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The frequency spectrum of a hydrodynamic model of a finite, warm, nonuniform plasma in an arbitrary 
external electric or magnetic field is considered. We find that the spectrum is real and the system stable, for 
an arbitrary configuration. A variational principle is given for estimating the eigenfrequencies. First-order 
perturbation theory is applied to a cylindrical plasma, and formulas are obtained for the first-order correction 
to the eigenfrequencies (resonances) for the case of an applied magnetic field or transverse electric field, 
arbitrary electron density WooM, and arbitrary angular dependence e^0 (/x=0, ± 1 , ± 2 , • • •), the effect of 
the applied fields on the zero-order electron density being included. We find that for /JF^O, the modes have 
a twofold degeneracy, and that a uniform axial magnetic field splits the resonances in two. The first-order 
correction to the resonances is found to vanish for a uniform transverse electric or magnetic field. These 
results are discussed relative to other models and to experiment, and appear to be in agreement with the 
available experimental data for the behavior of the main dipole resonance in both transverse and axial 
magnetic fields. 

I. INTRODUCTION 

TH E dipole resonances of a cylindrical plasma 
column have been studied both experimentally 

and theoretically for many years.1 Cold-plasma theory 
for a uniform column predicts precisely one resonance,2 

whereas several are observed.3 Gould4 proposed that 
these resonances might be consequences of the nonzero 
electron temperature. The application of linearized 
hydrodynamic equations including a scalar electron 
pressure to a uniform column led to a series of dipole 
resonances and achieved a qualitative explanation of the 
experimental observations.4 This same hydrodynamic 
description gave excellent quantitative agreement with 
experiment, when the nonuniformity of the electron 
density was considered.5 

Attention has recently been focused on the behavior 
of the resonances in the presence of an applied magnetic 
field.113'6~9 Measurements have been made for cylin­
drical plasmas in uniform axial and transverse mag­
netic fields.1,3'7 The theoretical work has, with the 
exception of Ref. 9, been confined to cold-plasma 
models which are limited to a study of the main reso­
nance.1,6 '8 Hoh,9 while considering a warm-plasma 
model, confines his discussion to a qualitative one-
dimensional analysis, which does not include the main 
resonance. We shall attempt to extend the theory 
further by considering a model which, in principle, 

1 An extensive list of references can be found in the paper by 
F. W. Crawford, G. S. Kino, and A. B. Cannara, J. Appl. Phys. 
34, 3168 (1963). 

2 N. Herlofson, Arkiv Fysik 3, 247 (1951). 
3 A. Dattner, Ericcson Technics 2, 309 (1957). 
4 R. W. Gould, Proceedings of the Linde Conference on Plasma 

Oscillations, 1959 (unpublished). 
5 J. C. Nickel, J. V. Parker, and R. W. Gould, Phys. Rev. 

Letters 11, 183 (1963); J. V. Parker, J. C. Nickel, and R. W. 
Gould, Phys. Fluids 7, 1489 (1964). 

6 E. Astrom, Arkiv Fysik 19, 163 (1961). 
7 A. M. Messiaen and P. E. Vandenplas, Physica 28, 537 (1962). 
8 A. M. Messiaen and P. E. Vandenplas, Phys. Letters 2, 193 

(1962). 
» F. C. Hoh, Phys. Rev. 133, A1016 (1964). 

appears capable of predicting quantitatively the 
behavior of both the main and higher order resonances 
in an applied weak magnetic or electric field. 

The model which immediately suggests itself is a 
simple modification of the warm hydrodynamic model 
used by Nickel, Parker, and Gould,5 which so success­
fully accounted for the zero-magnetic-field observations. 
We merely include the magnetic component g(UxB) 
of the Lorentz force in the equation of motion. The 
numerical calculations of Nickel, Parker, and Gould5 

were based on a value of y (the ratio of specific heats) 
= 3 ; the theoretical analysis presented here, however, 
is limited to the case 7 = 1 , simply because we have not 
found the problem for 7 ^ 1 to be tractable.10 While the 
main resonance should not be sensitive to the particular 
value of 7 chosen (since cold-plasma theory and the 
warm hydrodynamic theory agree reasonably well 
here), the situation is not as clear concerning the 
additional resonances. However, present theory on the 
subject of Dattner resonances in applied magnetic 
fields has been limited to cold-plasma models,1'6*8 with 
the exception of Hoh's9 qualitative one-dimensional 
analysis of the 7 = 1 model. Under these circumstances, 
further development of the 7 = 1 theory is certainly 
appropriate. 

