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Recently interest has arisen in the possibility of significant deviations of the optical properties of metals 
from their random-phase-approximation (RPA) values. Starting with the approximation that the crystal 
pseudopotential can be regarded as weak, we have carried out calculations beyond RPA of the optical 
absorption and primary photoelectron kinetic-energy distribution. Dynamic screening (as opposed to the 
usual RPA static screening) results in corrections of great importance to the phonon (or disorder) contribu
tion to the optical absorption and makes qualitative changes in the phonon-induced photoelectron distri
bution for photons having energies above wp. A new feature is a marked peak in the phonon contribution 
to the photoelectron distribution at the Fermi energy for photons having energies in the region of plasmon 
energies. The supposition of a weak crystal potential prevents quantitative application of these results 
except to Na and K, but the qualitative effect of dynamic screening should be the same in more complicated 
systems. The possibility of the experimental existence of photoemission features inexplicable in RPA has 
been recently discussed by Phillips. 

I. INTRODUCTION 

RECENTLY, attention has been focused on the 
possibility of the existence of anomalous effects in 

the optical absorption1-3 and external photoemission4 

of simple metals. Various lines of theoretical approach8-7 

have been utilized to explain the experimental effects. 
Two features are common to these approaches for 

calculating optical absorption. One feature is that fairly 
radical departures from the usual Hartree approxima
tion and Hartree dielectric function are employed. The 
second is that when the optical absorption is calculated 
in the long-wavelength limit, a sink which takes mo
mentum from the electrons must be found. Overhauser's 
optical-absorption calculation for the free-electron gas 
seems to violate the conservation of momentum in its 
present form as no sink for electron momentum is sup
plied (see Appendix). Cohen does not carry his calcula
tion of optical absorption out sufficiently far to include 
such details. His analogies with superconductors would 
lead one to believe that phonons are the sink for mo
mentum, although the temperature dependence he 
mentions does not agree with this. 

Photoemission studies provide additional information 
about the nature of optical absorption at a single 
photon energy through the distribution of photoelectron 
kinetic energies, and serves, therefore, as a useful tool 
in understanding the nature of optical absorption. In 
this paper the effects of calculating the optical absorp
tion for simple metals in the simplest approximation 
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beyond the usual Hartree approximation on the energy 
distribution of the primary photoelectrons is investi
gated. I t is shown that when the optical absorption is 
due to electron-phonon scattering or disorder scattering, 
a sizeable excess of primary photoelectrons originate 
near the Fermi surface for photon energies near the 
plasma frequency. This mechanism can provide a simple 
explanation for photoemission anomalies discussed by 
Phillips. 

In Sec. I I , the framework of approximations in which 
the results are calculated is discussed, and the calcula
tion of the optical absorption is reviewed. The implica-
cations of this treatment for photoemission are treated 
in Sec. I l l and numerical results presented for potas
sium. The results are discussed in Sec. IV. 

II. THE OPTICAL ABSORPTION 

We treat a model of a simple metal in which the 
electron Fermi sea is regarded as being weakly perturbed 
by the positive ions in the metal. Each ion is regarded 
as having associated with it a weak potential V(r). 
Optical absorption will be calculated only to second 
order in V(r), the first nonvanishing term. 

The actual bare-ion potential is of course not small. 
In pseudopotential form, there is a near cancellation 
between large Z effects and inner-shell repulsive ortho-
gonalization terms. Harrison8 has noted that for Born-
approximation calculations the ion potential can often 
be represented as 

F(r) = -[*Yr-FoaW(r)], (1) 

where a is the Bohr radius and VQ is a constant. For 
backscattering in sodium, Harrison9 finds that the 
Fourier transform of (1) vanishes for a wave vector of 
1.6X108 cm - 1 . We shall use this ion potential in 
numerical calculations. Fortunately, answers are only 
weakly dependent on Vo-

8 W. A. Harrison, Phys. Rev. 136, A1107 (1964). 
9 W. A. Harrison (private communication). 
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The effect of the ion potential on the energy band 
structure after the potential is screened by the Fermi gas 
is in fact small in simple monovalent metals like Na 
and K. This does not guarantee that the potential can be 
represented by a small pseudopotential for all purposes, 
but no qualitative errors are presently known from such 
a representation in these metals. 

