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Wave functions have been found for the excited states of neutral helium for the XS, 3S, 1P, 3P, 1D, and SD 
series up through terms for which the principal quantum number of the running electron is 9 for the 5 series 
and 8 for the others. The wave functions are obtained from the minimum principle by a configuration-
interaction procedure. At the final stage of the calculation, the wave functions are found by the solution of 
a secular equation of order 9X9 or less. If one excludes the energy of the PS term, the average agreement 
between computed and observed energies for the 42 remaining terms is better than 1 part in 300 000. The 
energies gotten for the more highly excited states appear to be more than an order of magnitude, better 
than any which have been previously obtained. The values of the parameters in the various wave functions 
are made available. 

INTRODUCTION 

TH E far-ultraviolet spectra of the light atoms, 
highly ionized ions, and simple molecules play an 

important role in the recent observations of the sun 
and stars from above the earth's atmosphere.1 These 
spectra are also much to the fore in the study of con
trolled thermonuclear reactions and in plasma physics 
in general.2 For any relatively complete quantitative 
interpretation of these spectra, it is essential to have 
available the relevant transition probabilities. To obtain 
dependable transition probabilities theoretically, it is 
necessary to employ wave functions of considerable 
accuracy. This requirement follows from the sensitivity 
of the transition probabilities to the form of the wave 
functions particularly to the positions of the zeros.3 The 
present work presents results of an attempt to obtain 
wave functions of satisfactory accuracy for the excited 
states of neutral He. He i was chosen because of its 
importance in both terrestrial and astrophysical sources, 
because the extent of the experimental information 
available, especially the number of known term values, 
allowed numerous tests of the validity and effectiveness 
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of the method employed, and because the number and 
variety of the existing theoretical investigations allowed 
one to gain some perspective in judging the value of the 
method used here. 

The wave functions which are reported here have 
been surprisingly effective in reproducing the observed 
energies. If this effectiveness is maintained for the 
highly ionized ions, the possibility is open of computing 
the wavelengths of lines in the far ultraviolet which 
have not been observed in the laboratory but may ap
pear in the rocket spectra. I t appears that the accuracy 
of the predicted wavelengths may well be greater than 
that of the measurements on the plates and therefore 
more than adequate for identification. 

The wave functions which result from the present 
work are being used to find transition probabilities. 
These transition probabilities, together with a dis
cussion of their accuracy and possible procedures 
for further improvement, will form a second paper 
to be published elsewhere. The emphasis in the 
work reported here is rather on the wave functions 
themselves, the procedures employed for determining 
them and the regularities which appear in the results. 

GENERAL CONSIDERATIONS 

For He I and the various ions of the same iso-
electronic sequence, certain coordinate systems have 
proved to lead to rapid convergence of the expansions 
employed. Thus it was shown very early, and it has 
often been demonstrated since, that s = ri-\-r2, t = ri—r2 

and f 12 give very excellent values of the energies of the 
two-electron systems.4-12 The form usually assumed for 
the wave function is that of a product of an exponential 
and a series of positive integral powers of s, t, and ru. 

