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Thermal Effects on Dislocation Velocities in a Linear Chain* 
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The effects of the thermal motion of atoms upon a dislocation in steady motion in a modified Frenkel-
Kontorowa model are examined. The energy associated with the localized mode due to the dislocation and 
the energy associated with the nonlocalized modes are considered separately and referred to as the energy 
of the dislocation system and of the surrounding heat bath, respectively. Several distinct components of the 
net energy exchange between dislocation system and heat bath are isolated. In particular, one component 
is found which may be described as a coordinating effect between the thermal motion of the atoms and the 
dislocation motion, which results in a transfer of energy from the heat bath to the moving dislocation. 
When model parameter values are chosen so that this component of energy transfer is dominant, the drag 
on a moving dislocation in the model studied decreases with increase in temperature. Computer simulation 
of the model lends support to the principal features of the theory. 

1. INTRODUCTION 

BY the employment of a modified Frenkel-Kontorowa 
model the motion of a dislocation in a linear chain 

of atoms has been considered in two previous papers.1'2 

In the first, I, the frequency with which a dislocation 
under an applied stress less than the Peierls' stress <JP 

leaves a position of stable equilibrium by means of 
thermal activation was considered. The second paper, 
II , dealt with the subsequent motion of the dislocation, 
once it had surmounted the first potential barrier by 
thermal activation. I t was found in I I that sustained 
steady motion of the dislocation would then be possible 
without the further intervention of thermal motion if 
the applied stress exceeded a critical level termed the 
dynamic Peierls' stress crpD^10~Vp. 

I t is the purpose of the present paper to use the same 
dislocation model and to examine the effects of thermal 
motion upon the sustained dislocation motion which 
was studied in I I from an athermal viewpoint. Previous 
studies3 have indicated that the interaction of a moving 
dislocation with thermal vibrations should result in a 
drag force on it and consequently a lower steady-state 
velocity for a given applied stress. For the present 
simplified model, it is possible to examine the exchange 
of energy of the dislocation system with the surrounding 
heat bath4 of the remaining crystal in greater detail. 
Several distinct components of the net exchange are 
isolated. In particular, one component is found which 
may be described as a coordinating effect between the 
thermal motion and the dislocation motion. This 
coordinating effect results in a transfer of energy from 
the heat bath to the moving dislocation; when this 
component of energy transfer is dominant, therefore, 

* This research was supported by the U. S. Air Force Office of 
Scientific Research under Grant No. AF-AFOSR-228-63. 

1 J. H. Weiner and W. T. Sanders, Phys. Rev. 134, A1007 
(1964); hereafter referred to as I. 

2 J. H. Weiner, Phys. Rev. 136, A863 (1964); hereafter referred 
to as I I . 

3 G. Leibfried, Z. Physik 127, 344 (1950). W. P. Mason, J. 
Acoust. Soc. Am. 32, 458 (1960); J. Appl. Phys. 35, 2779 (1964). 

4 The concepts of energy of the heat bath and of the dislocation 
refer to energy associated with nonlocalized and localized modes, 
respectively, and are discussed in greater detail in Sec. 4. 

the effect of the interaction of thermal motion with a 
moving dislocation is to increase its steady-state 
velocity for a given applied stress, and the drag on the 
dislocation decreases with a rise in temperature. 

I t is, of course, difficult to extrapolate from the 
behavior of the highly idealized one-dimensional model 
treated here to the motion of dislocations in real three-
dimensional crystals. However, a high degree of 
idealization is perhaps inevitable in a microscopic or 
atomistic treatment of such phenomena. One may hope, 
however, that the analysis of atomistic models may 
provide insights into the nature of the type of phe­
nomena under study, and that these insights may then 
prove useful in the construction of models which, being 
more phenomenological, can include more aspects of 
reality. For example, a theory for the interpretation 
of the observed temperature and stress dependence of 
dislocation velocities in semiconductors has been given 
by Celli et al.5 This theory, which utilizes the string 
model of a dislocation, has as essential]1 elements 
dislocation kinks and dragging points/ :The*nature of 
dislocation motion in the linear chain of the present 
paper is obviously a drastic oversimplification of the 
mode of dislocation motion as described in the model 
of Celli et ah Nevertheless, the results of this analysis 
may have some relevance to the motion, postulated 
in that model, of kinks along the dislocation line. 

