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X-Ray Scattering from an Electron Gas* 
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We show that the x-ray scattering from an electron gas in the large-momentum-transfer regime (£2>PJP/&) 
is a direct measure of the one-dimensional momentum distribution of the particles (including correlations). 
If the recoiling electron's momentum is measured in coincidence with the scattered x ray, then one can (in 
principle) measure the complete three-dimensional momentum distribution function. 

I. CALCULATION 

SUPPOSE we consider the incoherent scattering of 
x rays from an electron gas (see Fig. 1). If the 

frequency of the incoming x-ray beam is much higher 
than the plasma frequency, i.e., co£>>â  and Ei?<3Ĉ coi 
<tnc2, then the differential scattering cross section per 
unit volume of plasma is given by1 

da f+0° dt 
=^o2(ere2)2EE / er*"' 

da)d£l P p' J-w (27r) 

X ( V (OaP+k(O0p'+k+<v>, (1) 
where 

co = wi—a>2 and k = ki—k2. (2) 

We use units in which h—c—\. Here ro=ze2/m is the 
classical electron radius, ei and e2 are the polarization 
vectors of the incoming and outgoing photon beams, 
respectively, and ap is the annihilation operator for an 
electron in a state of momentum p. The symbol ( ) 
represents for zero temperature the ground-state 
expectation value and for finite temperature the usual 
statistical average, and 

av(t) = eiH%e-im. (3) 

For zero temperature, the ground state of the inter
acting electron gas is completely specified by the 
momentum distribution np. 

»p = <aptflp). (4) 

If we assume a noninteracting electron gas np is of 
course unity for P<PF (the Fermi momentum) and is 
equal to zero for P>PF. In an interacting electron 
system collisions will produce a smearing of the distribu
tion function. 

Luttinger has shown2 that even in the interacting 
system there is still a discontinuity in the distribution 
function at p = Pp. The exact magnitude of the dis
continuity is unknown. However, for real metals it is 
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expected to be of order unity. In addition, it is known3 

that a tail will develop on the distribution function. 
The tail is algebraic in character with a falloff in 
momentum space for large values of p which goes at 
least as fast as (PF/PY* In any case, it is safe to assume 
that nv is only finite for values of p which are of the 
order of PF* Everything we will prove about the exact 
scattering amplitude will be correct only to order 
(Pp/k). We will assume that ^p+k=0. This introduces 
an error at most of order (PF/k)6. Errors of order 
(Pp/k)2 will be introduced when at a later stage we 
neglect the energy of the particles in the Fermi sea 
relative to their recoil energy. 

In Eq. (1) the operator av> operates directly (to the 
right) on the ground state of the system. The operator 
<zpt operates directly (to the left) on the ground state of 
the system. This implies that both p and p' are of the 
order of magnitude of PF. By our assumption on the 
size of h, | p+k | » P i , and | p ' + k | » P F . We will 
assume in rewriting the correlation function in Eq. (1) 
that 

ap+k (t) = ap+kexp— iep+k2, (5) 

i.e., that to a very good approximation the fast particle 
behaves like a free particle. Here ep+k= (p+k)2/2m. 

In using Eq. (5) we have neglected the interaction 
between the fast particle (of momentum p+k) and the 
remaining particles in the medium. Interaction effects 
will, crudely speaking, introduce an imaginary part into 
the energy in Eq. (5) (lifetime effects), and produce a 

FIG. 1. Diagrammatic description of the 
incoherent photon scattering. 

3 See Ref. 2 and also E. Daniel and S. H. Vosko, Phys. Rev. 120, 
2041 (1960). 

4 This arises from the requirement that the average kinetic 
energy should be finite. In Ref. 3 it is shown that to the lowest 
order in a perturbation expansion of the distribution function 
*(P)i-> (PF/P)* for p^>Pp, 
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shift in the energy €p+k (self-energy effects). In order to 
estimate the error introduced by this approximation 
we have to evaluate the effects of collisions on a fast 
particle of momentum k' (k'= | p + k | ^ J P F ) . 

