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Frequency Shift in High-Intensity Compton Scattering*! 
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Department of Physics, Imperial College, London, England 
(Received 12 November 1964) 

The frequency shift predicted by Brown and Kibble, and by Goldman, for a photon scattered out of an 
intense beam by a free electron is re-examined. I t is shown that the effect has a very simple classical inter
pretation, as a Doppler shift arising from the nonzero average velocity of the electron in the beam. The 
discrepancy between this prediction and the recent perturbation calculation of Fried and Eberly is shown to 
arise from the use, in the latter, of a pure monochromatic beam rather than a wave train of finite length. I t 
is shown that the effect should arise for a quantized photon beam as well as for a classical one. The question 
of energy-momentum conservation is discussed. With the help of a one-dimensional model which exhibits all 
the essential features of the effect, it is shown that the extra energy and momentum which are generated in 
the scattering process are taken up by the beam itself in the form of an extremely small shift in the aver
age momentum of a photon in the beam. The possibility of experimental detection of the effect is briefly 
discussed. 

1. INTRODUCTION 

THE interaction of intense laser beams with matter 
exhibits many interesting and unusual features.1 

It is therefore of considerable interest to examine their 
interaction with a simple system for which the effects 
to be expected can be calculated with precision. In a 
previous paper,2 here referred to as BK, the interaction 
with a single free electron was examined, using a semi-
classical treatment in which the laser beam was rep
resented as a classical plane-wave field. It was shown 
that the frequency of a photon scattered out of the beam 
should be shifted by an amount depending on the beam 
intensity, though quite small for presently available 
intensities. The same result was obtained independently 
by Goldman,3 using similar methods. 

In this paper, we shall examine certain aspects of this 
effect in greater detail. In particular, we hope to eluci
date an apparent paradox concerned with energy-
momentum conservation, and to show that, contrary to 
a recent assertion of Fried and Eberly,4 the effect should 
occur for a quantized beam as well as for a classical one. 

We begin by presenting, in Sec. 2, a simple discus
sion of the origin of the effect. We show that the fre
quency shift is simply a Doppler shift due to the fact 
that an electron initially at rest acquires a nonzero 
average velocity in the direction of the beam. This 
velocity arises from the circumstance that, when the 

* The research reported in this document has been sponsored 
in part by the Air Force Office of Scientific Research under Grants 
AF EOAR 62-87 and 64-46 through the European Office of Aero
space Research, (OAR), U. S. Air Force. 

f A preliminary version of this work was presented at the 
Conference on Quantum Electrodynamics of High-Intensity 
Photon Beams held at Durham, North Carolina on 26-27 August 
1964, under the auspices of the U. S. Army Research Office. 

1 See, for example, P. A. Franken and J. F. Ward, Rev. Mod. 
Phys. 35, 23 (1963); Z. Fried and W. M. Frank, Nuovo Cimento 
27, 218 (1963). 

2 L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705 
(1964). 

3 1 . I. Goldman, Phys. Letters 8, 103 (1964). See also A. I. 
Nikishov and V. I. Ritus, Zh. Eksperim. i Teor. Fiz. 46, 776 
(1963) [English transl.: Soviet Phys.—JETP 19, 529 (1964)]. 

4 Z. Fried and J. H. Eberly, Phys. Rev. 136, B871 (1964). 
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amplitude is varying, the phase difference between the 
electron velocity v and the electric field E is not exactly 
^7r, so that there is a nonzero force v x B in the beam 
direction. This provides an acceleration when the ampli
tude is increasing, and a deceleration when it is de
creasing. Quantum-mechanically, the effect arises, as 
was shown in BK, from the mass shift of an electron 
propagating in an intense beam. It may also be re
garded as an effect complementary to the refraction of a 
photon passing through a cloud of electrons. 

In Sec. 3, we shall show explicitly that a quantum-
mechanical calculation of this process is necessarily 
equivalent (so long as radiative corrections are neg
lected) to a semiclassical calculation in which the field 
is treated as an unquantized external field. This equiva
lence is essentially a statement of the correspondence 
principle for such processes. The differences between 
our calculation and that of Fried and Eberly are 
analyzed in Sec. 4, and the discrepancy is shown to arise 
from the use, in the latter work, of a monochromatic 
beam from the outset of the calculation. Such a beam 
must necessarily occupy the whole of space, and it is 
therefore inconsistent to regard the electron as free 
even in the remote past. Instead, we should use a wave 
train of finite length, and treat the monochromatic beam 
as a limiting case obtained when the length of the beam 
tends to infinity. This limiting procedure is unusually 
delicate for problems involving beams of finite density. 
We shall show that a calculation using a beam of finite 
length must yield a frequency shift, which persists 
even in the limit. Classically, it is clear that the effect 
arises from the acceleration of the electron during the 
process of switching the beam on and off. The velocity 
of the electron inside the beam depends only on the 
beam intensity. If the beam is switched on more gradu
ally, the acceleration is slower, but the final velocity is 
the same. Thus, the precise way in which the amplitude 
varies with time is not important. 

There is one reservation to be made at this point. It 
is essential that the amplitude should be a slowly vary
ing function of time, or equivalently, that the frequency 
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spread in the beam should be small. If the beam possesses 
a sharp cutoff there are edge effects which modify the 
conclusions, and which could be quite large.5 These 
effects are discussed in Sec. 5, and shown to be small in 
physically interesting situations, except conceivably for 
high-velocity electrons and sharply focused beams. 

In Sec. 6 we examine the nature of the limiting proc
ess involved in going to the monochromatic limit. By 
considering the case of an exponentially varying ampli
tude, we show explicitly that in this limit we recover the 
results of BK. 

Because the use of coherent photon states makes it 
rather difficult to discuss in detail any changes in the 
energy and momentum of the beam, we shall consider 
in Sec. 7 a simplified one-dimensional model which ex
hibits all the important features of the effect. For this 
model, a calculation involving states with definite photon 
number can be carried through even when the photons 
are not in pure momentum eigenstates. The calculation 
is considerably simplified by employing coherent states 
as generating functions for the iV-particle states. It is 
possible in this model to see explicitly where the energy 
corresponding to the frequency shift goes. In fact, it is 
taken up by the beam itself in the form of a very small 
shift in the average momentum of a photon in the 
beam. 

The conclusions are summarized in Sec. 8, and some 
remaining unsolved problems are discussed. We also 
include a discussion of the possibility of experimental 
detection of the effect. 

For simplicity, we shall treat the electron as a scalar 
particle throughout. The spin is in any case unimpor
tant in the optical region of frequencies, and does not 
affect the frequency shift, but only the cross section. 

2. ORIGIN OF THE FREQUENCY SHIFT 

The predicted frequency shift is a purely classical 
effect (though, as we shall show explicitly later, it does 
not disappear in a quantum-mechanical calculation). 
We shall therefore begin by discussing its origin in 
classical terms. 

Let us consider a circularly polarized wave propaga
ting in the z direction, with an amplitude which in
creases slowly to its maximum value, and after some in
terval decreases again to zero. As the electron enters the 
beam, it will start to oscillate with increasing amplitude. 
Now, if the amplitude were constant, the velocity v 
would follow E exactly §7r out of phase. However, when 
the amplitude is increasing, the phase difference is less 
than JT, and there is a nonzero accelerating force 
v x B in the z direction. Similarly, when the amplitude 
is decreasing, there is a decelerating force. If the elec
tron is initially at rest, then, while in the beam, it has a 
nonzero average velocity in the direction of propaga-

6 Because these effects were neglected, the discussion of a beam 
withsharp cutoff in an earlier (unpublished) version of this paper 
was incorrect. 

tion. The frequency shift is simply a Doppler shift pro
duced by this mean velocity. 