The model employed in^the^present analysis is 
described in Sec. 2 and the nature of the coordinating 
effect is discussed in that and the following section. 
Anharmonic effects are treated briefly in Sec. 4. 
Digital-computer simulations of the model were made 
to verify some aspects of the theoretical analyses. 
These are described in Sec. 5; conclusions are presented 
in Sec. 6. 

2. MODEL DESCRIPTION AND ANALYSIS 

We again consider the modified Frenkel-Kontorowa 
dislocation model studied in I and II . Only a brief 

5 V. Celli, M. Kabler, T. Ninomiya, and R. Thomson, Phys. 
Rev. 131, 58 (1963). 
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description of the model is presented here; for a more 
complete description and for the notation used but 
not defined here, the reader is referred to the previous 
papers. 

The model consists of a linear chain of atoms inter­
connected by linear springs and subjected to a periodic, 
piecewise quadratic substrate potential (Fig. 1). The 
horizontal line (hereafter referred to as the transition 
line) in this figure separates the portions of the potential 
surface with positive and negative curvature. An atom 
above this line is referred to as a weak-bond atom; one 
below, as a strong-bond atom. The parameters P and y 
of the model [Eq. (2.2) Ref. 2] 6 are chosen, as in II , 
so that there is only one weak-bond atom ( i = 0 ) in the 
stable-equilibrium dislocation configuration under zero 
stress; the change in energy dE for displacements q3

s 

of the jth atom from this configuration is given by 

BE^iZStf/tq/*, (2.1) 

where the matrix S^ [Eq. (2.6) Ref. 2] is positive-
definite. Because of the piecewise quadratic form of the 
substrate potential, Eq. (2.1) is valid until one of the 
atoms crosses the transition line. There are two atoms 
O'=0, 1) above the line in the unstable equilibrium 
position; the corresponding expression for the change 
in energy from this configuration is 

SE^ZUijqiVqf, (2.2) 
i,3 

where U^ [Eq. (2.10) Ref. 2] has precisely one negative 
eigenvalue. 

I t was shown in I I that, for appropriate stress levels 
or, the dislocation will undergo sustained motion such 
that (1) in the time interval h<t<t2 there will be only 
one weak-bond atom, 7 = 0, (2) in the time interval 
h<i<h there will be two weak-bond atoms, j=0, 1, 
(3) in the time interval t%<t<t± there will again be 
only one weak-bond atom, j = 1, etc. 

Let \a
8,u, a = 0, 1, 2, • • • be the eigenvalues of the 

matrix Sij or £/#, respectively, with associated unit 
eigenvectors aaj

s'u where the eigenvalues are ordered 
in increasing magnitude and aaj

8tU is the displacement 
of the jth atom in the a mode and let 

QaW-ILjOafW (2.3a) 
so that 

qf'^ZaO^Q*"*' (2-3b) 

Because of the presence of the dislocation, a0j
s and 

aoju are localized normal modes and, as shown in I I , a 
reasonably good approximation to the dislocation 
motion can be obtained by restricting attention to the 
motion of the corresponding local normal coordinates 
(l.n.c.) Qos and Q0

U. The latter satisfy ordinary differ­
ential equations (2.8) (Ref. 2) and (2.9) (Ref. 2) in the 

6 Equations in I and I I are denoted by Ref. 1 and Ref. 2, 
respectively. 

b [ft 

FIG. 1. Modified Frenkel-Kontorowa dislocation model. 
Potential wells and peaks are parabolic. <j> is distance to point of 
change of curvature sign. 

time intervals h<t<t2 and h<t<t%, respectively. We 
now consider the transition time t = t2. 