When electron-phonon coupling is small, the electro
magnetic properties at frequencies large compared to 
phonon frequencies can be calculated as if the ions were 
fixed instantaneous positions, using the ensemble dis
tribution of positions appropriate to the given system. 
Such an approximation washes out dynamical electron-
phonon coupling effects and zero-point fluctuations, and 
averages properties over an energy interval k@D, where 
©z> is the Debye temperature. For high-frequency cal
culations and r » @ D , the error introduced is negligible. 

If one Fourier component of the perturbation poten
tial is written as V q expiq«r, to calculate optical loss and 
photoemission we must calculate the contribution to 
the imaginary part of the dielectric constant of this 
perturbation. In the absence of all perturbations, 
denote the eigenstates of a many (interacting) particle 
electron-gas system by | ^-) , having energies E{. These 
states are also eigenstates of the total momentum, so 
have quantum numbers PXi also. If an electric field 
perturbation in the x direction E = LECOSW/ is included 
written as a vector potential, the Hamiltonian becomes 

-L electronsT~ ^electron-electron 

e 
H ^elect rons n (Pn) ' *E silKo/ (2 ) 

(omitting terms in the square of the vector potential, 
as we seek a current linear in E). Pw is the electron 
momentum operator. The many-particle eigenfunctions 
\\p%) are eigenfunctions of this Hamiltonian, and have 
the time dependence 

exp{ — i[_{Ei/fi)t— (PXieE/fimoP) cosco/]} . 

The current can now be expressed correctly to second 
order in V q and first order in E by doing perturbation 
theory with these basis functions correct to second order 
in V q. If, in increasing powers of Vq, the wave function 
is expanded ^ = ^ 0 + ^ 1 + ^ 2 , then the current density 
correct to order Vq

2 is 

e / e \ 
J = —(\f/\ 2 electron n[ ^n An )|^) 

m \ c I 

/N\ e2 e2 

= - ( - ) — < * | A | * > + - G M P | * i > , (3) 

where 0 is the crystal volume. 
Since A contains no spatial variation, its expectation 

value can be trivially evaluated. Since | ^ 0 ) , the ground 

state of the system, is an eigenstate of the momentum 
having eigenvalue zero, other terms from the left-hand 
side of (3) vanish in order V2. By writing out \pi 
explicitly and summing over the various Fourier compo
nents of the potential, one finds (for a system having an 
isotropic conductivity) that the imaginary part of the 
dielectric function is 

62(o>) = ~ — E Z ( — ) 
OOT2W4 « t \ fi J 

X|<fc|r e£e«««»|*o>|2*(£ r- .Eo-M. (4) 
n 

Perturbation theory can also be used to express the 
dielectric shielding of an oscillating nonuniform poten
tial V(r,t) = Fo(cosq»r) cosco/ in the free-electron gas in 
terms of matrix elements and energies of the exact 
many-body wave functions. From the definition of the 
dielectric function in terms of the system response, an 
expression for the imaginary part of the reciprocal of 
the longitudinal dielectric function is obtained. 

/ 1 \ 4TTV 

Im ( - — ) = EI<lM£^*l*o>|2 

\e(q,co)/ Uqz » n 

XB(E — Ea+hu). (5) 

Comparing (4) and (5), one obtains 

£2(w) = £ | Vq\ V<?2[Im(l/e(<7,co))], (6) 
m2o)A a 

an expression exact to order Vq including all electron-
electron interactions. 

This calculation has been made for an electron gas 
at zero temperature. The smearing of the Fermi surface 
by thermal excitation is expected to introduce no 
explicit effects at optical frequencies except perhaps 
slight broadenings. Equation (6) is not new—it is the 
expression obtained by Ron and Tzoar10 for absorption 
in a quantum plasma. However, the present derivation 
makes it clear that (6) is exact to order | Vq \2. 

A Hartree calculation of e2(co), as described by 
Ehrenreich and Cohen,11 would proceed as follows. 
First, find the self-consistent energy eigenstates of the 
potential. For a weak potential, the self-consistent 
potential would be the applied potential with static 
screening from the electron gas. Second, calculate the 
response of the system to an applied uniform electric 
field oscillating in time, keeping self-consistently only 
the response of the system at wave vector zero. The 
potential due to the ions is screened statistically. 