To be specific, let us consider the field represented by 
the vector potential 

Ax=a(r) coscor, Ay=a{r) sincor, r—t—z, 

where a(r) is a smooth function of r vanishing at 
r = ± oo. The electric and magnetic fields are then 

Ex=By= aoo sincor—a! coscor, 

—Ey—Bx—ao) coscor-\-ar sincor. 

To find the electron momentum, we have to integrate 
the Lorentz force equation. It is not hard to verify 
that, if the electron is initially at rest at the origin, then 
its momentum and energy at proper time6 r are (with 
c=l ) 

PX(T) = — ea coscor, 

Pv(j) ~ ~~ ea sincor, 
(1) 

pz{r) = e2a2/2m, 

po(r) = m+e2a2/2m. 

The mean velocity of the electron in the beam is there
fore in the z direction, and of magnitude7 

*=£/*V(l+i/*2), fi2=e2a2/m2. (2) 

Thus for low frequencies, co<30w, the wavelength of light 
scattered at an angle # is shifted by the amount 

(X'-X)/X=M2sin2(Jtf). (3) 

In a quantum-mechanical calculation, the origin of 
the frequency shift may be traced to the fact that the 
mass of an electron propagating in an intense electro
magnetic field is increased by the amount8 

Am2=(-e2AtlA'i)av=fx2m2, (4) 

where the brackets denote a time average over many 
oscillation periods. This may be seen either from the 
Klein-Gordon equation or, in terms of Feynman dia
grams, by noting that the e2A2 term in the interaction 
yields a constant (or slowly varying) mass correction as 
well as an oscillatory term.9 

To acquire this mass, the electron as it propagates into 
the beam must take up some energy and momentum 
from it. If the energy-momentum is initially p*, then in
side the beam it must be p*1=pv+ak1*, where &M is the mo
mentum of a photon in the beam. (Classically, kfi=oonlx, 
where n11 is a null vector in the direction of propaga
tion, and co is the angular frequency.) The constant a 

6 It is characteristic of propagation in a unidirectional field that 
the proper time is linearly related to t—z. This may easily be 
verified by integrating (1) to find the coordinates as functions of r . 

7 The parameter /x2 was denoted by v2 in BK. This was, however, 
an unfortunate choice of notation, since v might be confused with 
the frequency. 

8 We use natural units with c=h= 1, and a metric with signature 
(1 — 1 — 1 — 1) and scalar product a-b = aobo—a-b. 

9 This is also evident from the structure of the electron Green's 
function. See BK, Appendix A. 
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FIG. 1. Kinematics of the 
•> high-intensity Compton scattering 
n process. 

*P 

may be determined from the condition 

p2 = p2-\-Am2. 
This yields 

p»=pv+ (Am*/2p • k)k». (5) 

This momentum p is simply the average value of the 
classical momentum (1). 

It is interesting to note that this relation may be ob
tained in yet another way, by considering the propaga
tion of a photon through a cloud of electrons. It is well 
known that the optical-path length I in a medium with 
electron density ne is increased by the amount 

Al/l=ne\
2ro/2Tr, 

where r0=e2/4:'wm is the classical electron radius. This 
change in optical-path length must be reflected in a 
corresponding decrease in the photon momentum. 
Hence, if the photon density is %>h, the total transfer 
of momentum per unit volume is 

neAp = — n^Ak = XrofteUph. (6) 

It is easy to verify that this agrees with (5). For an elec
tron initially at rest (which is of course implicit in the 
discussion of optical-path length), (5) yields 

Ap = Am2/2m=\\i2m. 

But, using the relation between amplitude and photon 
density, we easily find from (2) 

fjL2=2\r0nvh/m, (7) 

and this clearly reproduces (6). 
If the electron passes right through the beam with

out scattering, its momentum reverts from p to p on 
emerging from the other side. However, if some proc
ess occurs within the beam to change its momentum, 
this will not be the case. In particular, if the electron 
scatters a photon of energy-momentum kf out of the 
beam, as shown in Fig. 1, then, looking at the proc
ess from inside the beam, we find that the energy-
momentum conservation equation takes the form 

P'+k'=p+k. (8) 

Equivalently, in terms of the momenta outside the 
beam, p>+k>==p+k^k} ( 9 ) 

where the dimensionless constant f is given by 

Am2/ 1 1 \ 
f = ( _ ) . (io) 

It is the £k term in (9) which gives rise to the fre
quency shift. From (8) or (9) we easily find 

p'k = p-k'+(Am2/2p-k)k'k'+k-k'. (11) 

For oo<£.m, the last term on the right is negligible, and 
we recover the expression (3) for the wavelength shift. 
(The general expression is given in Sec. 8.) 

From (9) we may conclude that the total energy-mo
mentum of the beam must change in this process by the 
amount (l—£)k. So long as we regard the beam as a 
classical electromagnetic wave, this conclusion poses no 
particular problems. However, when we consider a 
quantized photon beam, we are immediately faced with 
an apparent difficulty. Since the number of photons in 
the beam can only change by an integer, it seems at 
first sight impossible to change the momentum of the 
beam by any amount less than k. These considerations 
have led Fried and Eberly4 to conclude that the fre
quency shift is an exclusively classical effect which 
cannot occur for a quantized beam. 

On the other hand, there is a general correspondence 
between the semiclassical and quantum-mechanical de
scriptions of a radiation field10 which would lead one to 
believe that the two methods of calculation ought to 
lead to the same answer, so long as radiative corrections 
are neglected. Indeed, we shall prove that this is true 
for our problem in the next section, and exhibit the 
equivalence explicitly in Sec. 4. Any failure of the 
equivalence would in fact be tantamount to a viola
tion of the correspondence principle. 

We are still faced, of course, with the problem of what 
happens to the momentum f k. However, there is another 
way in which the momentum of the beam can be 
changed, apart from removing photons from it. This is 
to change the average momentum of the remaining 
photons. We shall try to show in the following sections 
that this is indeed what happens. This conclusion may 
seem less surprising when it is realized that the mo
mentum of the beam is in any case decreased, albeit 
by a minute amount, during the presence of the elec
tron. (If many electrons were present, the amount 
could even be large and lead to refraction of the beam.) 
If the electron scatters inside the beam, the momentum 
does not revert precisely to its original value at the end 
of the process. 

A simple analogy may perhaps help to explain the 
mechanism of this process. Consider a potential which 
has the effect of splitting a degenerate energy level into 
two components with separation AE. Let us slowly 
switch on the potential. Then, if the system is in the 

10 See E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). 
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upper state, we can wait till it decays emitting a photon 
of energy AE, and then switch off again. The amount 
of energy extracted from the potential AE is clearly 
independent of the rate at which it is switched on and 
off. In this case, it is of course clear where the energy 
has come from. The work done in switching on the po
tential exceeds that recovered when it is switched off by 
just this amount. It is our contention that a similar 
mechanism operates to produce the frequency shift. 
The work done by the beam in accelerating the electron 
as it enters is not quite equal to the energy recovered 
when it is decelerated on emerging from the other side. 

