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A technique is developed for the diagonalization of quadratic forms consisting of operators whose commu
tators are c numbers. In particular, it is shown that the transformation matrix S which diagonalizes such 
quadratic forms, must satisfy S g' s* — g, where g is a matrix whose elements are c numbers depending upon 
the commutation relations of the original variables which constitute the quadratic form, and g' is similarly 
defined by the new variables. A perturbation expression is then derived for the elements of S. These results 
are applied to the magnetoelastic interaction in antiferromagnets. It is found that a magnetic field oscillating 
at a frequency CO<3CT (2HEHA)1/2 applied transverse to the z axis can parametrically excite phonons at half-
frequency when the amplitude of the field exceeds a certain critical value. 

I. INTRODUCTION 

OWING to their success in high-energy phenomena, 
field-theoretical techniques are now being applied 

extensively to solid-state problems. Thus the fields 
associated with the various degrees of freedom in a 
crystal have been quantized. For example, phonons are 
quantized lattice vibrations, magnons are the ele
mentary excitations of an exchange-coupled spin 
system, and plasmons are the collective Coulomb exci
tations of an electron gas. The introduction of such 
"particles" is particularly convenient because most of 
them behave like bosons. In determining the static 
properties of a system this boson nature greatly sim
plifies the evaluation of expectation values. Further
more, in the calculation of dynamic quantities such as 
relaxation times and thermal or electrical conductivities, 
the concept of boson scattering is very convenient. 

Briefly, the field quantization as applied to solid-state 
situations is achieved in the following manner. The field 
to be quantized is defined by its Hamiltonian. The 
canonical field variables associated with each normal 
mode are determined and expressed in terms of creation 
and annihilation operators a^ and ah such that the 
quadratic terms in the Hamiltonian take the form 
]L<^(#/C+#&+|). Here k is the normal-mode designation. 
In most cases the modes are taken to be plane waves, 
in which case k is the propagation vector. 

If a perturbation is now introduced which couples 
this field to itself or to another field described, say, by 
bkf and bk, then the total Hamiltonian will no longer be 
diagonal but will contain off-diagonal terms of the form 
flftfl*;', dkbjc' aubk^y etc. In classical coupled-mode theory 
the procedure for the diagonalization of such terms is 
well known.1 However, for noncommuting modes the 
inclusion of the subsidiary condition that the transfor-
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mation is such that the new modes satisfy certain com
mutation relations, modifies the diagonalization pro
cedure slightly. The second section of this paper con
siders this problem. 

Actually, the technique developed in Sec. II is 
more general than that just described. It enables one 
to diagonalize any quadratic sum of operators whose 
commutators are c numbers, assuming that the diagonal 
form exists. Thus, one can directly diagonalize quadratic 
forms of coordinates q and momenta p and spin opera
tors S±=SxzkiSy (in the linearization approximation 
in which Sz = constant) without first introducing un
coupled boson operators. 

It is found that the transformation is, in general, not 
unitary. For example, when boson creation operators 
couple to boson annihilation operators or vice versa, 
the diagonalizing transformation is not unitary. A 
perturbation theory is presented in Sec. Ill for finding 
the eigenfrequencies and the mode admixtures in the 
regions where the modes are nondegenerate. Finally, as 
an example of these procedures, we examine the modes 
resulting from the interaction between antiferromag
netic magnons and phonons. 

II. GENERAL THEORY 

A. Eigenvalue Condition 

Any Hamiltonian which is quadratic in collective-
mode amplitudes may be expressed in the form 

X - X + H X , (1) 

where X is a column matrix consisting of the n inde
pendent operators %i, the row matrix X1" is its trans
posed Hermitian adjoint, and H is the c-number 
Hermitian matrix which produces the original quad
ratic form. If S is a linear transformation of the form 

X = S X ' , (2) 

which diagonalizes 3C, then it must satisfy 

HS=(St)"1£i f f , (3) 

where £2n is the diagonal eigenvalue matrix. If S were 
unitary, i.e., S t S = l , then Eq. (3) would reduce to the 
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familiar eigenvalue condition for c-number quadratic 
forms. However, as we shall see below, S need not in 
general be unitary. 