Because the atom coordinates qjs(t) and q3
u{t) differ 

only in their fixed references, it follows that qjs(t) 
— 4ju(t)> We may therefore write 

Q o ^ 2 ) = Z ; a o W ( * 2 ) = £ y a o W ( f e ) 

= T,a0j
uaaj

sQa
s(t2) 

3,a 

= Z i a*3U ^ o / Q o S W + S i &0jU Z « dajSQaS(t2) 

= £1/2Qos(*2)+E,- a0j
uv}(h), (2.5) 

where 
0 < 7 ? ' / 2 = X J - « o / 7 a o / < l , (2.6) 

^ ( 0 = £ « « a / Q « s ( 0 - (2.7) 

I t appears reasonable to refer to Vj(f), the portion of 
the atomic velocity due to all the nonlocalized modes, 
as the fluctuating component due to thermal motion; 
while the atomic motion due to the localized mode is 
considered as that due to the directed dislocation 
motion. In I I , the effects of thermal motion were 
neglected; that is, the term involving Vj(t) was omitted 
from Eq. (2.5) and the problem solved on that basis. 
We wish now to examine this aspect of the problem. 

If the thermal motion of the atoms corresponds to 
thermal equilibrium at temperature T, then 

<0y>«=0, ((vjY^m-'kT, 

where the ( )t denote a time average over a period which 
is long with respect to the period of thermal vibrations, 
and m is the atomic mass. 

We consider next an ensemble of transitions from a 
configuration with one weak bond j — jw to a configura­
tion with two weak bonds j=jw, jw+1 (briefly an 
S-to-U transition). This ensemble corresponds to a 
sequence of many such transitions as the dislocation 
moves along the chain, so that jw differs for each 
transition. I t is convenient to introduce, in addition to 
the fixed atomic index system j , a moving atomic index 
system j ' = j—jw- The atomic thermal velocity will 
be denoted by Vj when the fixed indexing system is used, 
and by m,-' when the moving indexing system is used. 
Thus Wo=Vjw, etc. Let a typical S-to-U transition of the 
ensemble occur at time IT. At such time, Eq. (2.5) 
applies in the form 

Qou(lT) = BWQos(h)+i:j> a0j>
uwAtT). (2.5') 
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We average each term of this equation over all of the 
transitions of the ensemble and denote this average by 
angular brackets without subscript. The result is 

(Qou(tT))=B^(Q^(tT))+j:f aoj>
u(wAtT)). (2.8) 

We note that for a moving dislocation the average 
(wi'tyr)) is one for fixed / and is thus the average of 
the thermal velocities at the time of transition of 
different atoms which are, however, each in the same 
relative position to the single weak-bond atom before 
transition. I t will also be convenient for some of the dis­
cussion to use the notation (#yfe))=(%'fe) ) with 
j=f+jw. Thus (VJW (^r))= ($o(£r)), etc. In the absence 
of any coordinating effect, it may be expected that 

where the equality to zero follows if thermal equilibrium 
is assumed for the thermal motion. However, for the 
model under consideration, the time of transition tr is 
governed by the motion of a single atom j = J'T- For a 
transition from an S state in which j — jw is the only 
weak-bond atom, it is seen that JT = jw~\-l; that is, fa 
is the instant when the atom J=JT, (j'= 1) crosses the 
transition line and changes its bond from strong to 
weak. In this case it may be expected that a coordinating 
effect does exist and that therefore 

If it is assumed7 that there is no correlation between 
the thermal velocities of the atoms (which would be 
the case if the thermal motion corresponded to thermal 
equilibrium), one would expect (WJ>(IT)) = 0 for j'y*l. 
Equation (2.8) then becomes 

(Qoc/(^)) = 5 1 / 2 (Qo^/ r ) )+a 0 i ^ (^ i fe ) ) . (2.9) 

The average initial velocity Qou(h) of the l.n.c. Q0
U 

in an S to U transition is therefore due to two separate 
effects: (1) the "inelastic impact8" of the preceding 
l.n.c. QQS and (2) the coordinated thermal effect. I t 
will be shown in the next section, under certain simplify­
ing assumptions, that the coordinated thermal effect is 
such as to aid the dislocation motion. 

For certain model parameter values, discussed in 
Sec. 5, it is possible that the weak-bond atom j—jw 
changes from weak to strong at approximately the 
same time tr that the transition atom JT=JW-\-1 
changes from strong to weak. In this case we have an 
S-to-S transition. The changes in the preceding analysis 
in this case are the expected ones. In particular, Eqs. 

7 This assumption is not a critical one because of the strongly 
localized nature of aoju. It is discussed further in Sec. 5 (particu­
larly Figs. 7 and 8) in the light of a computer simulation of the 
model. 