It is clear that to see an effect of this kind, we must 
use a beam of limited extent. The important feature is 
the acceleration of the electron while the amplitude is 
increasing, and its deceleration when it falls again to 
zero. The calculation of Fried and Eberly was based on 
a description of the beam as a state of definite momen
tum. However, such a state must necessarily occupy the 
whole of space, and it is therefore inconsistent to assume 
that the electron is initially outside the beam. To avoid 
this problem, it is necessary to use a wave packet to de
scribe the beam, and only go to the limit of a mono
chromatic beam at the end of the calculation. For a 
beam of finite intensity, this limiting procedure is un
usually delicate. In most scattering problems, it is 
equally satisfactory to use a pure momentum eigenstate 
normalized in a box. The reason for this is that, as the 
volume of the box is increased to infinity, the particle 
density tends everywhere to zero. Thus, although the 
particles are not localized, they are on the average in
finitely far apart and may consistently be treated as 
free. The situation in our problem is quite different 
however. If we let the number of photons tend to in
finity with the size of the box, then the electron is al
ways moving in a beam of finite density and cannot be 
regarded as free. Therefore, any results obtained using a 
pure monochromatic beam from the outset of the cal
culation must refer to momenta measured inside the 
beam, not to free-particle momenta. 

A similar situation obtains in the example of the po
tential quoted above. If we do not switch off the po
tential, but consider a constant potential which is al
ways on, then the initial and final states of the system 
are not the unperturbed energy levels, but have energies 
which include the perturbation. It is only with this in
terpretation that energy can be conserved in the 
process. 

It is actually unnecessary for our purposes to limit 
the extent of the beam in transverse directions. It is 
sufficient to take it to be a wave train of finite length, 
with infinite plane-wave fronts. It is then consistent to 
assume that the electron is free before the arrival of the 
beam and after it has passed. Such a beam possesses a 
unique propagation direction, which may be covariantly 
characterized by a null vector n11 lying on the forward 
light cone. It is described classically by a vector poten
tial A^ which is a function only of T=n-x(=t—z, 

say). Quantum-mechanically it is described as a super
position of many-photon states in which each photon 
has a momentum parallel to n*, but with a spread of 
frequencies. 

It is not impossible that the results would be affected 
by limiting the extent of the beam in transverse direc
tions also. This is a point which deserves further study. 
However, it is very unlikely that the effect would be 
to remove the frequency shift altogether. 

3. EQUIVALENCE OF SEMICLASSICAL AND 
QUANTUM-MECHANICAL CALCULATIONS 

The semiclassical method of BK seems adequate to 
describe scattering processes occurring in the intense, 
coherent electromagnetic field produced by a laser. 
However, its validity has recently been questioned by a 
number of authors,4'11'12 who assert that qualitatively 
different results are obtained when the field is quantized. 
It is therefore necessary to show that a fully quantum-
mechanical calculation leads to the same results, so long 
as radiative corrections are neglected. This result, which 
is of quite general validity, is essentially a verification 
that the quantum theory possesses the correct classical 
limit. 

In discussing the classical limit of the quantized 
radiation field it is convenient to employ the "coherent" 
states,18 defined as eigenstates of the positive-frequency 
part of the vector potential operator An^(x),u 

Alx
(-+)(x)\a)=\a)afi(x). 

These states are the analogs of the classical-limit states 
of a quantum oscillator. Each coherent state corresponds 
uniquely to a classical solution of the wave equation, 
Afi(x) = 2 Re[aM(x)]. It is essentially the quantum state 
which most closely approximates this classical field. 
(The classical-limit states of the oscillator may be de
fined as those states which minimize the product AqAp, 
and simultaneously, for giver^(g) and (p), minimize the 
energy expectation value ($).) Because these states 
form an overcomplete set, all matrix elements of any 
operator 6 may be obtained from its diagonal matrix 
elements (a\JB\a). 

Now, to be specific, let us consider a calculation of 
the Compton scattering process by standard Feynman-
Dyson perturbation theory, representing the beam as a 
coherent state | a) of the radiation field. In evaluating 
the contribution of the diagrams of any particular order, 
we have to calculate the matrix element of a time-
ordered product, 

<p',kV,a| Tlt(x1) • • • V(xn)l | P,a), 
11 P. J. Redmond, paper presented at the Conference on Quan

tum Electrodynamics of High-Intensity Photon Beams, Durham, 
North Carolina, August 1964 (unpublished). 

12 P. Stehle and P. G. deBaryshe (unpublished). 
13 See J. Schwinger, Phys. Rev. 91, 728 (1953); S. S. Schweber, 

J. Math. Phys. 3, 831 (1962); R. J. Glauber, Phys. Rev. 131, 
2766 (1963). 

14 We use a circumflex to denote an operator. 
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where V' is the interaction operator of scalar electro
dynamics, 

V= ie0^ll$A^-e2AllA^0"'0. 

To do this, we have to rewrite the time-ordered product 
as a sum of normal-ordered products. However, the 
approximation of neglecting radiative corrections is 
equivalent to omitting all internal photon lines, that is, 
all contractions between A^ operators. Hence for these 
operators (but not for <£), we may immediately replace 
the time ordering by normal ordering. Now the matrix 
element of a normal-ordered product between coherent 
states is very simple. Each A^ yields a factor of aM, 
and each A^ yields af, except for one which is 
attached to the scattered photon line. Hence, except at 
this one vertex, we may replace the operator AJjo) by 
the classical field A^x). The net result is that the 
scattering amplitude has the form 

<p',kV,a|5|p,a>=<p',kV|5(^)|p>> (12) 

where S(A) is the scattering operator in the presence of 
the classical external field A^x). 

4. SCATTERING FROM A FINITE 
PARALLEL WAVE TRAIN 

The general discussion of the preceding section is 
sufficient to demonstrate the equivalence of the two 
methods of calculation but, in order to see where the 
differences between our calculation and that of Fried 
and Eberly originate, it will be useful to examine the 
perturbation calculation in more detail. 

It is clear from the structure of the Feynman dia
grams that 

<p',kV|S(A) |p)= -i [d*x eik'-*e'» 

where $p
in(x) represents the sum of all diagrams con

taining a single electron path which begins with a free 
electron line of momentum p, and ends at the vertex x, 
and <lyout(#)* is defined similarly. This expression 
simplifies enormously if we make the restriction to a uni
directional beam, for which A^x) depends only on 
T=n-x. We can then perform three of the four integra
tions over x at each vertex, and obtain 5 functions which 
tell us that the momenta of successive electron lines can 
differ only by a multiple of %. (Compare Fig. 2, which 
actually refers to the one-dimensional model discussed 
later, and therefore contains no one-photon vertices.) 
Writing pfi+qjn^ for the momentum vector of the jth 
line, we obtain 

1 f 
$pm(%) = lL- / drv ' -drzdqv • -dqn 

n (2w)nJ 

Xe-^-Uexpl~iqj(rj+1-Tj)']-^^r, (14) 
y=i qj~\-ie 

where Tn+i=T=n-x, and 

Ip(T) = [2eP'A(T)-e2A*(T)l/2n-p. (15) 

We can then perform the integrations over q3- and recog
nize (14) as the expansion of the expression obtained in 
BK, Eq. (2.6), by solving the Klein-Gordon equation, 

#-'"w=e~''"'e4-i(>-(4 (16> 

Since we are considering a wave train of finite length, 
the electromagnetic field F^T) must tend to zero as 
r —> ± oo. Hence we can certainly choose the gauge so 
that 

A„(r)->0, T-+-CO. (17) 

This choice is implicit in the discussion above, for other
wise the integral in the exponent of (16) would not be 
convergent. There is, however, a possible complication 
(unimportant for the original argument of BK) which 
may arise when we come to calculate 3vout(x)*. For in 
general we cannot simultaneously impose the analogous 
condition at r = + oo. In fact, if 

FM ,(T) = ( € M ^ - € ^ M ) F ( T ) , (18) 

then 

/

+00 

drF(r), (19) 
-00 

and this integral will be nonzero unless the zero-
frequency component of F vanishes. In that case, 
it is clear that we cannot expect to find a solution 
of the Klein-Gordon equation satisfying the boundary 
condition 

$p>
out(x)*^eipf'x, x°-> +oo , 

X$P>onKx)*Lie1)»-2eU^x)l$p™(x), (13) unless pr is interpreted as the canonical momentum 
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rather than the physical momentum pf—eA(<*>). I t 
will be more convenient to retain the usual physical 
significance for p\ and write instead the boundary 
condition 

<iyout(ff)*~e i Ip/+eA(00)] ,*7 x°—> +00 . 