4 E. A. Hylleraas, Z. Physik, 54, 347 (1929). 
5 S. Chandrasekhar, D. Elbert and G. Herzberg, Phys. Rev. 91, 

1172 (1953). 
6 S . Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050 

(1955). 
7 E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (1956). 
8 J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957). 
9 T . Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 366 (1959). 
10 J. Traub and H. M. Foley, Phys. Rev. I l l , 1098 (1958). 
11 J. Traub and H. M. Foley, Phys. Rev. 116, 914 (1959). 
12 J. F. Hart and G. Herzberg, Z. Physik 171, 83 (1963). 
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Hylleraas and Midtdal7 and Kinoshita9 have included 
in the series some terms with negative integral powers. 
The former authors have also made use of a logarithmic 
term. Terms employing half-integer powers of s, t, and 
r12 have been shown to yield substantial improvement 
in the energies obtained for a given number of param
eters.13-17 Schwartz15 has given some consideration to 
more general fractional powers. Pekeris and his co
workers have shown that the product of an exponential 
and three Laguerre polynomials in each of the three peri
metric coordinates u=e(r2+r12—ri), v = e(ri+ri2— r2), 
and w==2e(ri-\-r2— r i2) can yield excellent results both 
for the ground and for the excited states of He I and 
the isoelectronic ions.18-21 Unfortunately, in problems 
involving three or more electrons, it is rather involved 
to use coordinates similar to those just described. This 
situation results in large part because of the number of 
fi/s which occur and because of the repeated divisions of 
space which are necessary to deal with integrals involv
ing them. In particular, as far as the present authors are 
aware, there is no known way of extending the method 
of perimetric coordinates to deal with three or more 
electrons. In contrast, the atomic spectroscopists have 
had remarkable success in analyzing the experimental 
data, at least in the first approximation, in terms of 
central-field wave functions, even in the case of very 
complicated structures such as the rare earths. I t was 
therefore decided to employ central-field wave functions 
but at the higher approximation in which configuration 
interaction was included. The reasons for this decision 
were the methodological interest in comparison with the 
methods mentioned above, as well as the possibilities it 
allowed for the treatment of three or more electrons, 
although at a lower level of accuracy, and finally the 
fact that with this method experimental information 
could serve as a guide to the reasonable choice of at 
least some of the parameters in the wave functions. 

The approach to the two-electron problem through 
configuration interaction has been applied primarily 
to the ground state.22-24 Although conclusive proof is not 
yet available, it seems highly probable that the con
vergence of the configuration-interaction approach is 
very much slower25,26; certainly in all calculations for 
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the ground state so far reported, the configuration-
interaction results have been far surpassed for an equal 
number of parameters by the results obtained by the 
Hylleraas method. However, it is not clear a priori that 
for excited states the discrepancy will be so large, and 
it was one of the purposes of the present work to explore 
the situation. The results proved to be more favorable 
to the configuration-interaction approach than was 
expected. 

I t is perhaps well to say a word about what is meant 
by the term "configuration interaction" in the present 
work. Here, as in all similar work, the configurations to 
be superposed must have the proper angular and spin 
dependence. However, the radial dependence of the 
configuration is not necessarily that associated with the 
same configuration in the central field approximation. 
To make the matter clear, let us define the "dominant 
configuration" contributing to a term to be that to which 
the term is assigned by the experimental spectroscopists 
where such assignment is unambiguous. Then in the 
present meaning of "configuration interaction" it is only 
the dominant configuration which is required to have 
sufficient radial terms to be able to have the proper 
number of radial zeros. The radial dependence of the 
other configurations is chosen solely on t he basis of the 
effectiveness of the particular radial factor in lowering 
the energy of the spectroscopic term which is being 
considered. I t has also been known for a number of 
years that a specific choice of the nonlinear parameters 
in a wave function, in particular in the coefficient of the 
exponents in the exponential factors, is helpful in lower
ing the energy.27,28 Thus, the use of configurations which 
may not be immediately recognizable in the central field 
approximation leads to more rapid convergence. In 
contrast to the present usage of the term "configuration 
interaction," it is sometimes taken to mean that more or 
less good, orthogonal solutions of the Schrodinger 
equation are found for each configuration and that then 
the interactions of these configurations are considered. 

CHOICE OF THE TRIAL VARIATIONAL 
FUNCTION 

In choosing the form of the trial variational function, 
one may begin by establishing the type of coupling. The 
ratio of the total width of each triplet term to the 
corresponding singlet-triplet interval may be taken as 
a conservative estimate of the relative importance of the 
magnetic and the electrostatic interaction. The neces
sary term values are given by Martin.29 The ratios 
found are roughly 0.0005 for the ls2p and ls3p con
figurations and 0.0015 for ls3d and ls4d. Furthermore, 
all of the series of singly excited states in He I have as 
a limit the single level, ls2Si/2, of He n . I t is therefore 

27 G. R. Taylor and R. G. Parr, Proc. Natl. Acad. Sci. U. S. 
38, 154 (1952). 

28 L. C. Green, M. M. Mulder, P. C. Milner, M. N. Lewis, J. W. 
Woll Jr., E. K. Kolchin, and D. Mace, Phys. Rev. 96, 319 (1954). 