8 The term "inelastic impact" is used figuratively with reference 
to the pendulum model of Ref. 2. It arises from the fact that 
B<1. 

(2.8) and (2.9) become 

(Qos,(tT)) = B^(Qos(h))+i:, ao^iwAh)}, (2.10) 

<Oofl,(^)> = 51/2<<Jofi(fe)>+aois,<*i(fe)>, (2.H) 

where, as before, Q0
S is the l.n.c. for the state in which 

j—jw is the only weak-bond atom, Q0
8' is the l.n.c. 

for the state in which j—jV+1 is the only weak-bond 
atom, and ao3-

s' is the corresponding eigenvector. 
Clearly aojS' = ao,j~is. For this case 

£ 1 / 2 = E y aoisao.j-is=2p/(l+P), (2.12) 

where (3 is defined in Eq. (2.7) (Ref. 1). For future 
reference, we record here also the value of steady-state 
dislocation velocity V computed on the athermal 
basis of I I for the S-to-5 transition case. 

rPas<r( l+£ 1 / 2) l 1 / 2 

where, in addition to the terms previously defined, 

^ = [ ( 2 T - / S ) / a o i s ] , (2.14) 

a 0 / = [ ( l - / 5 2 ) / ( l + ^ ) ] 1 / 2 / 3 ^ 

3. COORDINATION EFFECT 

Consider the motion of the transition atom qjT
s(t): 

qJT
s (t) = a0jT

sQos ( 0 + Z « daj/Qc? (0 

= a0JT
sQ0

s(t)+vJT(t). (3.1) 

We consider an ensemble of transition atoms (corre­
sponding conceptually to a sequence of many such 
transitions) with the assumption that, for fixed but 
arbitrary t, the ensemble average (vjT(t)) = 0 so that 

<&r
fl(0>=o«rs<&s(0>. (3-2) 

For steady-state dislocation motion, we may regard 
(Qos(i)) as prescribed; in what follows, we take {Qos(t}) 
as independent of time. In simpler notation, then, we 
are concerned with an ensemble of particles each of 
which starts from the same point at / = 0 and moves in 
the same direction with velocity v(t;6) = a+f(t; 6), 
where a is a constant and 6 is the ensemble parameter 
taken such that 

</(0>= f fd; e)dd=o-, (v(t; e))=a. (3.3) 
./O 

Let 

*(*;*)= f v(r;e)dr (3.4) 
./o 

be the distance traveled from the origin, of the member 
of the ensemble corresponding to 6. Then the transition 
time h(d), for this member of the ensemble, is deter-
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mined implicitly by the equation 

(3.5) 

where D, a constant, is the critical distance. What is 
desired is (v(tT(6) ; 0)). In this general form the problem 
appears difficult to solve. We make here some further 
simplifying assumptions. First, we assume that 

v(t;B) = a+f(t+e), (3.6) 

so that Eq . (3.5) becomes 

/.l /.M-l 

/ f(t+6)dd= / f(T)dr = 0. (3.7) 
Jo J t 

I t follows, in particular, that 

(3.8) 

The assumption of Eq. (3.6) therefore corresponds to 
the statement that the random portion of the particle 
velocity is always the same periodic function, with 
only the phase being random. Let V(x; 0) be the velocity 
of the member of the ensemble corresponding to 0 
when it reaches the distance x; that is (Fig. 2), 

vm;0);0)=v(t;d). (3.9) 

Then, 

(v(tT(e);6))=(V(D; 0)> = V(D; 6)d6 
-

Jo 

For the ensemble denned by Eq. (3.6), 
V(D;d)=v(D+j v(r)dr;0\ = V(D+m), (3. 10) 

where we have written %(0)=1%(6;0)>V(T) = V(T;0), and 
V(x) = V(x; 0). Therefore 

(V(D 
Jo 

v(D+m)de. (3.11) 

We now use £ as variable of integration and make use 
of Eqs. (3.3), (3.4), and (3.8). The result is 

(V(D-6)) 

where 

C(D)-

-L 
•a 

" V(D+p d£=a+C(D), (3.12) 