The equations for our model are then those used by 
Hoh,9 with the addition of a real-valued scalar dielectric 
constant /c(x) in Poisson's equation [K represents the 
dielectric properties of the enclosure, e.g., a glass bulb 
or tube, confining the hot plasma—K(X) = 1 within the 
plasma volume VP2, viz 

( i) V-(NU)+dN/dt=Q, 

m{d\J/dl+(U-V)\J} 

= e(V^-VxBo)-kBTN-1VN, (2) 

V• {KV$} = - (e/e0) (N~ N+Ne^), (3) 

10 For y = 1, the operators involved are Hermitian. This does not 
appear to be the case for y^ 1. 
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where Ni(x) is the ion density, N(x,t) the electron 
density, U(x,0 the macroscopic electron velocity, 
<£> (x,t) the electrostatic potential, Next the source of any 
externally applied electric field E, — e the electronic 
charge, B0(x) the applied magnetic field, m the electron 
mass, ks the Boltzmann constant, and T the electron 
temperature (assumed constant). The motion of the 
ions is neglected, as is the magnetic field produced by 
the plasma. 

We assume small oscillations about static equi­
librium and write 

N = no(x)+n(x)eio}t, 

u=o+v(xy-s (4) 
$=4>0(x)+<Kxyw'. 

The linearization of Eqs. ( l)-(3) leads to the following 
expressions : 

»(x) = - V - ( n o O , (5) 

-a>2noZ=ia>(e/m)no(Bo x&+(kBT/ni){V[V- (»<£)] 
— [V • (^o?)]^o-1 V^o} + (e/m)noV<j), (6) 

V - ( K V * ) = - ( * / € 0 ) V . ( » O © , (7) 

where we have defined 

« ^ V W / « . (8) 
The unperturbed quantities, iV«, </>o, and no are 

related by 

<£o(x)= (ksT/e) ln^0(x)+const , x^Vp, (9a) 

V - { K V < M = - («/€o)[^(x)-« 0(x)+iV«xt(x)] . (9b) 

The unperturbed electron density ^o will in general 
be a function of the applied fields and the various system 
parameters (e.g., T, collision frequencies, etc.), viz. 

«o=»o(x;Xi,- ••jXnjFo), (9c) 

where Xi, • - •, Xn denote the pertinent system parameters 
and Fo denotes the zero-order applied field (E0 or B0).n 

An externally applied zero-order field E0 will manifest 
itself in (6) through no. 

I t remains to specify the boundary conditions. Let 
Sp denote the boundary surface of the plasma, i.e., 
Sp is the surface enclosing Vp. Then we require that 

0=n«V=n»£ on Sp, 

where n denotes the unit normal to Sp. Equation (7) 
then implies that the normal component of KV<J> is 
continuous across Sp, as well as at the boundary surface 
of the dielectric enclosure. The tangential component 
of V# is to be continuous over these boundaries, <£(x) 
must vanish as |x | —•» <*> for a bounded plasma, and 

11 Note that B0 and E0 are defined to be the zero-order externally 
applied magnetic and electric fields. <f>o is by definition the total 
zero-order potential, due to the plasma and E0. Therefore, in 
general, — V#o^E0. 

4> must be everywhere continuous if the spectrum is 
discrete. 