29 W. C. Martin, J. Res. Natl. Bur. of Std. 64A, 19 (1960). 
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reasonable in discussing the term scheme for He i to 
consider only LS coupling. 

Since we wish to minimize the energy integral and at 
the same time to satisfy the normalization condition, we 
introduce a Lagrangian multiplier X and write the ex
pression to be varied in the form 

E= (*n*H*ndT-\\ l*n**ndT-l\ , (1) 

where 

¥ » = Z c&k (2) 

where k<\i. In Eq. (4), the C's are Clebsch-Gordan 
coefficients, N is the normalization constant for the 
antisymmetrized product which follows, & is the anti-
symmetrizer operator, the Y's are surface spherical 
harmonics and the 5's are the usual Kroeneker deltas, 
employed here as spin functions. The a^s and b/s are 
integers. The three constants in the coefficients of the 
exponent in the exponential factor could be considered 
as somewhat redundant, but two of them, Z and na% or 
n$i are usually, but not always, fixed. Z is customarily 
set equal to the nuclear charge but can be varied to 
ascertain the extent to which the virial theorem is 
satisfied. The quantities na% and tipi are the principal 
quantum numbers of the two electrons in that configura
tion which is thought to be the dominant configuration 
contributing to the term in question. Since only terms 
which are singly excited are considered in this paper, 
the dominant configuration is always of the form Isnl 
so that nai= 1 and npi=n. 

Since in LS coupling, there are no nonvanishing 
matrix elements of the electrostatic interaction between 
terms of differing L, S, or parity,30 the number of con
figurations which need to be included in any computa
tion which involves configuration interaction is con
siderably reduced. Thus, for the well-known XS and ZS 
series of He I, the series of singly excited states which 
converge to the ls2S ground state of He n, the only 
types of configurations which need to be considered are 
nsn's, npn'p, ndn'd, etc. For the 1S series, the n and n' 
are not necessarily different, but there are no ZS terms 
from these configurations if n equals n'. For the corre
sponding 1P° and 3P° series, the configurations to be 
considered are of the types nsn'p, npn'd, ndn'f, etc. For 
the lD and 3D series, the types of configuration are 
nsn'd, npn'p, npn'f, ndn'd, ndn'g, etc. 

30 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, London, 1935), p. 366. 

and 
^ = I t ^ t . (3) 

Here L gives the total orbital angular momentum of the 
terms of the series being considered and n is the principal 
quantum number of the running electron. The ^ ' s are 
taken to be linear combinations of normalized anti
symmetrized products of Slater orbitals. The orbitals 
are chosen so that Ms=0 and M L = 0 for each product. 
Weights are assigned to these products so that their 
linear combinations have the correct spin and angular 
dependence for eigenfunctions in LS coupling. The 
\piS therefore have the form 

Since the parameters which occur in the radial parts 
of the antisymmetrized product of two Slater orbitals 
do not in general allow sufficient flexibility for the 
radial behavior of the wave function to show the 
proper number of zeros, a sum of terms of the type 
given by Eq. (4) and differing only in the values of the 
ate and b/s are employed for each configuration. The 
number of terms in such a sum is taken systematically 
equal to, or larger than, the minimum necessary to yield 
the correct number of zeros for the dominant configura
tion contributing to the term. 

For any term our total wave function \£ may be 
considered as consisting of three mutually orthogonal 
parts, the Hartree-Fock component, the radial correla
tion component and the angular correlation component. 
The dominant configuration, together with all others 
which contain Slater orbitals which do not differ in / 
or X from it, gives both the Hartree-Fock part of the 
wave function and the radial correlation. If the Hartree-
Fock wave function for the dominant configuration is 
known, or can be well approximated, one may expand 
this sum of configurations of the same I and X in terms 
of the Hartree-Fock function and a second function 
orthogonal to it. The difference between the sum and 
its Hartree-Fock part is this second function or the 
radial correlation.31 Those configurations which contain 
Slater orbitals whose I or X do differ from those of the 
dominant configuration yield the angular correlation in 
the wave function. 