The commutation relations may be written 

[ X , X + > X ( X * ) r - ( X * X r ) r = g , (4) 

where X* is the column matrix of the Hermitian ad
joint operators, X r is the transpose of X , and g is a 
matrix whose elements ga are c-numbers. For boson 
operators g is diagonal. Notice that the transpose of the 
product of matrices whose elements do not commute is 
not equal to the product of the transposes in reverse 
order. 

By using Eq. (2) in Eq. (4), we have 

- ( S * X ' * X ' r S r ) T = g . (5) 

Since S is a c-number matrix, the second term becomes 
S ( X / * X ' 2 , ) r ( S * ) r . We seek new operators X ' also 
having c-number commutators g'.2 Thus we have 

[ X ' , X ' t ] - X ' ( X / * r - (X ,*X / r)7 ,= g'. (6) 

Therefore, Eq. (5) reduces to 

Sg ,(S*) r=g or Sg'St = g. (7) 

From this result we have 

S-^g 'Stg- i and (St)-i = g-iSg\ (8) 

Thus, we can immediately write the inverses of S and 
S f without tedious calculations. 

By these results, the eigenvalue condition (3) now 
becomes 

H S ^ g ^ S g ' a * . (9) 

This is the matrix eigenvalue equation which determines 
S and Q H . In Eq. (18) we show that this may be written 
as a usual eigenvector equation. 

I t should be noted that in writing the Hamiltonian 
in the form of Eq. (1) that for the case of boson opera
tors the column vector X will, in general, contain all 
the appropriate operators plus their adjoints. Thus, if 
the first n elements of X are independent annihilation 
operators and the n-\-l to In elements are their corre
sponding creation operators, then H takes the form 

( H n H12 \ 
) , (10) 

H12* H n V 
where H a and H i 2 are n by n matrices. The metric for 
this choice of X is 

*-C - . ) ' (i,) 

2 If we were to require that g' = g this would be just the quan
tum-mechanical condition that the transformation be canonical, 
analogous to the classical condition that the Poisson brackets be 
invariant. 

where I is the n by n identity matrix. If x*=]Ci Sij%/ is 
to be consistent with Xn+i^^jSnH,3x/ then the S 
matrix must also have the form 

/ S l i S l2 \ 
S=( ). (12) 

\S1 2* Sn* / 

From Eqs. (10) and (12) and the eigenvalue condition 
given by Eq. (9) it can be shown that the eigenvalues 
associated with the adjoint part of X are the same as 
those associated with the first n elements. Therefore the 
diagonalization of the 2n by In matrix (10) actually 
reduces to diagonalizing an n by n matrix because the 
secular equation is of order n in 0 where 12 is an eigen
value. Furthermore, it can be shown that the eigen
values are also real even though the matrix gH is not, 
in general, Hermitian. 

In most applications it turns out that the Hamil
tonian does not contain terms coupling operators to 
their adjoints. 

B. Equations of Motion 

In many cases, particularly in classical situations, 
mode coupling is described by equations of motion 
which relate the time or space derivative of X to itself. 
The relation between our direct treatment of the 
Hamiltonian matrix and the equations of motion is now 
established; the methods of Sec. I I A then apply also 
to the equations of motion. However, in the usual case 
where a Hamiltonian is given, the equations of motion 
need not be written down. Consider the equations of 
motion 

« X / d * = L X , (13) 

where L describes the coupling. Such an equation of 
motion can be obtained from the Hamiltonian 3C by the 
relations 

idX/d /=[X,3C]==gHX. (14) 

If we introduce new variables by X = S X ' , Eq. (13) is 
diagonalized if 

L S = S & L , (15) 

where &L is the eigenvalue matrix of L. By comparing 
Eqs. (13) and (14) we see that 

L=gH. (16) 

Therefore the eigenvalues of L are related to the eigen
values of H by 

& L = g a # . (17) 

In the boson case where 3C contains terms which 
couple operators to their adjoints then X will consist of 
twice as many elements. In such cases Eqs. (14), (16), 
and (17) are multiplied by a factor of 2. 