In the following section, the gross features of the 
spectrum of this model of a bounded plasma are 
determined, for an arbitrary configuration. We find 
that the spectrum is real and that the system is stable. 
A variational principle is given for computing the eigen-
frequencies. Perturbation theory is applied to determine 
the first-order correction to the eigenfrequencies for a 
plasma subjected to an external electric or magnetic 
field, the perturbation noi of the zero-order electron 
density due to the external field being included. We 
find that the first-order effect for a nondegenerate 
mode is due entirely to woi-

Our first-order perturbation theory is then applied 
to a cylindrical plasma with an unperturbed electron 
density noo~noo(r), and expressions for the first-order 
correction to the eigenfrequencies for a uniform axial 
magnetic field, a uniform transverse electric or mag­
netic field, arbitrary density noo(r), and arbitrary 
angular dependence eifid (ix—0, =fcl, ± 2 , • • •) are deter­
mined, We find that for JJLT^O, the modes have a twofold 
degeneracy and that an axial component of the mag­
netic field splits the corresponding resonance in two. 
A transverse electric or magnetic field is found to have 
no first-order effect. 

Finally, the agreement between theory and experi­
ment is discussed. We note that for the main dipole 
resonance, the available experimental evidence suggests 
no first-order effect for a transverse magnetic field,7 

while a first-order splitting for an axial field is observed,1 

in agreement with our theory. 

II. THE SPECTRUM OF A BOUNDED 
PLASMA IN AN EXTERNAL FIELD 

We proceed to determine the general characteristics 
of the spectrum of our 7 = 1 model of a bounded plasma 
of density m(x) in an external field. The analysis is 
based upon Eq. (6), which we rewrite as 

c ^ o ^ c o H x G O + H a ® , (10) 
where 

Hi ( 0 == - i (e/m)noRo x %, 

H 2 © — - ( W « ) H , ( « - (e/m)U^), 

H8(© = V[V- (»oO] - [V- (woOIWo^Vwo, 

H4(0—»oV0€ , 

and <fo is defined to be the (unique) solution of Eq. (7) 
in Ez (Euclidean three-dimensional space) which 
vanishes at least as fast as \x\~l as | x | —•> <*> [no is 
assumed bounded in space, i.e., there exists R< oo such 
that | x | > R implies no (x) = 0 ] , 

Let Q denote the set of all complex vectors f(x) 
defined on Vp which satisfy some differentiability 
criterion so that H,-(f) ( i = l , 2, 3, 4) is well defined 
within Vp [e.g., one might require f as well as ^o(x) 
to be twice continuously differentiable in Vp~] and 
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satisfy the condition f-11=0 on Spy where n denotes the 
unit normal to Sp. The operators H; (i= 1, 2, 3, 4) are 
clearly linear operators; furthermore, they are all 
Hermitian on the space Q. I t then follows that all the 
eigenvalues co of (10) are real. We form the inner 
product of (10) with £ to obtain 

M»«,»oO=«aH1(0)+«>H1(0), (12) 

where 

«,n)^ r]ddx. 

Solving for co, there results 

2 (KM) 
(13) 

The inner products are all real, as £ is in Q and the 
operators are Hermitian. Furthermore, for any non-
trivial £ in Q, we have (£,#o©>0. Therefore co will be 
real if & H a ( © ) > 0 . Now 

eiB-H8(o=v.[eitv.(»0e)]-»o-i|v-(»rf)i2 (14) 
and 

e*-H4(0 = V- U o M * + - ^ V ^ * | — « | V ^ | 2 (15) 
I e ) e 

so that 

a,H2©)=(Wm) 
|V-(»o*)| 

-J3x 

eo f 
+ — / K I V ^ I 2 ^ (16) 

m J Ez 

which is non-negative. Thus, the spectrum is real and 
the system stable. 

One may readily deduce from the fact that the 
spectrum is real and Hi and H2 are Hermitian on Q 
that the eigenfunctions £ of (10) (£ in Q) corresponding 
to nonzero eigenfrequencies co make the expression 

( C , H 1 ( C ) ) ± C ( C , H I ( C ) ) 2 + 4 ( C , W Q C ) « , H 2 ( 0 ) ] : 

2(C,»oC) 

1/2 

(17) 

an extremum on Q. Hence, Eq. (13) furnishes a varia­
tional principle 5[co] = 0 for estimating the eigen­
frequencies co. 