METHOD OF COMPUTATION 

For the lowest term in any series, a trial set of ^ / s is 
selected. For a given choice of the parameters in each 
of the ypi\ the problem of finding the minimum E 

31L. C. Green, M. N. Lewis, M. M. Mulder, C. W. Wyeth, and 
J. W. Woll, Jr., Phys. Rev. 93, 273 (1954). 

<A*=L j C ( § , i , S > 0 X) [ C ( ^ , X i , L , w ^ ' i Y - a { f 1
a i e x p ( - Z ( a i / 0 ^ i ) I ; r ( ^ J ^ ; 0i,<pi)SOs;cn) 

wis 1. mi——1% 

Xr2
bi exp(-Z(&/»/K>2)F(Xi, - m { ; 62, <^2)5(-w8; <r2)}] , (4) 
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reduces to that of determining the lowest eigenvalue of 
X in the secular determinant, 

1 ^ - ^ X 1 = 0 . (5) 

Programs which evaluate the matrix elements in Eq. (5), 

Hu= UfHfjdr and Ntj= Ui^dr, (6) 

and solve the secular determinant have been written in 
both single and double precision and run on various of 
the IBM 7000-series machines. When the eigenvalue 
has been found for one choice of parameters, a new 
choice is made, either automatically by the program or 
at will by the user, and a new eigenvalue is determined. 
Examination of the eigenvalues which result from 
various choices of the parameters may also lead to the 
decision to either increase or decrease the number of 
\(/i's employed. When an eigenvalue which is considered 
to be sufficiently accurate has been found, the values 
of the weighting constants, the cu's, the linear param
eters of the variational function, can be determined. 
With the values of both the linear and nonlinear param
eters established for the lowest eigenvalue, the normal
ized function, <3?i = ]C cu\pi, is fixed, and from this point 
on, it enters the calculations as a known function but 
with its own weighting constant a, chosen by the 
minimum principle, which varies from case to case as 
described below. 

For the second term of a series, the trial function has 
the form 

^ 2 = C i * ! + E ^ i . (7) 

Here $ i is known but the number of t/'/s and the choice 
of c\ and the C2i's as well as the nonlinear parameters 
which occur in the \f//s is still to be made. For a specific 
choice of the parameters in each of the ^ / s , the problem 
becomes that of determining the second lowest eigen
value of X in a secular determinant much like that of 
Eq. (5) except that a row and column have been added. 
The form of the elements in the new row is 

Hkimlj= UI*H$JT and NMJ= U^dr, (8) 

and since the secular determinant is symmetric, the 
elements in the new column are the same. When a 
sufficiently accurate wave function has been found for 
the second term, all the £2/s and all the parameters in 
the \piS making up this function, except those in <£i are 
frozen into a second function, <£2. 

The trial wave function for the third term of the 
series then contains two known, normalized functions, 
$1 and $2, each of which is multiplied by a weighting 
constant, and a number of i/'/s, also with weighting 
constants, 

*3=Cl$l+Ctfi?2+£ Cztfi. (9) 

In this case the secular determinant will contain, in 
addition to the types of terms already described, some 

of the form 

Hki= l$k*H$tlT and Nkt= U^idr. (10) 

The process of constructing ^ ' s in this manner is 
continued up the series through as many terms as 
desired. 

As a final step one may find all of the eigenvalues of 
the secular determinant whose elements are all of the 
form given by Eq. (10), that is, we replace the upper 
limit, n, of the summation in Eq. (2) by N, where in 
each series, N is the value of k for the highest series 
member which was computed: 

*n= £ C&k. (H) 

In view of the ordered manner in which the $k
?s were 

found, it is to be expected that the weighting constants 
for the nth eigenfunction will be small for all ^ s for 
which k>n in Eq. (11). Thus at this final state of the 
calculation, the wave functions are found by the solution 
of a secular equation of order (N— L—1)X (N—L—l). 