The corresponding solution is then easily found to be 

$yo u t(x)*=^ [^+ e A ( 0 0 ) ] ' a ;exp - i dr'Ipr(T') , (20) 

where IP>(T) is defined exactly as in (15) but with A{r) 
replaced by A(T)—A(<X>). The factor involving A (so) 
clearly exhibits the dependence of the wave function on 
the chosen gauge. Its physical significance will be dis
cussed further in the next section. 

We can now see clearly where this calculation differs 
from one involving an infinite wave train. If A (r) were 
chosen from the start to be strictly monochromatic, 
then the integrals over TJ in (14) would yield 8 functions 
which have the effect of reducing the integrations over 
qj to discrete sums. Many of the resulting terms would 
involve vanishing Feynman denominators, arising from 
intermediate states in which equal numbers of photons 
have been absorbed and re-emitted. Such infinite terms 
were encountered by Fried and Eberly, and were re
moved by a process of normalization of the wave func
tions. The normalization constant involved is infinite, 
and this is not a purely formal infinity, but the mathe
matical expression of the fact that the Klein-Gordon 
equation in the presence of a truly monochromatic field 
possesses no solution with the prescribed boundary 
condition 

$P
in(x)^e~ip'x, x ° - > - o o . (21) 

Physically, this is because the electron cannot be a free 
particle even in the remote past. In the form (16) this 
fact makes its appearance in the circumstance that the 
integral in the exponent fails to converge. For a beam of 
limited extent, we could drop the contribution from the 
lower limit of integration, replacing the integral from 
— oo to r by one from 0 to r, say. The only effect is to 
multiply the scattering amplitude by an unobservable 
phase factor. For an infinitely long beam, however, this 
is impermissible because the phase factor is infinite. 
Indeed, the wave function obtained in this way, though 
a solution of the Klein-Gordon equation, would not 
satisfy the boundary condition (21), and would there
fore not represent an asymptotically free electron. 

I t is convenient, as in BK, to utilize the gauge in-
variance of the scattering amplitude by introducing the 
gauge-invariant polarization vector 

e'=e'-(n-e'/n-k')k', (22) 

which satisfies n-e'=0. Then, substituting the wave 
functions (16) and (20) into the expression (13) for the 

scattering amplitude, we obtain 

(p',k'e'\S(A)\p) 

= - t ( 2 x ) 3 jdq 8&'+eA(co )+k''-p-qn\f(q), (23) 

where 

f(q) = jdr e^ e x p ^ ' ^ I / ^ r ' ) - / ^ ' ) ] ) 

Xl2ee,'p-2eHf'A{r)~]. (24) 

This expression agrees with that found in BK, except 
for the neglect of electron spin and the appearance of 
the extra term eA(so)m (23). We shall discuss the origin 
of this term in the next section. 

5. EDGE EFFECTS 

We have already seen that it is necessary to consider 
a wave train of limited duration, but we have not 
examined the question of whether the actual shape of the 
amplitude function is important. We shall see that 
within reasonable limits it is not. I t is essential, how
ever, to consider a smoothly varying amplitude, for the 
use of a sharp cutoff introduces some additional and un
wanted effects.15 We shall discuss these effects in this 
section, and show that for any physically reasonable 
choice of the amplitude function they will be negligibly 
small. 

In the discussion at the beginning of Sec. 2 we made 
the implicit assumption that the average value of A^ 
over several periods is always zero. Now, if F^ has the 
form (18), then 

A,(T) = < J dr'F{r'), (25) 
J —oo 

and for an amplitude function with a sharp cutoff this 
quantity can have a nonzero average value. For ex
ample, suppose that 

F(T) = (a/o)) sincor, 0 < r < nw/co, 
= 0 , otherwise. 

Then clearly 

Ali(r) = 0, r < 0 , 

= aeM(l — coscor), 0 < r < m r / c o , 

= aelll-(-l)
n2, r>nr/o). 

In this case, as is easy to verify, the average velocity of 
the electron in the beam will have a component in the 
transverse direction defined by eM. Thus the Doppler 
shift will be altered by the corresponding amount. 
Physically, this average velocity arises from the initial 
acceleration of the electron during the first quarter 
period. Its direction is that of the electric field during 
this time. 

15 See footnote 5. 
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If n above is odd, then ^4M(°°) is also nonzero, and the 
electron velocity is changed even in the absence of any 
scattering. This is because of the acceleration produced 
by the excess half-period. I t is just this net change in 
momentum which is described by the additional term 
eA(co) in the 8 function of (22). 

I t is clear that these effects are a consequence of the 
sharp cutoff. In fact, it is easy to see that they will nor
mally be small if the amplitude function is smooth and 
slowly varying. Let us introduce the Fourier transform 
of F ( T ) , 

• / 

F(co) = dreio}TF(r). (26) 

Then i4M(oo) = €/iF(0), so that there can be an appreci
able transverse momentum transfer only if the zero-
frequency component of F is significantly different from 
zero. If the amplitude function is smooth, this can 
happen only if the spread of frequencies 7 is of the same 
order of magnitude as the frequency co itself, that is for 
very short pulses. Moreover, the average value of 
Ayir) over many periods is also related to the behavior 
of P(o)) near co = 0. In fact, 

1 rt+T f 
— drAfi(r)=efA 

T Jt—T J 

dco sinoT F(co) 
g—ioot 

2ir COJ -io)-\~€ 

The contribution to this integral from the neighborhood 
of co = 0 is of the same order of magnitude as F(0), and 
therefore very small. If T is chosen to be an integral 
number of periods, then the contribution from near the 
peak too of the spectrum F(co) is also small—in fact, 
smaller than the maximum value of A M by at least a 
factor (T/^O) 2 . 

In a laser beam 7 is of course many orders of magni
tude smaller than co0, so that these edge effects will cer
tainly be negligible at least as long as the approximation 
of treating the beam as unidirectional is valid. At first 
sight, one might think that they could be important for 
a focused beam, since the amplitude changes rapidly in 
the vicinity of the focus. However, for nonrelativistic 
electrons they should still be negligible. The significant 
quantity is the amplitude "seen" by the electron, and 
this will not vary rapidly unless the electron velocity is 
large. The relevant parameter is the square of the ratio 
of the period of oscillation to the time spent in the beam, 
which is of order (v/c)2 or less. 

6. THE MONOCHROMATIC LIMIT 

To illustrate the nature of the limiting process in
volved in going to an infinitely long wave train, we shall 
consider a specific example, in which the cutoff function 
has an exponential form, 

A(i(r) = 2 R e ( < v r ^ - ^ l ) , (27) 

where #M is a constant complex vector describing the 
amplitude and polarization of the beam.16 

16 Note that aM here corresponds to •§&„ of BK. 

In one respect, this is a rather unphysical example, 
since the electromagnetic field changes discontinuously 
at r = 0. This difficulty could be avoided by choosing 
slightly different amplitudes for positive and negative 
values of r. If we replace a^ in (27) by 

alkzL{iy/2ui) ReaM 

for r > 0 and r < 0 , respectively, then both AM and its 
first derivative are continuous at T = 0 . However, this 
replacement does not affect the analysis in any signifi
cant way, and we shall be content with the simpler 
form (27). 