We now turn to the situation where the magnitude 
of the applied zero-order field E0(x) or B0(x) is suffi­
ciently small so that its effect may be treated as a small 
perturbation of the field-free case. Suppose Eo and B0 

vanish, and let £y(x) denote the eigenfunction of Eq. 
(10) satisfying the boundary condition £y«n = 0 on SP 

(i.e., fy is in Q) and possessing the eigenvalue co.,. Then 
£, satisfies the equation 

co>oO=H 2 f c ) , (18) 

where no is now given by Eq. (9c) with F 0 = 0 , H2 is a 
linear Hermitian operator on Q, and the co/s are all real. 

The initial velocity field V(x,0) is an arbitrarily pre­
scribed initial condition, and an arbitrary member of 
Q; it is therefore physically reasonable to assume that 
the eigenfunctions £y form a complete orthonormal 
basis for Q. In the one-dimensional case, the entire 
problem can be cast into the form of a Sturm-Liouville 
system with a discrete spectrum and a complete 
orthonormal set of eigenfunctions. We therefore 
anticipate, and shall assume, that Eq. (18) leads to a 
discrete spectrum and that the eigenfunctions <y form 
a complete orthonormal basis for Q. This provides the 
foundation for the ensuing perturbation calculations. 

We substitute eF0 for F0 in Eq. (9c), and expand no, 
the eigenfunction ^, and its corresponding eigenvalue 
co in a power series in the perturbation parameter e, viz. 

n0(x;\h- • -jA^eFo) 

= Woo(x;Xi,- • •,An) + ewoi+e2^o2+-

co = coy+eOi+e2122+ • • • , 

' (19) 

where £; and coy satisfy (18) with no replaced by ^oo. 
The substitution of (19) into Eqs. (10) and (11) 
together with the replacement of B0 by eB0 in the first 
of Eqs. (11) gives Eq. (18) (with n0 replaced by Woo) 
for the zero-order term, while the first-order term is 

2coyOi^ooCy+coj%oiCi+co/^0o?i 

/ n0i \ 
= coyHoi«y)+H02 & + — Cy + (kBT/m)V 

\ n00 / 

/n01\ 
• (»ooCi) V( — 1 - (e/m)n01V$u, (20) 

\n00/ 

where Ho»(0 is defined to be Ht-(£) as given by (11) 
with m replaced by n00 (i=l, 2, 3, 4), and Vfy. satisfies 

V- (^V$ry) = - (e/eo)V- (»0oCy) • (21) 

We expand ^ in terms of the £w, 

? 1 ~ S anKn, (22) 

substitute this expression into (20), and take the inner 
product of the result with <&. Noting that 

and 
W/»OOCJ = HO2(CJ) 

(C*>«oo&) = 8jk, 

we obtain, for k^j, 

Ik (CO/—C0A
2) = Uj (C/fc,H0lK,-]) 

(23) 

(24) 

+ 

»/(C*,»oi&)+(c*,H02r—C/l) 

(kBT/m)Uk,V- [»ooCy] v f — 1 ) 

•(«/«) (C*,»oiV*ry), (25) 
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while k=j gives (for coy^O) 

Oi=i(C/,HoiRi]) 

• (e/2mccj) (Cy,»oiV*f,.). (26) 

We began with the unperturbed system in the jth 
eigenstate; Eq. (25) gives the first-order admixture of 
states due to the perturbation, while Eq. (26) specifies 
the first-order shift in the eigenfrequency. Suppose that 
coy is nondegenerate and nonzero. Then the first term 
on the right-hand side of (26) vanishes. Indeed, since 
coy and H02 are real, without loss of generality we may 
take £y to be real, so that 

«y,H0iKy]) = - (ie/m) / ^ooCr Bo * Kj d3x= 0 

for arbitrary B0(x). Thus, the first-order correction to 
the eigenfrequency corresponding to a nondegenerate 
mode is due entirely to the perturbed electron density 
woi. This is not necessarily the case if the mode is 
degenerate, as will be demonstrated in the following 
section, where the specific case of cylindrical geometry 
is considered. 