Let 

e^(q,co) = 6^(q,co)+.62^(q,co) (7) 

10 A. Ron and N. Tzoar, Phys. Rev. 132, 2800 (1963). 
11 H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959). 
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be the Hartree longitudinal dielectric function of the 
free-electron gas. If we approximate €(#,a>) in the right 
side of (6) by eH(q,u>) the quantity in parentheses is 

10 

(e /^oO/ le^co) ! * ) . (8) 

This result still describes physical effects not present in 
simple Hartree calculations. 

The Hartree calculation (a la Ehrenreich and Cohen) 
yields the same answer but with this parenthesis 
replaced by 

(^(q,co) /hxH (q ,0) | 2 ) . (9) 

For low frequencies (oXSCcop) or large wave vectors 
q^> (screening length) -1, the two expressions are the 
same. For small wave vectors and large frequencies, 
there is a real physical difference between the Hartree 
calculation, which includes static screening only, and 
Eq. (6) [with (8)] which contains dynamic screening 
effects. 

Ron and Tzoar calculated the optical absorption for a 
plasma from Eq. (6). We can do the same using the 
atomic potential (1). Define 

Uq= fVi^e-^dh. (10) 

= | Uq\*(N\W)[l+Jf(r)e~^dhl, (11) 

Then 

I Vq\ average 

FIG. l.Thephonon 
disorder part of e2 (o>) 
calculated from Eqs. 
(6), (8); and (11) as 
a function of energy 
for potassium. The 
ordinate contains an 
arbitrary multiplica
tive factor. 

where f(r) is the pair distribution function. The bracket 
in (11) is, of course, the same factor which appears in 
x-ray scattering, and can be directly measured. 

For a solid, the bracket in (11) consists of two parts. 
One part, due to lattice periodicity, exists for q=27rG, 
where G is a reciprocal lattice vector. The other part, 
due to thermal (or structural) disorder is spread ap
proximately uniformly through q space. For potassium, 
the absorption shape of the present theory due to the 
periodic lattice will be very nearly that calculated by 
Butcher,12 since even for the smallest reciprocal lattice 
vector EiH (2wG,(xi) is equal to unity within 25%, and 
E2

H(27TG,CO) is small. Experimental data suggests that 
this term alone cannot explain the bulk of the optical 
absorption in potassium above 1 eV. 

If the bracket in Eq. (11) is represented as a constant 
for the disorder scattering, the shape of the optical 
absorption is very like that of Ron and Tzoar. The 
shape of e2(co) due to disorder scattering in this approxi
mation is shown in Fig. (1) for potassium. For T^>>©D, 
the thermal disorder part of the bracket in (11) is 
proportional to temperature. 

III. THE PHOTOELECTRON ENERGY 
DISTRIBUTION 

The primary electrons responsible for photoemission 
have kinetic energies (above the Fermi energy EF) be
tween E and E—EF (or 0 if EF>E), where E is the 

*M 
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PRESENT THEORY 
DRUDE ( o r 3 ) 

"tlOJp 

3 4 
E(eV) 

photon energy. The problem of connecting the actual 
photoemission to the kinetic energies of the primary 
electrons being well-known, only the distribution of 
kinetic energy of primary electrons will be considered 
here. Let Ep(q) be the energy of a plasmon of wave 
vector q. In the Hartree dielectric-function approxima
tion, real plasmons extend from q—0 to a critical qc. The 
primary electron distribution calculation naturally 
divides itself into two parts, to be treated separately. 

A. E<Ep(0) or E>Ep(qc) 

In this energy region, Im[e^(q,co)]]_1 is due to the 
excitation of electron-hole pairs. Precisely the same 
processes occur in the present calculation in this energy 
interval as in the ordinary Hartree calculation. The 
relative weights assigned to different excitations are, 
however, greatly changed. 

The difference between the present and the ordinary 
calculation originates from the use of Eq. (8) instead 
of Eq. (9). For a typical value of q(q= 1.2k F) and 
parameters appropriate to potassium, Eq. (9) has its 
largest value at £ = 2 . 9 eV. (See Fig. 2.) At this photon 
energy, the kinetic energy of the electrons generated are 
distributed uniformly between 0.9 and 2.9 eV above the 
Fermi energy. (The Fermi energy of potassium is 
2.05 eV.) Equation (8) on the other hand has its maxi
mum at E = 7 . 0 eV. At this photon energy, the kinetic 
energy of the electrons generated are distributed be
tween 6.0 and 7.0 eV. Said slightly differently, Eq. (9) 
for this q excites electrons from states within ~ 2 eV of 
the Fermi energy, while Eq. (8) excites them from states 
within only ~ 1 eV of the Fermi energy. 