For simplicity, we shall restrict the discussion to the 
case of a circularly polarized wave, for which a2 = 0, and 
choose the phase of a^ so that the quantity 

is real. We also define 

\p'-k p-hJ 

(28) 

(29) 

in agreement with (10) and (4). 
We can now evaluate the exponential factor appearing 

in (24) explicitly. Since we are assuming that 7<<Cco, we 
shall make the simplifying approximation of replacing 
denominators of the form cc±^iy by co. (This is not 
strictly necessary. These factors may be carried through 
the calculation, but do not significantly affect the re
sults.) We then obtain for the exponent the expression 

i£ sincor e ^ ' T i f ( c o / y X ^ ^ - 1 ) 

according as r > 0 or r < 0 . Expanding the oscillatory 
term in a series of Bessel functions and inserting in (23) 
and (24), we find that the integral from — 00 to 0 is 
just the complex conjugate of that from 0 to 00. Hence 
we obtain 

/.GO 

f(g)=Z 2 Re / dTDr(Z<rty*,o<rty*) 
r Jo 

Xexp\j(q-r<a)r- (ifa/y)(e-yT-1)], (30) 
where 

DT&a) = 2elf-pJr{-i) 
- 2e2[e' • aJr_x{- 0 + 1 ' • a * / r + 1 ( - £ ) ] . (31) 

Apart from the exponential cutoff factors, the functions 
Dr are identical with the emAr of BK, Eq. (3.24). 

Let us concentrate on a particular value of r. Then the 
leading term in Dr depends on r through the factor 
e-xryT^ gQ w e n a y e t 0 e x a m m e integrals of the form 

/ r(?) = 2 R e : / dr exp i(q—ru)i 

ifa - \ r l r - ~ (*-7r_i)l (32) 
7 J 
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Because of the damping factor e~*ryT, only values of 
T~Sl/r7 will contribute significantly to the integral. 
Thus we may expect to be able to expand the coefficient 
of f in powers of yr. If we retain only the leading (linear) 
term, then we obtain 

ry 
Mq) « — ; — . (M) 

(q—ro)+fa)2+ir2y2 

Then we see that the distribution of values of q is peaked 
around the points (r—f)co, in agreement (for r=l) with 
the energy-momentum conservation equation (9). There 
is no peak near the values rco which would correspond to 
scattering at unshifted frequencies. In the limit y —* 0 
we obtain a sum of 8 functions of precisely the form 
given in BK. 

This conclusion is not changed by including higher 
order terms. When the second-order term is included, 
we obtain an error function. We write 

b = —i(q—roo+fa)+%ry, 

x=b/2c1/2. 

Then we find 

/ r « 2 RelV^ 'V* Erfc(x)], (34) 

where Erfc(x) is the complementary error function.17 

Provided that q—no+fco is not precisely zero, x be
comes large as y —•» 0. Thus we may use the asymptotic 
expansion in inverse powers of x, and obtain 

(2n)\ r l / c\n"\ 
/ , - 2 E R e - . (35) 

» nl Lb\ b2) J 

The first term in this expansion yields precisely (33). 
The higher terms are peaked around the same point, 
and serve only to modify the shape of the peak. 

These somewhat heuristic arguments can be rein
forced by a more detailed examination of the integral 
in (32), which can be expressed by a simple change of 
variable in the form 

/ r = 2 R e [ ( l / 7 ) ^ - ^ ( p ^ ) ] , (36) 

where y(p,z) is the incomplete gamma function,18 and 
the arguments are given by 

P=-(i/y)(q-r(a)+r/2, 

z=ifa/y. 

Since we are interested in small values of y, we may use 
the known asymptotic behavior of this function. Un
fortunately, this behavior is rather complicated, par
ticularly when p and z are nearly equal in the asymptotic 
region (that is, when the parameter b is small).19 A com-

17 See Batema,n Manuscript Project, Higher Transcendental 
Functions, edited by H. Erdelyi (McGraw-Hill Publishing Com
pany, Inc., New York, 1953), Vol. 2, p. 147. 

18 See Ref. 17, Vol. 2, Chap. 9. 
19 See F. G. Tricomi, Math. Z. 53, 136 (1950). 

plete discussion would be rather lengthy, and we 
shall therefore give only a brief indication of the 
results. One finds that, except in the immediate 
vicinity of the peak, the leading term is indeed 
given by (33), except for certain values of q 
for which additional terms can arise because the 
imaginary part of the exponent in (32) becomes 
stationary within the range of integration. However, 
these terms are rapidly oscillating functions of y and 
q, whose contributions are vanishingly small when aver
aged over a small range of values of q. The precise 
shape of the peak is hard to determine, but of no im
portance for our discussion, for which only the position 
of the peak is relevant. 

We may note that if we had chosen a monochromatic 
beam from the outset of the calculation, and discarded 
the infinite phase factors, then the term in f above 
would have been absent, and we should have obtained 
no frequency shift. However, the correct procedure is to 
take initially a finite value of y, and only let y —> 0 at the 
end of the calculation. This procedure yields the final 
result 

f(q) = Z Dr&a)2ir8(q-ra>+fa), 
r 

and hence 

<p ' ,kV|5(4) | P > 

= -iZDr(Z,a)(2Ty8i(p'+k'-p-rk+tk), (37) 
r 

in agreement with BK, Eqs. (3.13) and (3.23). (There is 
a difference of a factor 2m, which arises from the use of 
different normalizations for spin-0 and spin-J particles.) 

7. ONE-DIMENSIONAL MODEL 

In order to substantiate our assertion that the mo
mentum of the beam itself is altered by the interaction 
with the electron, it is necessary to examine the beam in 
more detail. The coherent states we used earlier are 
rather inconvenient for this purpose, and it is better to 
use states with a definite photon number (though such 
states are of course a rather poor representation of a 
laser beam). However, the number of photons in a beam 
with finite intensity and infinite plane wave fronts is 
clearly infinite, so that to do this we should have to 
limit the extent of the beam in transverse directions 
also. Then the problem would lose its essentially one-
dimensional character, and become very difficult to 
handle. So, instead of examining this problem directly, 
we shall set up a one-dimensional model which exhibits 
all the essential features of the effect, and for which the 
calculations are much easier. 

We consider a model with one spatial and one time 
dimension, in which a scalar "electron'' field 0 interacts 
with a scalar "photon' ' field A. I t is clearly the quadratic 
term in the interaction which leads to the effect we are 
interested in, so we shall discard the linear term. More-
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over, it is unnecessary to include vertices at which two 
photons are emitted or two absorbed. These correspond 
to the oscillatory terms in A^, which we eliminated 
earlier by choosing a circularly polarized beam. The 
essential vertices are those at which one photon is ab
sorbed, and one re-emitted. So we shall choose the non
local interaction which contains just this type of 
vertex, 

V(x) = 2e^cp*(x) 0(x)A (-) (x)A <+) (x). (38) 

Note that in one dimension the field A is dimensionless, 
while the coupling constant e has the dimensions of 
mass. 

In one dimension there is an invariant distinction be
tween photons traveling to the right and to the left. 
We shall write x— (t,z), and set 

A^-^\x)=A^--^(x)'' 

1 'do) 
-[di2(a;)6-^'^(^-^)+aL(aj)6-^^(^+^)]. 