In real metals the plasma frequency a>p, the Fermi en
ergy €F, and the average potential energy (P.E.)=e2/#o 
(ao is the interparticle radius) are of the same order. 
Using a simple calculation one finds that the time 
between collisions £~1/COP(&/&F)3 . This indicates that 
the effect of collision on the spreading of the energy is 

ImEv^(hcop)(PF/ky, (6) 

where E^ is the renormalized energy of an electron 
with momentum k'. A simple Hartree-Fock calculation 
shows that collision corrections introduce a shift in the 
energy of the order of 

A ( R e £ k 0 = ( ^ > ) 2 A k ' . (7) 

In addition to the self-energy effects considered here, 
one must also include the scattering of the fast electron 
from the "hole" in the Fermi sea. This effect produces 
corrections of the same order of magnitude as those 
taking into account the calculations of the I m i v . This, 
crudely speaking, means that the electron-electron 
mean free path is of the same order as the electron-hole 
mean free path. We therefore conclude that our assump
tion that the recoil electron is not affected by collisions 
is a good approximation. Errors in the energy which 
decrease as kr increases may be neglected; only errors 
which are proportional to kf can spoil the conclusions 
reached here. 

The fact that a high-energy particle behaves accu
rately like a free particle is a strict consequence of the 
Coulomb interaction. The conclusions reached here can
not be simply generalized to other laws of forces, 
particularly hard spheres. For hard spheres the collision 
time is inversely proportional to the momentum so that 
the Im£k' is proportional to kf'. 

Using Eq. (5) we may write 

<aP t (/)flp+k OOay+k^p' )=exp—iep+kt 

X <apt (*)<V tf p+Ktfp'+kt). (8) 

The operator aP'+k operating on the ground state of the 
interacting system creates, with probability one, an 
electron of momentum p ' + k since (by our assumption 
on the magnitude of k), the state p ' + k is unoccupied. 
The operator ap+k must annihilate with unit probability 
this high-energy particle so that the matrix element 
vanishes unless p ' = p. We finally obtain 

(V( / )a p + k(0V+k f ay}= <V(t)a9) exp—iev+kt. (9) 

Substituting Eq. (9) into Eq. (1) we obtain the cross 
section 

da r+°° dt 
=*tf(ei .e2)*£ / — 

dwdQ v J-oo 2ir 
X{ap

f (t)ap)expi(o)~ ep+k)£. (10) 

Neglecting the time dependence of (a^(t)ap) intro
duces an error of the order p2/2m relative to k2/2m. To 
be consistent then we write 

€ p + k=(&72m)+(p .k /m) (11) 
and obtain 

da r0
2(ei-e2)2 f / & p -k \ 

= / 8[ w )nvdp, (12) 
dudti (2TT)3 J \ 2m m l 

which is the desired result. 
The procedure we have used here is exactly equiva

lent to the procedure used in evaluating the Compton 
scattering from bound electrons when the recoil energy 
is much larger than the binding energy.5 One simply 
neglects all binding energies. Physically, our approxi
mation rests on the following argument. The wave
length of the photon is so small (large k) that it interacts 
with an individual electron and ejects it from the Fermi 
sphere instantaneously (large recoil energy). The rest 
of the system, i.e., the remaining electrons and the hole 
are left to evolve by themselves via their total Hamil-
tonian (including correlations). This approximation is 
knownin the literature as the "impulse approximation.6" 

We wish to point out here that our result Eq. (12) 
can be obtained from Eq. (10) in a more formal way 
even for finite temperature, the only difference being 
that np will be the distribution function for finite 
temperature. Our starting point is Eq. (10) where ( ) 
now means the usual thermal average. 

Using the spectral analysis method one may easily 
show that 

da f+co 

=r 0
2 (e i -e 2 ) 2 Z / Ao'SCw—ep+k+w'+At) 

do)dQ P J-oo 
1 1 

X ImM-p(c/), (13) 
7T^W '+1 

where 

J0rp(a)) = i f p ( 2 , - » a ) + ^ ) , (14) 

ft (2/+l)« 
Mv(zi)= dueuziMp(u); zt= , (15) 

Jo P 

Mv (u) = (aj (u)a9), (16) 

and 

ap(u) = e^H~^ape~^H~^. (17) 
The function Imikfp(a/) is finite for those values of 