Detailed calculations are given in Fig. 3. I t is most 
convenient to plot the energy of the state of origin of 
the final electron, whose final total energy is this plus 
the photon energy. At low photon energies, the curve 
approaches that to be expected for the ordinary Hartree 
calculation, namely the parabolic free-electron density 
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0.8 

0.6 

0.4 h 

0.2 h 

q = l.£kff 

—— Dynamic Screening (Eq.8) j 

Static Screening (Eq.9) j FIG. 2. A com
parison between ex
pression (8) (dy
namic screening) and 
expression (9) (static 
screening) for 

q = 1.2k/ 

in potassium. 

of states. At high photon energies, a definite emphasis 
on states near the Fermi surface is clearly observable, to 
be expected from the qualitative considerations of the 
previous paragraph. 

B. Ep(0)<E<Ep(qc) 

In this energy region, Im[eH (q,(S)'Jr1 is due to two 
separate processes. One of these is the generation of 
electron-hole pairs as in A, and can be treated in the 
same fashion. The other process is the generation of real 
plasmons. The problem which remains is to calculate 
the primary electrons which optical-absorption generat
ing real (Hartree) plasmons will introduce. 

A plasmon generated in the initial absorption process 
will break up into quasiparticle excitations by two 
mechanisms. First, if a more exact calculation of 
properties of the electron gas is made, the real (Hartree) 
plasmon is unstable against decay into four quasi-
partides. The lifetime for such decay is a function of 
the plasmon wave vector, becoming infinite in the limit 
q-*0. Such processes will produce electrons having an 
energy distribution like those which have suffered a 
major inelastic collision, as the total photon energy is 
partitioned between two pairs of quasiparticles instead 
of one pair. 

Second, if the crystal potential were included in 
higher order, the plasmon could scatter against the 
crystal potential and decay into an electron-hole pair. 
This process takes place even for ^ = 0 plasmons. Thus, 
for any given size of crystal potential, eventually for 
small enough q the crystal potential causes the plasmon 
to decay. 

The breakup of the plasmon by the lattice potential is 
easily calculated in lowest order. The (Flartree) plasmon 
creation operator can be taken as 

•HI 
Ck+q*Ck 

Ep(q) + B/c-Elc+q 

\h\<kF, 
(12) 

If the lattice introduces some effective one-body 
potential V(r), it can, in lowest order, scatter either the 
electron or the hole, but not both. For plasmon wave 
vectors such that 

¥/2m{kF+qY<Ep{q) (13) 

hole scattering cannot conserve energy, so only electron 
scattering is available. Electron scattering from pair 
component of the plasmon takes place independently. 
Restricting ourselves to q which satisfy (13), (q<Q.35kF 
for potassium), the probability of leaving a hole in state 
k is then proportional to 

tl/(Ep(q)+Ek-Ek+q)JW(Ek+q-> Ep(q)-Ek). (14) 

Here W(Ek+q —•> Ep{q) — Ek) is the probability per unit 
time that an electron placed in state k + q but arbi
trarily assigned an energy Ep(q) — Ek would be scattered 
by the lattice into a final state of energy Ep(q) — Ek. W, 
of course, depends on the lattice potential, but has a 
form which depends only weakly on the form of the 
lattice potential. For a potential with uniform Fourier 
components (much like the screened potential of the 
present problem) W will vary as JiEp(q) — Ek]

l/2, a 
dependence weak enough to be neglected in the present 
calculation. 

Putting W=constant in (14), the probability of 
leaving a hole in state k can be calculated from (12) by 
calculating the normalizing factor in the probability 
distribution. The electron then has the total energy 
Ek+Ep(q). 

The plasmons generated by photons of energy E must 
have the same energy: i.e., Ep(q) = E. By choosing E 
only slightly above Ep(0), q can be kept small, making 
the lattice potential the dominant source of plasmon 
decay into particles. For such an E, Eq. (13) would also 
be satisfied. [ In potassium (13) is satisfied from Ep(0) 
= 3.7 to 3.9 eV.] 