III. PERTURBATION TREATMENT OF A 
CYLINDRICAL PLASMA IN AN 

APPLIED FIELD 

The perturbation theory of the previous section will 
now be applied to a cylindrical plasma. The system 
considered can be characterized as follows (see Fig. 1): 
Eo(x) = Ei(r,0) (no z dependence, no z component), 

#oo(x) = WooM ( n ° 0 or z dependence), 

Bo(x) = Bo(r,0) (no z dependence) , 

K(X) = K ( / ) = 1 0 < r < a , b<r 

= KQ a<r<b, 

r = 0<r<a 
F J = O < 0 < 2 T T 

[ = — oo < 2 < co . 

As woo, Bo, and E0 are independent of z and E0 has no z 
component, we expect (and shall assume) that m 
(and therefore not for all i) is independent of z. We may 
then restrict our attention to solutions of (6) which are 
themselves independent of z, and we write 

(27) 

*(x)=*( r ,0 ) , 

*(x) = *(r,0). 
(28) 

FIG. 1. Geometry 
of cylindrical plasma 
column. 

VACUUM * 

has no z component. This will not necessarily be the case 
for £, if Bo has an r or 0 component, for the z component 
of Eq. (10) gives 

oi2no^z==—io)(e/m)no(Boe^r—BQr^0). (29) 

The use of the perturbation theory developed in the 
previous section then requires that the eigenfunctions 
of the unperturbed problem, given, of course, by Eq. 
(23) together with the boundary condition £r(a,0) = O, 
form a complete orthonormal basis for Q, where Q now 
denotes the set of all suitably well-behaved three-
vectors %(r,0) satisfying £r(a,0) = O. This presents no 
difficulty, however, for £ = /(r,0)e2 is an eigenf unction 
satisfying (23) with co = 0, for arbitrary f(r,6); H02 is 
Hermitian on Q, where the appropriate representation 
of the inner product is 

« n2 %* "rjrdrdd; (30) 

and one certainly expects the two-dimensional re­
striction (to the r, 0 plane) of Eq. (23) to admit of a 
complete set of eigenf unctions for the r, 0 subplane of Q. 
The perturbation theory of Eqs. (19)-(26) can then 
be carried over directly to our present problem—we 
need only redefine the inner product by Eq. (30). 

The matter of degenerate modes remains to be 
investigated. I t is illuminating to case the unperturbed 
problem into a differential equation for <£. Equations 
(6) and (7) combine to yield, for Bo^O, Eo=0, 

VflQ m 
- [ c o 2 - V W ] V 0 [ = O , 

(31) 

V- V(V20)~V20 h 
l ^oo kBT 

0<r<a 

where co3,
2(r) = e%0oW/€oW, and Eq. (7) gives 

V - ( K V 0 ) = O a<r. (32) 

Since noo=noo(r) we may separate variables, and write 

<£ = 0 n , » ^ n=l, 2, • • •; /x = 0, ± 1 , ± 2 , • • • , (33) 

In this circumstance, the operator H2 [see Eq. (11)] where the double subscript n, /x denotes the nth mode 
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with angular dependence eilid. The insertion of (33) 
into (31) leads to 

(d^nJdr^+Md^nJdr^+Md^Jdr*) 

+Md4>nJdr)+f4d>n,il(r)=*0 0<r<a, (34) 

where 

2 d 
/ i = (lnwoo), 

r dr 

(2A
2+1) 2 d d2 

y2== (ln»oo) (lrm0o) 
r2 r dr dr2 

m 

kBT 

(2A
2+1) /j? d 1 <P 

fz= 1 (ln»oo) (ln«oo) 

/ 4 = " 

dr 

M 2 ( M 2 - 4 ) M2 d 

dr2 
(35) 

^2 

-(lnwoo)H (ln^oo) 
^3 J f r2 ^f2 

kBTr2^ 
-fan,!? — Wp2). 

