK*)Cn>l(z))=&n (B3) 

The integrals appearing in text involve structures pro
portional to both 1/q2 and (1/q2)2. One needs the fol
lowing averages involving 1/q2: 

(q-')=P>->, {p;/q>)=Wp~2P», 
{p'"P''/q2)^ (P'/P>ma-h2)vl"+^p>'p'p-^ • 

(B4) 

To deduce, for example, the second identity, one writes 
(p'fi/q2)=aplx/p2 where a=pp'(z/q2). One then makes 

use of Eq. (B2) along with the recursion relation 

2C»1(2) = JCC^x1(»)+C^i1(2)], C- i^O (B5) 

to evaluate a. 
The integrals needed involving (1/q2)2 are 

(p;/q*) = P»p-2P>-*a2(l-a2ri, 
(p^p/Zq^Wp^lh^+P^p-^il-a2)-^, (B6) 

(p»pv'P«Vq4)=(p>2/p%AlUp»vav+pvva"+Payflv) 
+a2(l-a2)~1pfxpvpap-2^]. 

These may most easily be deduced by inserting expres
sion (B2) for each factor of 1/q2 and again using 
Eq. (B5). 
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The high-energy K^p and K±n total cross section and the K~-{-p —> K°-{-n charge-exchange data contain 
further evidence for the Regge trajectory R proposed by Pignotti. The signature factor is important in fitting 
these data; thus there is also some support for the Regge-pole hypothesis itself. 

I. INTRODUCTION 

RECENTLY, Pignotti suggested the existence of a 
new octet of even-signature boson Regge trajec

tories.1 They are expected to lie near the p trajectory 
and thus to give no 0+ bound states or resonances; how
ever, they may give 2+, etc., resonances, and it has been 
suggested that the A 2 meson may lie on one of these 
trajectories.2 

Some evidence for the 1=1 member of this octet, 
called Ry was found by Ahmadzadeh.3 He showed that 
the differences between high-energy pp and np total 
cross sections, together with n+p—> p+n charge-
exchange data, are readily explained by using a com
bination of the p and R trajectories, whereas p alone 
fails.4 

The present note shows there is further evidence for 

* This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

t Permanent address: A.E.R.E., Harwell, Berkshire, England. 
1 A. Pignotti, Phys. Rev. 134, B630 (1964). 
2 S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, G. R. 

Kalbfleisch, J. Kirz, D. H. Miller, and G. A. Smith, Phys. Rev. 
Letters 12, 621 (1964). 

3 A. Ahmadzadeh, Phys. Rev. 134, B633 (1964). 
4 R. J. N. Phillips, Phys. Rev. Letters 11, 442 (1963). 

R in the differences of K±p and K^n total cross sections,5 

and in K~-{-p—>K°-{-n charge exchange.6 Here again p 
is inadequate, but the addition of R explains the 
discrepancies in a natural way. 

From a theoretical viewpoint these KN and KN 
processes have many similarities to NN and NN 
scattering; isospin considerations are the same and so 
are the Regge trajectories that one assumes to dominate 
forward scattering.7 Our formalism is therefore related 
to that of Ahmadzadeh3; our arguments, however, are 
different. The data we consider have three new features: 
(a) The KN and KN data are more precise8 than the 
corresponding NN and NN data, (b) The charge ex
change, K~-\-p —> K°+n, is the direct analog of p+p —> 
n+n rather than the n+p —> p-\-n case already studied 

5 W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic, R. H. 
Phillips, A. L. Read, and R. Rubinstein, report presented to the 
High Energy Physics Conference at Dubna, 1964 (unpublished). 

6 P. Astbury, G. Finocchiaro, A. Michelini, C. Verkerk, D. 
Websdale, C. West, W. Beusch, B. Gobbi, M. Pepin, M. Ponchon, 
and E. Polgar, report presented to the High Energy Physics 
Conference at Dubna, 1964 (unpublished). 

7 Not all the trajectories are common, of course; for example, 
those associated with 0~ or 1+ mesons do not affect KN scattering. 

8 For example, total cross sections are more accurately known 
for KN than for NN scattering. See Ref. 5. 