_ 3.5 eV 

. 5.0 eV / 

3.8 eV / 

6.0 eV / 

3.9 eV / 

8.0 eV / 

S^ i i 

4.0 eV / 

10.0 eV / 

|k+q|>*,. 

2 0 I 2 0 I 2 0 
*• KINETIC ENERGY (eV) 

FIG. 3. The primary photoelectron kinetic-energy distribution 
from that part of the optical absorption due to phonons (or dis
order) . Each curve is normalized to the same area. The energy zero 
is chosen as i£photon—#Fermi, the minimum kinetic energy possible 
above the Fermi energy for a given photon energy. In the Hartree 
approximation, all curves would resemble a free-electron parabola. 
The photon energies in electron volts are given in the upper left 
corners. 
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It is not inconsistent with the original spirit of the 
calculation to order | Vq \

2 to include damping due to the 
lattice potential. This damping introduces no added 
absorptions: It only ensures that the absorption states 
are allowed to decay to the final products important in 
photoemission. The entire photoemission electron dis
tribution is still proportional only to \Vq\

2. Calculated 
photoemission electron distributions for this case are 
also given in Fig, 3. 

For photon energies and disorder wave vectors above 
the hole-scattering threshold, a small amount of hole 
scattering will occur. Even for the worst energy, 
E^Ep(qc)y the low density and consequent electron-hole 
asymmetry make the electron scattering about three 
times more important than the hole scattering. (The 
real plasmon contribution goes smoothly to zero at this 
energy.) Equation (14) is then a fair approximation at 
all photon energies. 

IV. DISCUSSION 

The optical absorption of potassium is as yet poorly 
understood. When this very simple metal is not well 
understood, basic questions about the interpretations 
given in more complicated systems arise. Photoemission 
studies provide a good complement to optical-absorp
tion studies, for even at a single photon energy informa
tion can be obtained about the nature of the electronic 
transitions. The calculation presented shows that the 
primary photoelectron energy spectrum in simple 
metals shows significant additional structure when 
higher approximations than Hartree are used to cal
culate the optical absorption, and absorption is due to 
disorder. 

Phillips4 has recently pointed out that there is some 
experimental evidence in potassium for an unexpectedly 
large number of photoelectrons originating near the 
Fermi surface for some energies of excitation. He has 
interpreted this in terms of an unspecified form of 
"collective resonance." An alternative explanation of 
such a result is that the excess is just what would be 
expected from the non-Hartree calculation of photo-
electrons due to disorder, since the critical range of 
photon energies seems to be at and above the plasma 
energy as in Fig. 3. 

The present theory is clearly not quantitatively 
applicable to Ag or Cu. A similar qualitative effect 
would be expected, however, especially in silver which 
has a strong plasmon13 at 3.8 eV for k=0. Phillips notes 
that a large excess of photoelectrons from the Fermi 
surface occurs for photons of energies near 3.8 eV. 
Owing to band-structure differences copper does not 
(at least at k = 0) have a recognizable plasmon.13 It does 
not display the strong photoemission effect shown in 
silver. 

It is somewhat surprising to note in Fig. 3 that the 

12 P. N. Butcher, Proc. Phys. Soc. (London) A64, 765 (1951). 
13 H. Ehrenreich and H. R. Phillip, Phys. Rev. 128,1622 (1962). 

free-electron parabola, well approximated at low photon 
energies, is not returned to by 10.0 eV. The shape at 
this photon energy is still dominated by small wave-
vector components of the potential, which are well 
screened at low frequencies but unscreened at high 
frequencies. 

The calculated qualitative effect of corrections to the 
Hartree-approximation optical properties on photo
emission ought to exist (at least in simple metals like 
potassium) if the ordinary free-electron ground state is 
qualitatively correct. In potassium and perhaps sodium 
the possibility of having the disorder contribution com
pletely swamped by the lattice contribution is mini
mized. The careful study of the temperature dependence 
of the photoelectron energy distribution for photon 
energies near and above the plasmon energy would be 
most useful in separating disorder and periodic contri
butions to look for the predicted effect. 