These equations show that r = 0 is a regular singularity 
of (34), if ^00(0)3^0. We require that <£, V<£, and 
w=(eo/e)V2<£ be well behaved at f = 0 , and an exami­
nation of the behavior of the solutions of (34) near r=0 
shows that there are precisely two linearly independent 
solutions of (34), denoted by Pn,n(r) and Rn>fl(r), 
which satisfy these conditions. Hence, we must have 

4>n,li{r)=An,liPn,yi{r)+Bn^Rn)ii(
r) 0<r<a, (36) 

where An,n and Bn,» are constants. The solution of (32) 
gives 

tnA^^Cn^b/r)^, r>b 

= (Cn ) M /2Ko)[ ( .0- l ) (^) '^+( /Co+l) (V0 1 ^ 1 ] , 
a<r<b, (37) 

where Cn>fi is a constant, and Cw,o = 0. The potential 
4>n,n{r) must be matched at r=a so that <£W,M and 
ti(r)(d<j>n,Jdr) are continuous there (note that the 
boundary condition £,.(#,#) = 0 implies that there is no 
plasma surface charge at r=a). These two conditions 
then serve to determine An^ and Bnifl in terms of 
Cn%m if AC^O; if /i = 0, so that Cn,^=0, they determine 
the ratio An>ll/Bn>li, Therefore, we conclude that, for 
given values of /* and oon,M, the radial function 4>n,ti(r) 
is uniquely determined (up to a constant multiplier) 
and that for fixed /x, all the w«lM ( n = l , 2 , •••) are 
distinct. The eigenfunction £ of Eq. (23) corresponding 

to the potential <£«f/i(/)e^ is 

where 

dWn^(r) iix 
<»nJZn,»(r) = erH—JF»,M(r)e*, 

(38) 

(39) 

0 f l ^ f ^ n , u 

m r drL dr J 

/M2 1 \ 

\r2 An2/ 
W , (40) 

and 
Xz>2 (r)^kBT/ino>p

2 (r) = e0kBT/e2noo(r). (41) 

I t follows that, for co w , ^0 , £ni/l is uniquely determined 
by 0„,M. Now Eqs. (35) and (37) depend on JU only 
through |ju|, so that the sets of eigenfrequencies coW)M 

and radial potential functions <t>n,v(r) for /z and —/z 
coincide, and we may write 

(42) 

Without loss of generality, we may take <j>n,\ii\(r) and 
J^n.iMlM to be real. Therefore any nonzero eigen-
frequency coW(JU, | J U | > 0 , has a twofold degeneracy, 
represented by the two linearly independent eigen-
functions12 

C i M > 
dWnt\v\ * M 1 

dr r J (43) 

C2(r,0)sCi*(r,0), 

£i and £2 satisfy the orthonormality condition 

(C*»ooO) = fc/ *, i = l , 2 (44) 

provided we normalize WW,|M| (r) so that 

ra [/dWnAlil\
2 ix2 ] 

2mon,,r4/ mooW f J+-W r».iMi8 * = 1 . (45) 

We do not anticipate any further degeneracies for such 
an Wn./ij accordingly, the following discussion will 
assume a mode with precisely the twofold degeneracy 
of Eq. (43). 

The first-order correction to the unperturbed eigen-
frequency wn,M is obtained from Eq. (26). Due to the 
twofold degeneracy, we must choose for the £,• and 
£& of (25) and (26) linear combinations of £i and £2 of 

12 In the work to follow it will be convenient to return to the 
single-subscript notation of Sec. II. To this end, we suppose a 
particular mode is selected for study (i.e., a particular pair of 
values of n and /J, are prescribed, say no and /*o); we define £1 and 
£2 by Eq. (43) for this selected pair (n0,no). & for j?&l, 2 would 
then ^denote an eigenfunction corresponding to a pair (n,ix) 
?£ («o, ±J"o). 
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Eq. (43) which make the right-hand side of (25) 
vanish. We shall now demonstrate that if ps (r) vanishes 
for s=±2 /z , where 

noi(r,6)= £ Ps(r)ei8d, Ps=p-S* (46) 

then £i and £2 are themselves appropriate eigen-
functions for our perturbation theory. 

Lemma I: Let tioi(r,6) be expanded in the Fourier 
series of Eq. (46), and let < / = F i ( r y ^ , £Jfe=F2(r)-i'ta 

(M = 0 , dzl, ± 2 , •••) in Eqs. (25) and (26). Then, if 
ps(r)==0 for s=±2 /x , all the inner products of Eq. (25) 
containing noi vanish. If p0(r)=0, then all the inner 
products of Eq. (26) containing mi vanish. 