T H P + a - n a ­

n a 
\d£ (3.13) 

is the coordination effect on the mean velocity with 
which particles arrive at the prescribed location D. 
As a consequence of the velocity periodicity expressed 
by Eq. (3.8), F(£) is also periodic with period a. 
Therefore, if we choose n=0,1, 2, • • • such that 0 ̂  17< a, 
where r) = D—na, we may replace D in the integral of 
Eq. (3.13) by rj. We next evaluate this integral for the 

V(x;0) 

FIG. 2. Illustration for probability discussion of Sec. 3. 

piecewise constant velocity, 

v(6) = a-b', O < 0 < J , 
= a+b; § < 0 < 1 , 

(3.14) 

with I b I < a, a distribution which clearly satisfies Eq. 
(3.7). Then 

V(£) = o-b; 0 < | < § ( a - Z > ) 

= a+b; | ( « - * ) < K f f l -

Evaluation of the integral leads to the result 

4i?& 
C(v) = 

CM 
2W 

a+b 

0<V<h(a-b); 

Ua-b)<v<Ua+b); 

4(a-i;)&2 

C(ij) = — ; h(o+b)<n<a. 
a2-&2 

(3.15) 

The dependence of the coordination effect upon rj is 
apparently a result of the unrealistic assumption of 
strict periodicity of all members of the ensemble. In 
particular, it leads to the result that the increase in the 
mean velocity due to the coordination effect vanishes 
for 77=0. However, it is seen that if b~a, that is, if the 
fluctuating velocity component is approximately equal 
in magnitude to the mean velocity, then for almost 
the entire interval of 77, 

C(v)=(W)/{a+b), (3.16) 

independent of 7?. I t is seen that for b — a, the limiting 
value of b for which the above analysis applies, C(rj) = b; 
it is clear that C(rj) = b for b>a as well, for the first 
crossing of D can then only occur with A > 0 . 

4. ANHARMONIC EFFECTS 

The discussion has thus far been concerned with a 
piecewise harmonic linear model. We wish to consider 
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next the effects of anharmonic terms in such a linear 
model. 

Let, therefore, the potential energy V of the chain 
be written in the equivalent forms 

V=h £.\y Sijqi
s
qj

s+SA(qs) (4.1S) 
or 

F = Vo+h Zij Uijqi%^+UA(q^), (4.1U) 

where the functions SA(qs) and UA(qu) contain terms 
of cubic and higher order in the variables qiS, qiu, 
respectively. The difference in the two forms of the 
potential-energy function is due solely to the different 
reference configuration used in measuring the atomic 
displacements qis and qf. Of course, either form of V 
may be used for writing the exact equations of motion 
of the chain for all atom configurations. However, if 
Eq. (4.IS) is employed, the magnitude of the an­
harmonic terms SA(qs) will increase greatly as the 
configuration departure from the stable equilibrium 
position increases, and an analogous statement applies 
if Eq. (4.1U) is employed. These exact equations of 
motion may be written in terms of the normal co­
ordinates corresponding to the normal modes of the 
linearized system in the usual way as either 

Qas+\«sQJ+SA
f(Qs) = P<j Zi aai

s (4.2S) 
or 

QaU+KuQaU+U/(Qu) = P<r Zi a«iu, (4.2U) 

depending upon which form of the potential-energy 
function is used. The functions SA'(Q8), UA(QU) 
contain terms of quadratic and higher order in the 
variables Qa

s, Qa
u, respectively, and introduce coupling 

among the normal coordinates. 
An exact solution of Eqs. (4.2) is neither feasible nor 

desirable. Rather what is wished is to treat only those 
of Eqs. (4.2) for which a = 0, that is for the l.n.c. which 
describes the directed dislocation motion. Some assump­
tion is then necessary regarding the remaining normal 
coordinates (usually that their energy distribution 
corresponds to thermal equilibrium) and the coupling 
effect treated on some statistical basis. The latter 
analysis is greatly simplified by an assumption of 
weak coupling. For example, the work of Toda9 utilizes 
this assumption. If an analysis of this type is attempted, 
therefore, it is necessary to limit the magnitude of the 
anharmonic terms by utilizing both Eqs. (4.2S) and 
(4.2U) in appropriate regions. 