(CO'+JU) which correspond to the " dressed single-par
ticle" excitation energies of the system.7 We have 
assumed throughout that we can neglect the energy 
(o/+ju) relative to the recoil energy €p+k so that the 
argument of the delta function in Eq. (9) is independent 

5 J. W. Dumond, Rev. Mod. Phys. 5, 1 (1933). 
6 G. F. Chew, Phys. Rev. 80, 196 (1950). 
7 For a free electron gas Imilfp(a/) =7rS(a/—€P+/z). 
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of co'. The integral over co' is easily performed, since 

1 r do' 

J (e<>"'+ (e'»'+l) 
• ImJ0f p (w')sn , ( r ) . (18) 

Equation (9) can now be generalized for finite tem
peratures by replacing nv by nv{T). Here, the quantity 
0 = \/KBT and JJ, is the chemical potential. 

To put Eq. (9) in a more convenient form let us 
define the direction of the momentum transfer k as the 
z axis. Then the cross section takes the form 

da 

daidil 

fm\ 
- * • ( . , •« )> - [ / < « ] = (w— k /2m)m/k 

where 

- / 
/ & ) = / nvdpxdpy/(2<iry 

, (19) 

(20) 

is the "one-dimensional distribution function." If we 
measure the direction of the recoiling electron, then it 
is easily shown that 

da r0
2(ei'e2)2 fm\ 

doodtiphdSlei 2ir2 Hi) (p+k)2 (21) 

where p is uniquely determined from the energy 
conservation condition: 

co=k2/2m+p*k/m (22) 

since the direction of p + k is fixed by the measurement 
of the recoiling electron. 

II. DISCUSSION 

Experimentally, it seems feasible to make a measure
ment of the kind considered here. For a 10-kV x ray, 
the recoiling electron will have an energy of the order 
of 400 eV for scattering in the backward direction. In 
general the recoil energy as a function of the scattering 
angle is given by 

= [(^co1)2/^2]sin2(<9/2). (23) £ ' recoil= 

Typical Fermi energies for free electron-like metals are 
of the order of 5 eV so that we are indeed in the high-
momentum-transfer regime. Since the cross section is 
of order 10 -25 cm2 per unit solid angle and there are 
roughly 1022 scatters per unit volume, one would expect 
one part in 103 of the incident beam to be scattered 
per cc of sample into a unit solid angle. 

Scattering from the bound electrons, if the experi
ment were done in say an alkali metal, would produce 
background. The elastic scattering from bound electrons 
would not interfere with the highly inelastic free-
electron scattering. The inelastic scattering from bound 
electrons, i.e., the ionization of the few outside electrons 
with the resulting scattering of the x rays will, in 
general, overlap with the incoherent scattering spec-
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FIG. 2. The differential scattering cross section for free and 
bound electrons with a Fermi energy of 2 eV and a binding energy 
of 40 eV. 

trum from the free electrons. However, one must, in 
scattering from bound electrons, supply the ionization 
energy plus recoil energy to the bound electrons. For 
potassium (K), this ionization energy is approximately 
40 eV. For aluminum, it is approximately 75 eV. We 
arrange things experimentally so that the high-energy 
side (least energy loss, smallest co) of the free-electron 
Compton line (comin) occurs at the smaller value of co 
than the binding energy (EB). This implies that there 
is a maximum recoil energy allowed for a fixed value 
of EB and EF, i.e., 

£ r e c o i l < ^ + 2 £ ^ + [ ( ^ + 2 £ F ) 2 - E B
2 ] 1 / 2 . ( 2 4 ) 

Correlation effects will produce a tail on the scattering 
in the region co<comin. They will also change the magni
tude of the discontinuity in the slope of the curve at 
co=comin and modify slightly the behavior of the cross 
section in the region co>comin. The bound electrons for 
the case EB>COmm will not interfere with a measurement 
of the most interesting correlation effects: the existence 
of a tail and the change in the magnitude of the dis
continuity at the "Fermi surface." 