Proof: The inner products of (25) and (26) containing 
noi are linear functionals of n0h and so it suffices to 
consider each term of the series (46) separately. Setting 
^j=¥i(r)eilxe, <fc=F2(r)e-^, and replacing noi by 
ps(r)ei8d, it is easily seen that each of the inner products 
of (25) that contains HQI is proportional to 

Jo 
= 2TT, S——2/J, 

while each of the inner products of (26) that contains 
noi is proportional to 

r2<ir 

>is0d6= 0, S7±0 I 
Jo = 2TT, S=0 

and the lemma follows immediately. 
If we now choose O^Ci? Cfc=C2, then the right-hand 

side of (25) will vanish, provided p s = 0 for s=±2 /x 
and (Ci,Hoi[C2])==0. But since F - B 0 x F = 0 for any F, 
we have n27T 

Ki*-Box*i*] 
J 

Xn0o(r)rdrdd=0. 
To summarize, Ci a n ( i & will be appropriate eigen-
functions for our degenerate perturbation theory if 
ps==0 for s=dz2y. If, in addition, p 0 =0, then (26) 
reduces to 

fiM=f(&,Hoi[<J) * = 1 , 2 . (47) 

Let us assume for the moment that (47) holds for some 
ju. Writing B0(r,e) = BQr(rie)er+Boe(r1d)ee+Boz(r,d)ez, 
Eqs. (45) and (47) imply that the first-order correction 
to the eigenfrequency contfl is 

Acow, M = ± | M I (e/^irm) 

n2T dWnA^ 
n0o (r)B0z (r,0) dddr 

. J dr 
x , (48) 

r r/rfH/«.iMiV f i 

where the positive sign is associated with £i and the 
negative sign with £2. Thus only the axial component 
of the magnetic field has a first-order effect, providing 
(47) holds. 

Lemma II: Let tioi(r, 0+7r) = — wOi(r,0). Then for 
every n ( M = 0 , ± 1 , ± 2 , • • •)> the first-order correction 
to the eigenfrequency coW)M is given by Eq. (48). 

Proof: I t suffices to show that p2fl(r)z=0 for ju = 0, dbl, 
d=2, •••. But this follows immediately from the 
hypothesis on noi. 

Theorem: The first-order correction to the eigen­
frequency o)ntfl due to a transverse applied field Fo(r,0) 
(electric or magnetic) vanishes for every n (M = 0, dbl, 
± 2 , • • •), if F0(r, 0+ir) = Fo(r,0). (In particular, Aw„,M 

vanishes for a uniform transverse applied field.) 
Proof: Let n(r,6) denote noi(r,6) due to the field 

Fo(r,0), and let nr(r,0) denote noi(r,6) due to the field 
Go(r,0), where Go(r,0) is F0 rotated through 180 degrees 
about the plasma axis. Since Fo(r,0) = Fo(r, 0+7r), we 
have Fo+Go=0. By definition, UQI is the linear pertur­
bation due to Fo, the principle of superposition holds 
for ^oi, and therefore 

»(r,0)+»rM) = O. (49) 

If we rotate the plasma together with the field F0 

through 180 degrees about the plasma axis, we obtain 

n(r, 0+*r) = »,(r,0). (50) 

Equations (49) and (50) imply n(r, 0+7r) = —n(r,0), 
and therefore Lemma I I holds. The theorem now 
follows immediately from Eq. (48). 