One means of determining the boundary between 
these regions is as follows: 
Let 

qi=qi8, Vv(q) = td>V(q)/dq#qJl, 

where d— (d-N, * * * ,dx) is the displacement of the saddle 
point from the stable equilibrium configuration. Let 

9 M. Toda, J. Phys. Soc. Japan 14, 722 (1959). 

X0(#) be the minimum eigenvalue of the matrix Vn(q)9 

so that X0(0) = Xo'Sf>0 and \0(d) = \ou<0. For functions 
SA(q) and UA(q) of reasonably restricted nature, we 
may expect that the coupling terms will be minimized 
if Eq. (4.2S) is used for q such that X0(g)^0 and Eq. 
(4.2U) is used for q such that X0(#)^0. Furthermore, 
for the case of dislocation motion, only a few of the qj 
vary sufficiently to affect the variation of X0(#) signifi­
cantly. The results of the piecewise harmonic model 
suggest that, in fact, the motion of a single atom J=J'T 
will determine the time IT at which the change from 
use of one equation of motion, say Eq. (4.2S), to use 
of the next form, Eq. (4.2U), takes place. At this 
transition time, the coordination effect discussed 
previously in connection with the piecewise harmonic 
model, should be operative as well in the anharmonic 
model. In addition, the coupling between modes in 
the interval between transition times which occurs in 
the anharmonic model should produce (according to 
previous analyses such as that of Toda9) a drag or 
energy-loss effect. 

Thus, the effect of the interaction of dislocation 
motion and thermal motion in a linear chain with 
general potential is separated, from this viewpoint, 
into two parts : (1) an energy loss due to anharmonic 
coupling between transition times and (2) an energy 
gain due to the coordination effect at the transition 
times. Which of these two terms predominates would 
seem to depend on the magnitude of the anharmonic 
terms. If we consider a given state of the dislocation, 
say an S state, in the time interval tx^t^t2 and refer 
to the collection of nonlocalized normal modes as the 
heat bath, then, from the above viewpoint, the energy 
transfers which occur to and from the dislocation in the 
S state are shown schematically in Fig. 3. 

I t should be noted that this separation is not a 
fundamental one but rather one motivated by the 
desire for simplified approximate treatment. Should it 
be possible to solve the statistical interaction problem 
posed by either Eq. (4.2S) or Eq. (4.2U) for arbitrary 
interaction functions SA or UA, then such an analysis 
would require the use of only one of these equations 
for the entire range of dislocation motion and would 
yield the net energy gain or loss of the dislocation 
directly. 
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FIG. 3. Schematic of paths of energy flow in dislocation motion. 
F—Energy transferred forward in inelastic collision. R—Energy 
rejected upon inelastic collision. C—Energy gain due to coordina­
tion effect. A—Energy lost due to anharmonic drag. 
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5. COMPUTER SIMULATION 

Calculations on a digital computer were undertaken 
in order to examine the validity of the concept of 
thermal energy transfer due to the coordinating effect. 
For this purpose, the piecewise harmonic linear chain 
model (discussed in I and II) was used in order to 
eliminate anharmonic drag as far as possible. As we shall 
see, some anharmonic drag effects are present even in 
this model in the presence of thermal motion. The 
reason for this is that the thermal motion produces 
occasional aberrations in the state sequence of the 
dislocation; for example, an atom at some distance 
from the dislocation center may change its bond type 
during a given state. This results in the coupling of 
the linear modes corresponding to that state, thus 
introducing anharmonic drag. 

In order to meet the hypotheses of the theory as 
closely as possible, it was necessary to choose the 
parameters of the model so that the time required for 
the dislocation to move one lattice spacing is large 
compared to the period of vibration of the atoms about 
their equilibrium sites due to thermal motion. This was 
accomplished most conveniently by choosing parameter 
values for which a solution with one weak bond is on 
the threshold of instability; that is, where the minimum 
eigenvalue \0

S of the matrix Sij is zero. As may be seen 
from the analysis of I and I I , when this is the case, 
both the static Peierls stress <jp and the dynamic 
Peierls stress apD vanish. Because of the latter effect, it 
is possible to maintain dislocation motion under arbi­
trarily small applied stress and to choose this stress so 
that the dislocation velocity has an appropriately small 
value.10 For the case in which \0

S = 0, it may be seen 
that the total transverse djj [Eq. (2.14) (Ref. 2)] of the 
l.n.c. Q0

U also vanishes so that it may be expected that 
in general the dislocation moves from a state in which 
there is a single weak-bond atom (yth atom) directly 
to the state in which the only weak-bond atom is the 
( y + l ) t h , without the usual intervening state in which 
there are two weak-bond atoms. In the terminology 
introduced previously, the transitions which occur for 
these exceptional values of the parameters are S-to-S 
transitions. 