The initial search for the best values of the nonlinear 
parameters for a wave function was conducted with the 
set of single-precision programs. The results were then 
refined, using double precision. Since the calculations led 
to matrices which were as large as 50X50 and since the 
individual ^ / s were far from orthogonal to one another 
or to the 3Vs, it was particularly important to establish 
the dependability of the numerical procedures. To do 
so, once all the linear and nonlinear parameters in a 
particular SF were known, the energy was computed 
directly de novo from the energy integral in double 
precision. The energy so computed was then compared 
with the eigenvalue of the secular determinant as found 
from a double-precision calculation. In all cases which 
are reported here, the agreement was to at least nine 
figures. 

RESULTS 

With the exception of the VS, experience showed that 
satisfactory agreement with the experimental value of 
the energy of any term could be obtained using the 
same ai and & for all \j/{S of a given angular dependence 
which contributed substantially to the wave function. 
The number of ^ ' s employed in the various wave func
tions varied from 50 for 1*5 and 42 each for 21P and 
23P to 7 for 535, 8 for 63S and 9 for 73S, 41P and 43P. 
Values for the a»'s, fa's, CH\ and Ck's were determined 
for the x 5 , 3 5 , *P, 3P, XZ>, and %D series up through terms 
for which the principal quantum number of the running 
electron is 9 for the 5 series and 8 for the others.32 

32 Complete tables of the values of at, a*, k, bi, fa, X;, CM, and 
Ch as determined both from Eq. (2) and from Eq. (11) have been 
deposited as Document No. 8396 with the American Documenta
tion Institute, Auxiliary Publications Project, Photoduplication 
Service, Library of Congress, Washington 25, D. C. A copy may 
by secured by citing the Document number and by remitting $3.75 
for photoprints or $2.00 for 35-mm microfilm. Advance payment is 
required. Make checks or money orders payable to: Chief, 
Photoduplication Service, Library of Congress, 
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TABLE I. Energies of He i in rydbergs. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

E 

-5.806765 
-4.291875 
-4.122520 
-4.067164 
-4.042348 
-4.029122 
-4.021249 
-4.016186 
-4.012738 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

»J5 
AEa 

- 6 8 4 
- 7 4 
- 2 5 
- 1 0 

- 6 
- 4 
- 3 

0 
- 2 

£ 

-4.266256 
-4.116135 
-4.064633 
-4.041092 
-4.028411 
-4.020806 
-4.015892 

(A£)*b 

- 0 
- 1 3 
- 3 3 
- 4 8 
- 5 3 
- 5 5 
- 5 2 
- 5 0 
-53 

AE 

- 8 6 
- 3 1 
- 1 8 
- 1 1 

- 4 
- 4 
- 2 

(AE)P 

- 1 5 
- 2 3 

E 

-4.350427 
-4.137365 
-4.073016 
-4.045233 
-4.030752 
-4.022258 
-4.016853 
-4.013202 

n*S 
AE 

- 3 2 
- 1 3 
- 1 0 

- 6 
- 4 
- 2 
- 2 
- 2 

£ 

-4.111229 
-4.062554 
-4.040028 
-4.027794 
-4.020419 
-4.015632 

(AE)„ 

0 
0 

- 2 
- 2 
- 5 

- 1 2 
- 2 7 
- 5 2 

AE 

- 1 4 
- 7 
- 5 
- 3 
- 3 
- 1 

E 

-4.247563 
-4.110250 
-4.062118 
-4.039800 
-4.027661 
-4.020334 
-4.015575 

n*D 
E 

-4.111260 
-4.062571 
-4.040038 
-4.027801 
-4.020423 
-4.015635 

»IP 
AE 

- 1 1 6 
- 4 1 
- 2 1 
- 1 1 
- 7 
- 5 
- 4 

AE 

- 1 3 
- 7 
- 4 
- 2 
- 1 
- 1 

(AE)* 

+4 
- 1 6 

» AE gives the value of the "uncorrected nonrelativistic energy" minus the value calculated here in units of 10~6 Ry. The "uncorrected nonrelativistic 
energies" are taken to be the same as the experimental energies except for the llS, 2XS, 2*S, and S^ terms . In the case of these terms, the relativistic, 
radiative, and mass polarization corrections given by Pekeris (Ref. 18) have been applied to the experimental values. 

b (AE)P gives the value of the uncorrected nonrelativistic energy minus the value calculated by Pekeris in units of 10 6 Ry. 