IT J 0 2aj 

It will be convenient to introduce the abbreviation 

1 p do) 

ITT J 0 2co 

If a{cjo) is any photon wave function, normalized accord
ing to (a*,a) = l, then the coherent state of a beam 
traveling to the right may be defined by 

I \a) = expXfeaij*) 10)e-̂ ^* .̂ (39) 

We shall consider the scattering of a single photon to 
the left out of a beam traveling to the right. We examine 
first the case where the initial and final states of the 
beam are the coherent states | Xa) and {\^a |. The cal
culation is essentially identical with our earlier one, and 
yields 

= -4:Tie^{\W I \a) / dq h{p'+k'-p-qn) 

X Sdr ^-«Xa(r)^ '̂*^t5'(r)+B(r)] ^ (40) 

'doi 
— a 
2co 

— < ; ^ 2 /.CO 

where ;^=(1,1), 
1 r"" 

a ( r ) — / —a(co)e-^^% (41) 
ITT J Q 

5 ' ( T ) = / dT'a'*(T')a(r') , (42) 
p'-nJr 

and 

B(r)^ / dT'a'*(r')a(r'), 
p-n 7_«, 

(XVI Xa)=exp[X'*X(a'*,5)-iX'*X'-i\*X]. 

(43) 

Now we wish to consider the case in which the initial 
state of the beam is an (iV+l)-photon state, and the 
final state (because photon number is conserved) is an 
iV -̂photon state. We shall make these states as nearly 
coherent as possible, given the definite photon number, 
by placing each photon in the same (wave packet) 
state. We define the states 

|7\r,a)=(7V!)-i/2(ct,d^*)^jO). 

Because of the relation 

I Xa) = E {N !)-i/217V,a:)̂ -̂ ^*^X ,̂ (44) 
N 

the coherent states may be regarded as generating func
tions for these i\^-photon states.^^ To obtain the matrix 
elements between these states, we have only to multiply 
(40) by exp[JX'*X'+|X*X], expand in powers of X'* 
and X, and identify the appropriate term. The result is 

{p^',k^aN+l),a'\§\P',N,a) 

= -27ri Idq82(p'+k'-p-qn)f(q), (45) 

where 

••f X / dr ^-%(r)[^ ' (r)+5(r) + (a'*,a)]^. (46) 

It may be well to note that this expression can also be 
obtained by more conventional means, by summing 
Feynman diagrams. If we expand the square bracket in 
(46) by the trinomial theorem, we obtain a sum of terms 
involving products like 

This term corresponds to a diagram like that of Fig. 2, 
in which there are r vertices preceding the scattering 
vertex, ^ vertices after it, and N—r~s straight through 
fines. Using the relations 

5 ' ( r ) = - — - - - / — ; ^a'*(coOa(co), 
{liryp -n JQ 2co 2coco—co+fe 

e^ ("^ do)^ dco ê '"̂ '"'"'"̂  
B{T)=^ / â'*(coOa(co), 

(iTyp-nJo 2co^ 2cco)—o)^+ie 

it is not difficult to verify that this particular term cor
responds to a term in the scattering amplitude 

{p'\k'\oii'' '0)N^\S\p;cx)i'' -coisr+i) 

201 am indebted to Dr. Lowell S. Brown for pointing out the 
simplification achieved by employing the coherent states in their 
role as generating functions. 



F R E Q U E N C Y S H I F T I N H I G H - I N T E N S I T Y C O M P T O N S C A T T E R I N G B749 

of the form 

-i(2g2)r+s+l 

rlsl 

N N+1 r 

i=l i=l 

X IT [2^ ' -»(w/-coi+«e)]- i n 27r2a.i6(co/-coi). (47) 

This is just a symmetrized version of the Feynman 
diagram of Fig. 2. 

Now that we have an expHcit form for the scattering 
amplitude, we are in a position to discuss the changes in 
energy and momentum of the beam. In the form (47), 
conservation of energy and momentum is quite manifest. 
Clearly, the momentum transfer at each vertex must be 
small, for otherwise the energy denominators become 
large. However, since the number of photons is very 
great, there can nevertheless be a significant net trans
fer of momentum if there is any tendency for these small 
momentum transfers to be in the same sense for each 
photon. 

The amplitude will certainly be small unless there is a 
substantial overlap between the wave functions a(co) 
and a{o)), for if not the last term in the square brackets 
in (46) becomes very small. (This is normally the largest 
term, provided that e^ is small in an appropriate sense— 
to be made precise below.) Thus the average momentum 
transfer to each photon Aw must be small compared with 
the momentum spread y of the wave functions, and must 
therefore tend to zero with y. However, if the photon 
density is held fixed, then the number of photons N 
must tend to infinity like I /7 , so that the total momen
tum transfer can still be finite. 

The crucial question is whether there is in fact a 
general tendency for the small momentum transfers to 
be all in the same direction. If there is, then the integra
tion over T in (46) should yield a distribution of values 
of q which is peaked not at co, but at a somewhat smaller 
value, o)—NAcx). (Here iVAco is the quantity we have pre
viously denoted by fo).) This is the effect we found in 
our earlier calculation. There is, however, a second way 
in which this tendency should manifest itself. Suppose 
we examine the transition probability as a function of 
the mean momentum W of the photons in the final 
state [the center of the distribution a'(co)]. Then we 
ought to find that the maximum occurs at a value rather 
higher than the mean momentum coo of the initial state 
photons. The maximum should occur when 5co=coo'—coo is 
somewhere near Aco, though the precise position will de
pend on the shape we choose for the functions a(co) and 
a\oo). I t will occur whena^co) most closely approximates 
the actual distribution of momenta in the final state. 
If the shape is changed, as is likely, this need not happen 
when the mean values coincide. In principle, it would be 
possible to determine the distribution of momenta in the 
final state by evaluating the transition probabilities to 
all of a complete set of final states, and taking the appro

priate phase-space average. However, the determina
tion of the position of maximum probability for a fixed 
shape is sufficient to demonstrate the existence of a 
shift, though not to determine its precise magnitude. 
(For that, we must rely on finding the distribution of 
values of q,) 

One point which might perhaps be a source of con
fusion should be mentioned here. The transition proba
bility is in fact very close to its maximum value even 
when the wave functions coincide, and 8co==0. Thus one 
might think that there should be a large probability 
that the total momentum transfer is zero, or even of the 
wrong sign. There is indeed a significant probability 
that a measurement of the momenta of photons in the 
beam would not reveal such a shift, but this in no way 
contradicts conservation of energy and momentum. The 
point is that the momentum transfer to each photon is 
much less than the uncertainty in its momentum. The 
determination of the average final-state momentum re
quires a large number of measurements, which will pro
duce results of varying sign, but with positive values 
slightly predominating. 

We now wish to show that both these manifestations 
of the frequency shift do indeed occur. We shall again 
choose an exponential cutoff function. We set 

a(co) = 
laayo) 

(w--coo)2+i7^ 

2Q:O'7^ 

2\coo/ 

a'(co) = , ao' = - ( — ) . 
l ^ ^ v l / 2 

Provided that 7<Kco, we may extend the lower limit of 
integration in (41) to — 00, and obtain 

(48) 
a(r) = Q:oe-*'̂ '''-^T'''"^ 

a'(r)=aoV*«<''^-^^'^'. 