The numerical procedure followed for the digital 
computer calculations is that described in II, Sec. 3. 
However, the atoms were given initial velocities 
(instead of quiescent initial conditions) as follows: 

dxj/dt = ( - 1 ) fi» (ny2A+Caoj
s 

for j/n an integer or zero, (5.1) 
= Caoj8 for j/n not an integer, 

where Xj is the position of the 7th atom (referred to a 
lattice spacing of unity) and the nondimensional time t 
is defined in (2.5) (Ref. 2). The quantity C(cr) was 

10 It is also theoretically possible to get very low dislocation 
velocities by choosing a—apD small when <TPD>0. However, in 
this case the velocity is extremely sensitive to the applied stress 
a (see Fig. 4 of II) , and this creates computational difficulties. 

chosen so that the initial velocity of the dislocation 
corresponded to that predicted by the localized mode 
analysis of I I which neglects the effect of thermal 
motion. The component of the initial velocity alter­
nating in sign was used to simulate thermal motion; 
the parameter n allows some variation in initial condi­
tions with average initial kinetic energy per atom equal 
to \A2, independent of n. 

All the calculations reported on here were performed 
for parameter values P = 0 . 5 , Y = i> <r = 5X10~4, and 
N=35 (so that there were 71 atoms in the chain). In 
all the runs the computations were continued until 
the dislocation, starting from the center of the chain, 
moved twenty lattice spacings under the applied stress. 
Nine runs were made for various values of A, 0 ̂  A ^ 0.04 
with initial conditions corresponding to n — 2 in Eq. 
(5.1). To compare the effect of different initial condi­
tions, the case of ^4=0.03 was also run for n=3 and 
w=4. For the case of A = 0 (no initial thermal motion), 
the digital computations showed, with only very 
occasional aberrations, that the sequence of states 
occurred as assumed in the analysis of I I and above 
(that is, 5 to 5) . As A was increased, the number of 
irregularities observed in the state sequence also was 
increased; this effect was observed as well for the case 
of 4̂ = 0.03 for the larger values of n. The latter phe­
nomenon is due to the fact that for larger n, fewer 
atoms are excited, but with proportionately larger 
initial energy. 

The results of the computations are shown in Figs. 4 
to 9. In the nondimensional terms used in I I , the 
average dislocation velocity between two successive 
S-to-S transitions is simply the inverse of the time 
interval between them. As is to be expected, the energy 
interchange between dislocation and heat bath varies 
with each transition and accordingly the dislocation 
velocity fluctuates, the magnitude of the observed 
fluctuations being approximately ± 2 0 % . The average 
dislocation velocity for the total distance of twenty 
lattice steps traversed is shown in Fig. 4 for the various 
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FIG. 4. Average dislocation velocity as determined 
by computer simulation. 
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FIG. 5. Typical paths of 
successive transition atoms, 
.4=0.01, n — 2. XjT—JT is 
distance of transition atom 
from nearest potential well 
on its left. Critical distance 
from this point is Y = | . 

100 

values of A. The general trend is seen to be increased 
steady-state velocity with increase in A, (which 
corresponds to an increase in temperature), in accord­
ance with the concept of thermal energy transfer to 
the dislocation due to the coordinating effect. The 
departures from this trend can be attributed, it is 
believed, primarily to anharmonic drag effects; this 
appears to be the case, for example, for the calculations 
for ,4=0.03, n=3 and 4, where the larger amplitude 
of thermal motion of the fewer excited atoms produces 
more frequent and severe aberrations in the state 
sequence. Almost all the velocities determined in the 
computer calculations, as seen in Fig. 4, lie above the 
value 7=0.078 given by Eq. (2.13) which is based on 
the absence of thermal effects. 