If the ground state in potassium is free electron like, 
the most major error in the present calculation is the 
supposition that the crystal potential is small. Indeed, 
the crystal potential is not small—only its effect on the 
free-electron energy levels near the Fermi energy is 
small. Errors due to the magnitude of the crystal 
potential might introduce additional structure, but 
there is no reason to expect them to eliminate the 
qualitative effect calculated here. The use of the 
Hartree dielectron function limits the quantitative 
reliability of these calculations, but should not be in 
qualitative error. Calculations of the optical properties 
of potassium, if the crystal potential is not regarded as 
small, are now being attempted. 
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APPENDIX 

Overhauser6*14 has calculated the spin-density wave 
properties of the free-electron gas containing electron-
electron interactions but no lattice. In a free-electron 
gas, electron-electron collisions conserve momentum 
(and thus current), and therefore cannot result in a 
real part of the electrical conductivity for uniform fields. 

In Overhauser's calculation, there is a periodic poten
tial which is effectively used as a lattice potential for 
inducing electron band-to-band transitions. When the 
periodic potential is due to the lattice, this calculation 
is correct. When this potential is due to the electrons, 
however, the effect of this potential is also electric-field 
dependent, and the "backflow" must be calculated. For 
a uniform electric field, it will precisely cancel the term 
calculated by Overhauser. 

14 A. W. Overhauser, Phys. Rev. 128, 1437 (1962). 
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An analogous cancellation is well-known in free-
electron spin resonance of alkali metals. In the presence 
of a magnetic field, the electron gas is spin polarized. An 
exchange field thus exists which alters the energy re
quired to flip the spin of a particular electron. This 
exchange field is analagous to Overhauser's periodic 
potential. If the spin-resonance frequency is calculated 
without including back flow, it is altered by the ex
change field. In actual fact, since the total spin angular 
momentum commutes with the Hamiltonian, exchange 
does not alter the spin-resonance frequency, and 
"backflow" precisely cancels the exchange correction to 
the spin-resonance frequency. In both cases the cancel
lation is a necessary consequence of the observables in 
question, the current and spin, respectively, commuting 
with the total Hamiltonian. 

Under some circumstances, "a t k = 0" and "the limit 

k —•> 0" are not the same in the presence of long-range 
interactions. In both Overhauser's case and the case of 
the spin in an electron gas, the relevant excitation has 
no charge-density fluctuation in the limit k—>0, so 
"the limit k—>0" and "at k = 0" are synonymous. 
[Overhauser uses a k —* 0 limiting process, but only to 
show the relation between the power absorption and 
€2(co)]. 

This discussion does not bear on the correctness of the 
spin-density wave ground state in potassium. Were 
potassium to have such a ground state, other mecha
nisms (pinning of the spin-density wave or anomalous 
skin effect) could result in optical absorption displaying 
the spin-density wave. The Overhauser calculation, 
however, of a one-parameter optical-absorption shape 
based on a free-electron gas and the long-wavelength 
limit seems to be incorrect. 
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Nuclear Magnetic Resonance of 61Ni in Nickel Metal* 
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The zero-applied-field nuclear magnetic resonance of 61Ni in high purity, well-annealed Ni metal has been 
investigated at room temperature. The technique of rotary saturation is used to obtain a value for the 
domain-wall enhancement factor r\ —1600. Fast passage and saturation effects are observed and interpreted 
according to theories developed by Portis for inhomogeneously broadened spin systems. This analysis leads 
to a value for the longitudinal relaxation time Ti = 0.16 msec, and to an observed nuclear dispersion-to-
absorption ratio in the power absorbed of /3o = 0.5 at low rf levels. Fast-passage effects are used to obtain a 
tracing of the distribution of nuclear magnetic fields in the sample. 

INTRODUCTION 

ZERO-applied-field nuclear magnetic resonance sig
nals observed at low rf levels in the ferromagnetic 

metals, Co,1'2 Ni,3-4 and Fe,5~8 arise from nuclei in 
the domain walls of the sample. Because of the motion 
of the domain walls under the influence of the applied 
rf magnetic field, the rf-field amplitude at the site of 

* Supported in part by a grant from the National Science 
Foundation and in part by University of Wisconsin research funds 
provided by the Wisconsin Alumni Research Foundation. 

f Present address: Department of Physics, Cornell University, 
Ithaca, New York. 
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resonances in Co1 and Fe.8 

This paper presents the results of an investigation of 
the nuclear magnetic resonance of 61Ni in pure, well-
annealed, unenriched Ni powder at room temperature. 
The technique of rotary saturation11 is used to find 
directly a value for the domain-wall enhancement 
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