The values of the a / s and ft's were recorded to two 
decimal places. However, the degree of confidence that 
is to be placed in the specific values assigned to these 
parameters varies substantially. As a very rough rule, 
one may say that for the dominant configuration, a 
variation of 0.01 in o^ or ft from the value given will 
raise the energy by one unit or more in the sixth decimal 
place. For the remainder of the configurations, it may 
be necessary to make a change of 0.1 or even 0.5 to raise 
the energy by one unit in the dixth decimal place. The 
higher value, 0.5, arises for configurations which con
tribute relatively little to lowering the energy, that is, 
for example, for configurations in which the indi
vidual Slater orbitals have the more complex angular 
dependencies. 

With the exception of the parameter values in the 
\f/i9s of the lx5 term, there tends to be some degree of 
order and smoothness in the run of the nonlinear 
parameters both in a single <£fc and from one $k to the 
next. A considerable amount of effort and computer 
time was devoted to the attempt to find a smoother set 
of nonlinear parameters for 1J5. In none of the cases 
tried did a smoother set of parameters give as good an 
energy with as few as the 50 i/'/s employed here. 

For the QS, 51S) and 6XS terms, two neighboring 
values of j3 for the spherically symmetric ^ / s were found 
to give minima. Of these two values, the one yielding 
the lower energy, 0.55 in all three cases, was the value 
employed. A similar phenomenon was suspected several 
times in l^S. Another case in which a relative minimum 

has been found close to the neighborhood of an absolute 
minimum is H2.33 

Table I gives the energy obtained for each of the 
terms in the six series. The energies listed are those 
found using Eq. (11). They are expressed in rydbergs 
and in no case differ by as much as 0.000001 of a rydberg 
from those found by the use of Eq. (2). For each series, 
the column headed AE gives the value of the "un
corrected nonrelativistic energy" minus the value cal-
calculated here in units of 10~6 Ry. The "uncorrected 
nonrelativistic energies" are taken to be the same as the 
experimental energies except for the VS, 215', 23S, and 
3*S terms. In the case of these terms, the relativistic, 
radiative, and mass-polarization corrections given by 
Pekeris18 have been applied to the experimental values. 
The columns headed (AE)P give the value of the un
corrected nonrelativistic energy minus the value cal
culated by Pekeris and his coworkers, in units of 
10~6 Ry. 

As a test of the exactness to which the present wave 
functions satisfied the Virial theorem, the Z in Eq. (4) 
was varied. In those cases in which this test was applied, 
the optimum Z was found to differ very little from 2, 
by perhaps 0.0001 on the average, and the energy was 
usually not affected in the last decimal place. 

DISCUSSION 

It is interesting to note from Table I that, starting 
with the 3XS and 635 terms, all the energies found here 

33 W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 
(1960). The authors are indebted to Dr. D. W. Davies for attract
ing their attention to the relevancy of this paper. 
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for these series are lower than those of Pekeris. From the 
61S and SSS on, the error in the calculated energy is an 
order of magnitude or more smaller for the present 
calculation. One cannot argue that the higher series 
members in the present case are able to give low 
energies simply because their wave functions have been 
required to be orthogonal to a relatively poor ground-
state function. This argument implies that a still poorer 
ground-state function would make it possible to find 
excited-state functions which would give even lower 
energies than those obtained here. However, it is well 
known34 that in the case of a trial variational function 
which is a sum of linearly independent functions, the 
eigenvalues of the associated secular determinant are 
upper limits to the true eigenvalues of the problem; and 
that if a linearly independent function is added to a trial 
variational function, the eigenvalues of the new secular 
determinant will separate those of the old. This theorem 
shows that the addition of a linearly independent func
tion to our trial variational function will either leave the 
eigenvalues unchanged, if the added function is or
thogonal to the true eigenfunctions, or else will lower 
them. Numerical illustrations of this effect are very 
easy to produce in the present case. 