Substituting in (42), (43), and (46), we find 

/(g) = 2e2(iV-f 1)I/2Q, J ^r e^*-(̂ -̂ «)-̂ l̂̂ l 

X C-f^Aco^ , (49) 
L iboi—yeir) J 

where 
/ I 1 \ 

\i}'-n i>'n/ 
(50) 
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and 

coo'+coo 

(M'+7'L 2(cooW/ 
+ 5coAa) 

le'y' / I 1 \-l 
(51) 

Note that the quantity which here corresponds to 
— a*-a in our earlier work is Na^a^, Hence we should 
expect the total momentum transfer to the beam to be 
iVAoj, with Aco given by (50). We shall show below that 
this is indeed the case. Note that Aco is proportional to 
7, so that TV Aco remains constant as 7 tends to zero. 

We are interested in the expression (49) for small 
values of 7 and large values of iV. We have already re
marked that 5co must be small compared to 7, so that 
both 5co and \/N must go to zero with 7. Thus the square 
bracket in (49) may be approximated by 

CiVg^^Acor/C[l_J.O(̂ )]. 

For 5co^7 and e^ small in the sense that eVma)o<3Cl, C is 
approximately equal to unity, so the leading term in 
(49) is 

2e2(iV+l)i%oC^7 
/(g)« . (52) 

(g-a)o+iVAto)2+i72 

It is clear from this expression that f{q) is peaked, as 
expected, around g=a)o—iVAw, and not around q=o)Q, 
Just as before, in the limit 7 —> 0, f{q) becomes pro
portional to a 5 function, 5(g—wo+^Aco). 

It is not hard to verify that the second effect we dis
cussed above also occurs. Clearly, 5co appears in f{q) 
only through the factor C^, and so f{q) will have its 
maximum value as a function of 5co when \C\ is a maxi
mum. Now, the second and third terms of (51) are small 
compared to the first term, so that 

|C|«Re(C)^ 
72+5coAco 

Hence the position of the maximum is given approxi
mately by 

5co ̂  § Aw. 

The fact that this value differs from zero shows that the 
distribution of frequencies in the final state is shifted 
relative to that in the initial state. The factor of ^ 
suggests that the average value Aw is in fact produced 
by relatively few photons acquiring substantially larger 
momenta (but with momentum transfers still less 
than 7), and a larger number for which the momentum 
transfer is smaller than Aco. 

It is not hard to verify that the inclusion of higher 
order terms does not affect these conclusions, and that 
similar results would be obtained for other choices of the 

shape of the functions a(co) and a{oi). However, since 
no new points of principle emerge from such a discus
sion, we shall omit it. 

8. DISCUSSION 

The principal conclusions of this paper are two. 
Firstly, we have shown that the discrepancy between 
the results of BK and of Goldman,^ and those of Fried 
and Eberly^ is due to the use by the latter of an infinitely 
long wave train rather than a finite one, and not to any 
difference between the results of quantum-mechanical 
and semiclassical calculations. (Any such difference, 
apart from radiative corrections, would in fact be a viola
tion of the correspondence principle.) 

Secondly, we showed that the apparent failure of 
energy-momentum conservation is not a real failure. 
It is possible to see precisely where this energy goes. As 
we showed in detail in the case of the one-dimensional 
model, the beam itself takes up this extra energy and 
momentum in the form of a shift of the average mo
mentum of the photons remaining in the beam. It may 
be well to recall at this point that the magnitude of the 
effect is very small indeed. It will be hard enough to see 
the frequency shift of the scattered photon. It would be 
quite impossible to detect the same amount of energy 
distributed among 10̂ ° or more photons. 

We showed in Sec. 2 that the frequency shift has a 
very simple classical interpretation as a Doppler shift 
arising from an average velocity of the electron in the 
direction of the beam. It is also clear from this discus
sion that the variation of the amplitude as the beam is 
switched on and off is absolutely crucial to the exist
ence of the effect. No calculation involving an infinitely 
long wave train of constant amplitude could ever reveal 
such an effect. 

Our calculations were made possible by the essentially 
one-dimensional nature of the problem, when the beam 
is taken to have infinite plane-wave fronts. It would 
certainly be desirable to repeat the calculation for a 
more realistic shape of beam, and in particular for a 
focused beam. In that case, the Klein-Gordon equation 
cannot be solved in closed form, so that the calculation 
would be much more difficult. In principle, however, it 
could be solved numerically, and for some special 
choices of the beam shape this might not be too hard. A 
perturbation calculation like the one outlined in Sec. 3 
would of course be possible. However, as we have seen, 
the frequency shift is compounded of large numbers of 
very small terms, so that it would almost certainly not 
appear until a very high order. From the one-dimensional 
model calculation, it is reasonable to conjecture that 
one must go to an order comparable with the total 
number of photons. 

An alternative approach would be to use classical 
(relativistic) electrodynamics. At least in the case of a 
unidirectional beam, the effect is completely classical, 
and the classical calculation gives exactly the same 



F R E Q U E N C Y S H I F T I N H I G H - I N T E N S I T Y C O M P T O N S C A T T E R I N G B 751 

answer as the semiclassical or fully quantum-mechanical 
ones.̂ ^ In principle, one can solve the equation of motion 
for an electron in any prescribed field, and it is then 
straightforward, though possibly tedious, to compute 
the radiation from it. 

Another problem which deserves further attention 
concerns the radiative corrections to this process. 
Though these corrections are individually small, the 
frequency shift itself is an example of a significant effect 
arising from the sum of many small terms, and it is far 
from obvious that the corrections are negligible in sum. 
It would be desirable to show explicitly that they are so. 

It may be useful to conclude this discussion with some 
remarks concerning the possibility of observing this 
effect experimentally. We shall need a more general 
expression for the frequency shift than the one which 
was given in Sec. 2. Let us denote the velocity of the 
incoming electron by v (in units of c), the angles be
tween its direction and those of the incoming and scat
tered photons by a and p, and the angle between the 
incoming and scattered photons by 6. (See Fig. 3, in 
which the outgoing electron is not shown.) Then from 
(11) we find that the complete expression for the shift 
in wavelength is 

X'—X cosa—coSjS 
—̂  

+ 

l — z^coso; 

Xc 2(l-z;2)i/2 sin2(|<9) (1^^^) sm^(i0) 

FIG. 3. Definitions of angles in the 
Compton scattering process. The out
going electron is not shown. 

l — v cosa (l--2;coso:)2 
, (53) 

(mainly because of uncertainty in the angle 0), but its 
sign is always positive. Thus, to verify the existence of 
the effect, it is sufficient to observe an asymmetry in the 
distribution (besides that due to the Compton effect, 
which will be small in practice). For this, it is enough if 
jû  is of the same order as v/c, 

It is clearly desirable to keep the electron velocities 
as small as possible, both to satisfy this criterion, and 
because the intensity-dependent shift becomes small for 
very large velocities, as may be seen from (53). More
over, as we pointed out in Sec. 5, the edge effects could 
conceivably become important for large velocities and 
sharply focused beams. However, since the relevant 
parameter in that case is ix{v/cy, this is not an important 
restriction. 

If we assume optimistically that the electron kinetic 
energies can be kept down to a fraction of an electron 
volt, then we require at least /x^~ 10~^ Now in cgs units 
(54) becomes 

^2^4X10-18X2/. 

where Xc is the electron Compton wavelength. The first 
term of this expression represents the Doppler effect, 
and the second the Compton effect. The third is the 
intensity-dependent shift we are interested in. Its 
magnitude is determined by the parameter ix^, which 
may be expressed in terms of the beam intensity (energy 
flux) I by the relation 

/x2=foX2//7rW(;^, (54) 

where Y^—e^l\i'Kmc^ is the classical electron radius. 
It is not hard to obtain intensities sufficient to give a 

shift of measurable size. The real difficulty lies in dis
tinguishing this from the Doppler shifts given by the 
first term of (53). In order to achieve sufficient intensity, 
the beam must be sharply focused, and the range of 
values of a will be considerable. Because of this un
certainty in 05, the Doppler shift will be uncertain by an 
amount of order v/c (quite apart from any uncertainty 
in v). Hence the Doppler shifts will dominate unless 
)u2>z>/c. To first order, the Doppler shifts will be dis
tributed symmetrically about zero. The magnitude of 
the intensity-dependent shift may vary to some extent 

Thus for X«5000A we need an intensity I^W^ W 
cm-2. This is beyond the limit of currently available 
intensities, but not by an absurdly large factor. In
tensities of this order might be obtained if the size of the 
focal spot could be reduced, approaching the diffraction 
limit more closely. For example, to achieve this intensity 
with a 10-nsec pulse of lO^J, we should need a focal spot 
of radius about 2X10"^ cm. 