As stated previously, the parameter values were 
chosen to obtain several cycles of thermal fluctuation 
of the transition atom during a given state configuration. 
That this was achieved is shown in Fig. 5 in which 
are plotted typical paths of successive transition 
atoms. The conditions are seen to conform reasonably 
well to the hypotheses underlying the probability 
discussion of Sec. 3. The alternation of the severity of 

<\>Ca.o. 

FIG. 6. Comparison of coordination effect as determined by 
computer simulation (VJT^IC and as given by theory <z)yr>th. 

the fluctuations observed in Fig. 5 are due to the 
persistence of the initial conditions (n==2). In order 
to check the probability formula Eq. (3.16), the com­
puter was programmed to compute the average over 
all the twenty transitions of the fluctuating component 
of the velocity of the transition atom at the time of 
transition, that is, the quantity (wi(tT))=(vjT(tT)). The 
value of this average as determined by the computer 
simulation will be referred to as (VJT)GQ\C. This average 
is compared with the theoretical value (vjT)th as 
predicted by Eq. [3.16], namely, 

(vJT),h=(2b*)/(a+b), 

where a and b were determined from the computer 
results by the time averages 

a=a0i
s(Qs)t) 

The comparison of {^>)Caic and (vjT)th is shown in Fig. 6. 
The agreement is reasonably good in view of the numer­
ous simplifying assumptions of Sec. 3. 

The next assumption which was examined with the 
aid of the computer calculations was the degree of 
correlation between tyfe), JT^JT, and VjT(tT). In the 
absence of such correlation, as noted in the discussion 
leading to Eq. (2.9), one would expect (vj(fo)) = 0, 
j^jTj even though the coordinating effect results in 
(vjT(tT))>0. In Fig. 7 are plotted (vj(tT)) versus J—JT 
as determined from the computer calculations for 
A = 0.03 and n= 2, 3, and 4. I t is seen that a high degree 
of correlation does exist, particularly for the atoms 
ahead of the dislocation. Here the persistence of the 
initial conditions is evidenced by the relatively large 
negative peaks at J—JT—2, 3, and 4 for initial condi­
tions n=2, 3, and 4, respectively. 

This large correlation between the thermal velocities 
is probably due to the relatively short time of the 
computations and the one-dimensionality of the model. 
As shown by Mazur and Montroll,11 the rate of corre­
lation decay increases with the dimensionality of the 
lattice. In spite of the correlation observed in these 
computations, however, Eq. (2.11) is still a reasonable 

11 P. Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960). 
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FIG. 7. Computer simulation 
results, (VJ ) = (VJ (fa)). 
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approximation to the energy transfer due to the 
coordination effect because of the localized character 
of the mode a0j

S. The terms appearing in the sum of 
Eq. (2.10), 

are shown in Fig. 8 for the case A = 0.03, w= 2, and the 
predominance of the single term of the sum retained 
in Eq. (2.11) is apparent. 
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FIG. 8. Computer simulation results, A =0.03, 
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FIG. 9. Computer simulation results, ^4=0. {$)={%&)). 

For the case ^4=0, there is initially no thermal energy 
in the system. However, as the dislocation moves, 
thermal energy is transferred to the heat bath because 
of the inelastic impact effect. The thermal energy 
which accumulates in the heat bath then is involved 
in the coordinating effect as well. This is shown in Fig. 9 
which is analogous to Fig. 7. As is to be expected, 
(vjT(tT)) is much smaller in the case in which 4̂ = 0. 

6. CONCLUSIONS 

Some conclusions which may be drawn from this 
work are as follows: 

(1) The net interchange of energy of a steadily 
moving dislocation in the model studied with its 
surroundings has been separated into a number of 
distinct components. These are shown schematically 
in Fig. 3. 

(2) In particular, one component is found which may 
be described as a coordinating effect between atomic 
thermal motion and dislocation motion. This coordi­
nating effect results in a transfer of thermal energy 
to the dislocation. When the model parameter values 
are chosen so that this effect is dominant, therefore, the 
effect of increased temperature is to increase the steady-
state dislocation velocity for a given applied stress. 

(3) Digital-computer simulations of the model were 
made and verified the essential aspects of the theory. 

I t is believed that a coordinating effect, similar to 
that described here, may play a role in the motion of 
other types of defects in solids, and it is hoped that 
this question may be explored in subsequent work. 
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