I t is not surprising that the present method gives 
substantially lower values for the energies of the higher 
terms of the series since, at each stage of the calculation, 
\f/i's are added to the variational function which are 
specifically chosen because their functional form helps 
in lowering the energy of the term considered. In con
trast Pekeris has started with a determinant of rather 
large order, 220 terms for the third and higher excited 
S states. He then finds the successive eigenvalues of this 
single determinant. Experience has generally shown in 
simple cases that an optimal choice of the values of the 
nonlinear parameters is more effective in lowering the 
energy than more uniform procedures, and it seems 
plausible that a similar improvement may occur in the 
present case. 

The energy found here for the VS term does not 
compare in accuracy with the best results obtained 
either by the use of s, t and r12 as coordinates9 or by the 
use of perimetric coordinates.18 On the other hand, it 
appears satisfactory when compared with other calcula
tions based on configuration interaction. Thus Shull and 
Lowdin found —5.80246 Ry,24 Nesbet and Watson 
obtained —5.80552 Ry,23 and Tycko, Thomas, and 
King got the best result so far obtained, — 5.806886 Ry.22 

The last result is lower by 0.000121 Ry than the value 

34 L. Pauling and E. B. Wilson, Introduction to Quantum 
Mechanics (McGraw-Hill Book Company, Inc., New York, 1935), 
p. 188; D. W. Davies, J. Chem. Phys. 33, 781 (1960). The authors 
are indebted to Dr. Davies for attracting their attention to various 
articles in the literature to which references are given in his paper. 

found here but still 0.000563 Ry above the non~ 
relativistic energy. 

In the case of the 2ZS, the present computation using 
configuration interaction surpasses by 0.000021 Ry the 
6-parameter value obtained by Traub and Foley10 using 
the Hylleraas method. However, the 12-parameter 
value of Traub and Foley10 and the 20- and 40-param-
eter values of Hart and Herzberg12 give lower results 
than those found here by 8, 11, and 31X10 - 6 Ry, 
respectively. For the 21P, on the other hand, the 
configuration interaction approach gives a value 
0.000053 Ry below that obtained by Traub and Foley 
with 18 parameters.11 

I t is clear that as one goes up any one of the six 
series, there is at first a decrease in the number of \piS 
required in a <£& to reach some given accuracy in the 
energy of the terms arising from the lsnl configuration, 
The <£>& tends to take on the form of one Is hydrogenic 
electron moving in the field of a nucleus of charge 2 and 
one nl hydrogenic electron moving in the field of 
charge 1. This means that the importance of the 
radial- and angular-correlation components decreases. 
Even in the case of the W and ZD series, where the pp, 
pf, and dd configurations have been retained in all 
terms, the contribution of these ^ ' s as judged by the 
Cki's becomes steadily less as n increases. On the other 
hand, for the higher n's the number of radial nodes in 
^n is greater, and the number of i/'/s is augmented to 
give <£w the necessary flexibility. 

I t is also clear that for the earlier members of a 
series, the &'s in the xpi's tend to be larger than 0.5 for 
the dominant configuration contributing to the term 
and both the a / s and /3/s increase as the complexity of 
the angular dependency of the individual Slater orbitals 
in the configuration increases. This behavior is expected 
since it increases the overlap of the fa's of higher 
angular dependence with those of lower.27,28 Numerous 
trials in the course of the present work have suggested 
that the corresponding effect which is to be expected in 
the case of the \[/i9s introduced to represent the radial 
correlation is avoided, and equally good results obtained 
by slightly increasing the number of i/^'s and keeping 
the a / s and £/s the same throughout any group of 
xpiS having the same angular dependence in their 
Slater orbitals. The values of 1.00 for a* and 0.50 for &• 
yield minimum energies for all ^ ' s for k>3 for the 
XP, 3P, 1D, and 3Z> series but at a higher k for the 3*S 
series and higher still for the XS series. 

The energies of the terms of the ZS series are given to 
higher accuracy by fewer ^-'s than is the case for 1S. 
This more rapid convergence of the 35 series has been 
commented upon by Pekeris20 and by Scherr and 
Knight.26 The number of i/'/s employed for the lP and 
SP series are the same, and this is also true for the }D 
and 3D series. However, here also Table I shows that 
the convergence of the triplet series is more rapid. 