It is easy to compute the intensity of the scattered 
light. Since the cross section is essentially the Thomson 
scattering cross section, the number of photons scattered 
out of a single pulse per unit soUd angle is 

7V=-
;ZeAFrfo2(l+cos2|9) 

47rfe 

21 See BK, Appendix C. 

where F is the volume of the interaction region, and T 
is the duration of the pulse. With the figures chosen 
above, this yields iV^ l̂O"^ n^^ where n^ is in cm""̂ . (It 
should be noted that the probability of a single electron 
suffering more than one collision is quite large. How
ever, this is not serious, because the change in velocity 
of the electron at each collision is only of the order of 
jQ-5) xhe acceptable value of 'N depends on the level 
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of background radiation, but it does not seem that it 
would be impossible to obtain adequate electron 
densities. 

It is important to note that the experiment must be 
done with genuinely free electrons in vacuum. Bound 
electrons would probably not exhibit the effect, since 
they are not free to be accelerated by the field. In any 
case, at the intensities considered here, any gas present 
would be ionized, and the effects of the resulting plasma 
would be likely to obscure the effect we are interested 
in. A frequency shift of light scattered from such a 
plasma has in fact been observed.^^ This is apparently 
also a Doppler shift arising from motion of the plasma, 
but it is in the opposite direction to that predicted for 
free electrons, and probably of quite different origin. 
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APPENDIX 

A further argument has recently been advanced by 
Stehle and de Baryshe^^ in support of their contention 
that the frequency shift does not appear in a fully 
quantum-mechanical calculation. They have evalu
ated the expectation value of the operator —id/dz 
in the state represented by the wave function ^^^'^{x), 
using box normalization, and shown that it is time-
independent, and, in the limit of an infinitely large box, 
equal to pz. 

This is, however, precisely the result one should ex
pect on the basis of the argument presented in this 
paper. As these authors remark, the wave function 
^p^'^ipc) at no time represents an electron spatially sepa
rated from the beam. In fact, it is a non-normalizable 
wave function representing an infinite beam of electrons, 
spread over the whole of space. But this does not mean 
that the expectation value of momentum in this state 
is the average value of the electron momentum in the 
beam. For a finite wave train, each electron spends only 
a finite time inside the beam. Thus at any time all but a 
finite number of the electrons are outside the beam. 
The expectation value of momentum in this state is 
therefore determined by the momenta of the infinite 
number of electrons outside the beam, and is not sensi-

22 S. A. Ramsden and W. E. R. Davies, Phys. Rev. Letters 13, 
227 (1964). 

23 p . Stehle and P. G. de Baryshe (unpublished). 

tive to changes of momentum occurring in the region of 
the beam. 

To arrive at a correct description of the physical scat
tering process, it is necessary to use a wave-packet de
scription of the electron, as well as of the photon beam. 
In other words, we should use a normalizable solution 
^{x) of the Klein-Gordon equation. Such a solution 
may be represented as a linear superposition of the solu
tions ^y^\x), of the form 

* ( . ) = / 
d^p 

(liryipo 
•$j,'"(x)^(p). (Al) 

From the asymptotic condition (21), which is valid for 
any fixed values of the spatial coordinates x, we may 
conclude that as x^-^ —^, $ approaches a free-
particle wave function, 

$(x)^ 
• / 

d''p 

{lirYlp^ 
g-*>-^^(p). (A2) 

It is worth noting that while (21) holds only as a 
weak limit (in particular, it is nonuniform in x), this 
Eq. (A2) holds as a strong limit in the sense of the norm 
topology induced by the scalar product 

> - * / 

where 

{^\^)^i\ dH{^''^o-^0*^), (A3) 

i^ y,= {id y.—eA y)^, 

It has been suggested by Stehle and de Baryshe that 
the wave functions ^^^"^ for different values of p may 
fail to be orthogonal. In fact, however, they satisfy the 
same orthogonality relations as the free-particle states, 
namely 

{%''^W^)-{2iry2p^h{\>'-v)- (A4) 

First, let us note that the scalar product (A3) of two 
normalizable wave functions is necessarily independent 
of time. Therefore it may be evaluated in the remote 
past to yield 

r d'p 
(^ j$)= / ^*(p)^(p). 

J {lirYlp^ 

The validity of this equation is in fact all that one 
means by the assertion (A4). However, (A4) can also be 
verified by direct evaluation of the integral. 

Now let us examine the expectation value of momen
tum in the state defined by (Al). It may be defined by 

• / 
{p>')= d^xT^^(x), 
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where T^̂  is the usual Klein-Gordon energy-momentum If we define expectation values in the natural way 
tensor, 

As xo -> - 00, (p^) tends to the expectation value in the / \ F ^ ^ \ = f d'x Ux)F^'ix 0, " u J \r / — X 

free-particle state specified by (p. If (p is sharply peaked 
around some value of p, so that $ closely approximates 
*p^^, then (pf") must tend to p^" in the remote past, then we find that (pf") satisfies the classical equation of 
However, {p^} is not time-independent. Its time de- motion 
pendence may be found from the relation "•., , / . \s / ^ r̂.̂  \ 

where In particular, the expectation value of {p'^—eA^) during 
j\=ie{^^^\—^\^^). the presence of the beam is on the average equal to p^. 
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The paper contains a quantum theoretical analysis of laser beam fluctuations and of the light beat ex
periments with two lasers. With the help of experimental results on photon counting fluctuations in a single-
mode laser field, some correlation properties of the field are derived. It is shown that the correlation equa
tions are satisfied by states of the field which are much more general than ''coherent" states. The equations 
lead directly to the spectral density of the intensity operator in the Hght beat experiments, which can be 
obtained from photoelectric measurements. The resulting expression is practically identical to that found 
by Forrester for light having thermal statistical properties. The reasons for this are discussed by a compari
son of the corresponding probability distributions of photon counts and of the classical wave ampHtude. 

1. INTRODUCTION 

THE problem of determining the optical spectrum 
of a laser beam from beat experiments with two 

or more lasers is of interest, not only because of its 
practical importance, but because it involves the fluctua
tion properties of the optical field. Immediately after the 
development of the first continuously operating laser it 
was recognized that the spectral profile of one mode of 
the extremely narrow band light beam could not be de
termined by conventional interferometry. The first 
order of magnitude determination of the spectral line-
width was based on a photoelectric analysis of the 
^^beats" resulting from the superposition of two similar 
but independent laser beams, ̂  and variations of this 
method have become standard practice.^ 

If we picture each Fourier component of one light 
beam as "beating" against each Fourier component of 
the other, we are naturally led to regard the spectral 

* This research was supported in part by the U. S. Army Re
search Office (Durham) and by the U. S. Air Force Cambridge 
Research Laboratories. 
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ever, in order to arrive at a quantitative relation be
tween the spectral densities of the light beams and the 
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