In Fig. 2 we have plotted the shape of the scattering 
cross section for a set of parameters pertinent to potas
sium. We have assumed that the electrons in the conduc
tion band are free (noninteracting) with a Fermi energy 
of 2 eV, and that there is a single bound electron per 
atom having a hydrogenic wave function with a binding 
energy of 40 eV. The cross section is normalized in units 
of (3/4tn)(da/dn)Th(l/kVF), where (da/dti)Th is the 
single-electron Thomson cross section and n is the num
ber of electrons per unit volume. In Appendix A we 
briefly outline the "approximate" calculation of the 
bound-electron piece. In the actual case we of course 
expect to see a tail in the region from 0<co<comin, a 
change in the slope discontinuity and a modification of 
the line shape in the region co>comin. 

Figure 3 is a similar plot for a series of parameters 
pertinent to Al (another free electron-like metal). The 
Fermi energy was taken to be 6 eV, and the binding 
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FIG. 3. The differential scattering cross section for free and 
bound electrons with a Fermi energy of 6 eV and a binding energy 
of 75 eV. 

energy of the lowest bound electron was taken to be 
75 eV. 

In an actual experiment, core effects (the exclusion of 
the free electron from the central core) will produce 
high-momentum components in the wave function. 
When the noninteracting Fermi surface does not touch 
the zone boundary, then it is possible to show that 
these core effects do not interfere with the tail produced 
by correlation effects. When the noninteracting Fermi 
surface does overlap the zone boundaries, then core 
effects are mixed up with correlation effects. For the 
case of Al (or any multivalent free electron-like metal) 
the existence of a tail will not unambiguously determine 
the existence of correlation effects. We expect8 that core 
effects in Al are approximately equal to or smaller than 
the effects of correlations so that it may still be possible 
to sort out the two effects. 

It seems reasonable that an experiment can be done 
which would supply useful information about the 
interacting electron momentum distribution function. 
Positron annihilation data9 give similar information. 
However, such data are complicated by electron-
positron correlation effects occurring prior to their 
annihilation. If one assumes that the electron and the 
positron are uncorrelated (which is not true) then and 
only then will angular correlation measurement of the 
annihilation radiation lead to a measurement of the 
momentum distribution function. 
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APPENDIX 

We will calculate the cross section for the incoherent 
scattering from a bound electron. It is approximately 
given by 

( da \ /da\ 
)=(—J T,\(<l\eik'*\<S>)\25(eq+EB-a>). (Al) 

Here eq and | q) are the energy and wave function, 
respectively, of the recoiling electron, k is the momen
tum transfer to system in the scattering process, and 
|$) the ground-state wave function of the bound 
electron. If we assume that the final-state wave function 
is a plane wave then the cross section is given in terms 
of <£K, the Fourier transform of | $), 

/ da \ /da\ 

Xdoodti/B 
(—) E |*,|sS(«q+«+.Ei»-co). (A2) 

For simplicity, we shall assume that |$) is hydro-

|$)=(l/(4*-)1/2)(2/a3'2)e-''/<', (A3) 

where a is the "Bohr radius" of the bound electron. We 
obtain for $K 

^ . - S V T T ^ ^ / ^ + K 2 ) 2 , (A4) 

where l^ar1. The cross section from the bound electron 
is given after single integration by 

/ da \ /da\ 8 / Z6 \ 

\dudtt)B KdQ/ThSAqViJ 

X 
[_{(2m(u>+EB)yi>-qy+Py 

1 

~Z{{2m(t*+EB))ll*+q}*+PJ 
(AS) 

for values of o)+EB>0; where Vi=l/m. Simple calcu
lations show that near the threshold, a>+jE£ = 0, our 
formula for the cross section reduces to 

/ da \ /da\ 16 1 i 

\da>dtt)B~~\dtt)ThTr EB (l2+q2Y 
(2w(co+EjB))1/2. (A6) 

Equation (A6) was used in calculating Figs. 2 and 3. 
Note added in proof. The main error made in do

ing this calculation is "neglecting" the time depend
ence of {a^{t)a^. Actually, Eq. (12) would follow 
exactly from Eq. (10) if we had assumed that a J (J) 
— txp(ip2/2ni)a2?(0). Although this is not correct, it 
is almost certainly approximately correct. A measure 
of the correctness is given for p near PF by the ratio 
rn*/rn for quasiparticles, which experimentally is about 
1.25 for potassium. 