We shall now argue that Eqs. (47) and (48) should 
also hold for an axial magnetic field Ho=Boz(r)ez. 
Cylindrical symmetry implies that the perturbation 
noi due to such an axial field is a function of r only. 
Since Bo is axial and therefore does not interact with 
any axial ion or electron currents, the n0i(r) induced by 
Bo(0 [denoted by n+(r)~] should be identical to that 
induced by — Bo(r) [denoted by n-(r)~], i.e., n+{r) 
= ti-(r). But by definition, noi is the linear perturbation 
due to Bo, and so the principle of superposition is 
applicable and gives w+(r)+w_(r) = 0. Thus the noi(r) 
induced by B0(r) vanishes, and therefore (47) and (48) 
hold for all fi. For a uniform axial field f>0e2, Eq. (48) 
takes the form 

Ao)ntfi=±h<*>cInM M=0 , ± 1 , ± 2 , (51) 

where o)c—eBo/m and 

Jn.lMlH/*! 
Jo 

nw(r)(dWn,\tx\2/dr)dr 

/•a 

/ moo (r){ (dWn,M/dry+ (v?/r*)WnAJ}dr 
Jo 

(52) 

I t is a simple matter to show that In,\n\ > 0 for M ^ 0 , if 
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n00(r) is monotone decreasing, i.e., if dn0o(r)/dr<0 on 
(0,a). Integrating by parts, we have 

r dwnAli{
2 

/ nQQ (r) dr=nQo(a)Wn,\fi\
2(a) — noo(0)Wn!\li\

2(0) 
Jo dr 

ra dnQ0 
- / WnAlxWr. (53) 

Jo dr 

One can deduce from the behavior of the functions 
Pntfi(r) and Rn>fi(r) near r=Q that Wn,\n\ vanishes at 
r = 0 , for MT^O- Indeed, our small-amplitude theory and 
Eq. (39) require that Wn,\n\/r be uniformly bounded 
on (0,a) for /x^O. The right-hand side of Eq. (53) will 
then be positive if ^ooM is monotone decreasing on 
(0,a). The electron-density profiles given in Ref. 5 all 
satisfy this condition, and therefore we expect all the 
dipole resonances as well as all the higher multipole 
resonances to be split linearly by a uniform axial 
magnetic field. 

For the uniform cold-plasma case of T = 0, w0o 
= constant, one easily finds that 

ui,\ix\ = \uv, M = ± l , ± 2 , • • • , 

4>iM = ArM, 0<r<a, (54) 

WUli]={e/m)Ar^, 0<r<a, 

so that 

7ijMl = l , A* = dbl, ± 2 , • • • . 

In this circumstance, Eqs. (51) and (52) reduce to the 
results of the cold-plasma-uniform-axial-field models of 
Astrom,6 Messiaen and Vandenplas,7 and Crawford, 
Kino, and Cannara.1 

IV. CONCLUSION 

The theory presented here has led to the following 
results, for a cylindrical plasma with a radially de­
creasing electron density fioo(r): 

(1) The first-order correction to all the dipole 
resonances (as well as all the other w-pole resonances) 
vanishes for a uniform transverse electric or magnetic 
field. 

(2) A uniform axial magnetic field causes a non-
vanishing first-order splitting of all the dipole reso­
nances and all the higher multipole resonances. 

The first-order splitting of the main dipole resonance 
in a uniform axial magnetic field has been demonstrated 
by Crawford, Kino, and Cannara.1 Surprisingly enough, 
since the laboratory plasma is warm and presumably 
decidedly nonuniform,5 they find that / i , i ~ l , in agree­
ment with the result obtained from the simple uniform 
cold-plasma model. 

Messiaen and Vandenplas7 investigated the behavior 
of the dipole resonances in both uniform axial and 
transverse magnetic fields. While their results for a 
transverse magnetic field indicate essentially no first-
order effect for the main dipole resonance, in agreement 
with our theory, it is difficult to interpret the data for 
the secondary dipole resonances, as they disappear for 
small transverse magnetic fields and new peaks ap­
parently emerge to take their place. The data for a 
uniform axial magnetic field does not appear to indicate 
any splitting of the secondary dipole resonances; 
however, as the secondary resonances disappear com­
pletely in their experiment for a field approximately 
five times the magnitude of that required to produce 
a noticeable splitting of the main resonance, all one 
can reasonably say is that their results suggest that 
^2,i< (1/5)71,1. Quantitative agreement between theory 
and experiment awaits the evaluation of the 7n,i for 
realistic T and ^ooM, as well as further experimental 
results. 