I t is interesting to note that the matrix g also appears 
classically when one is dealing with modes which are 
the components of axial vectors. This occurs, for exam
ple, in the case of spin S in a magnetic field H, where 
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the energy has the form S-H while the equation of 
motion is SccSXH. In this case QL has eigenvalues 
which are negative relative to one another correspond
ing to oppositely precessing modes. The form of g, how
ever, ensures that the energy eigenvalues are all positive. 

A diagonalization procedure based on the equations 
of motion has recently been described for noncommut-
ing modes by R. L. Walker.3 

III. PERTURBATION THEORY 

Although the application of the theory developed in 
the preceding section is straightforward, it is often 
tedious. Also there are certain calculations for which 
one needs only certain elements of S. Therefore an 
approximate expression for Sy itself is desirable. 

For this purpose we first notice that the matrix 
equation (9) can be written as the eigenvector equation 

wher< 

and 

gHS; = - A*S4-, 

5 Si is the ith column of S, i.e., 

S;= 

*i = g 

(18) 

(19) 

(20) 

This holds when g' is diagonal, which is the case when 
the final modes are bosons. Since this is what we usually 
desire we shall consider this case. A nondiagonal g' is 
easily handled. 

The usual perturbation theory4 now applies. Some 
care is required since gH is not Hermitian in general. 
We consider the case in which the off-diagonal corn-
components of H are small and write 

gH=gH<°>+gH CD (21) 

where H(0) is the diagonal part of H and H(1) is the 
off-diagonal part. We also consider only the nondegen-
erate cases. The zeroth-order eigenvectors are chosen as 

S,(0) = C..C0) 

0 

0 

(22) 

The zeroth-order eigenvalues are A/0) = g*/#^(0). The 
first-order eigenvectors are 

*« (23) 
Therefore, we obtain 

Si^^-guH^Vigi/Hu^-gj/Hjj^); S«<o) = o. 
(24) 

3 L. R. Walker, Magnetism I, edited by G. T. Rado and H. Suhl 
(Academic Press Inc., New York, 1963), p. 312. 

4 See, for example, L. I. SchifT, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), 2nd ed. 

The first-order correction to the eigenvalues is zero 
since H(1) has no diagonal elements. But the second-
order correction is 

A*(2) = E (H^H^ugjj/igi/H^-gj/Hj^)). (25) 

IV. ANTIFERROMAGNETIC MAGNON-PHONON 
INTERACTION 

A. Simple Antiferromagnet 

Let us take as our simple antiferromagnet a two-sub-
lattice system in which sublattice i is exchange-coupled 
to sublattice j , both having uniaxial anisotropy. The 
Hamiltonian is then 

3CAF=2/ E S r Sj-K(Zi 0 ^ ) 2 + E ; (Sf)*) . (26) 

The spin fields of each sublattice are quantized into 
magnons by the transformations 

Sf= (S/2Ny* E* (bk+b-fy*-**, (27a) 

S^=-i(S/2tf)1 / 2 E* (a*-a-* ty k ' « ; 
Sf=i(S/2N)^Zk (bjc-b-jy^, (27b) 

and 

Si*=S- (1/N) E aaWa-'C*-*')-'*, (27c) 
kk' 

Sf= S+ (1/N) E bfbvtr**-*)"*, (27d) 
kk' 

where 

and 
[_ak, a-k] = [̂ fcf, 0-&1"] = 0, 

with similar relations for the bk$. The resulting Hamil
tonian is 

3CAF=EA; \_Akak^ak+Akbk%k+Bkakb-k+Bkak%^k
1'], 

(28) 
where 

Ak = 2SJz+2SK=y(HB+HA)=yHB(l+a), (29) 

Bk=2SJzyk^yHEyk. (30) 

Here z is the number of nearest neighbors and 
yk=(i/z) Eaexp(ik-5) where 5 is the vector to the 
nearest neighbor. 

Equation (28) shows us that the magnons on the in
dividual sublattices are coupled together. This coupling 
is removed by employing the theory of Sec. II. The 
diagonalizing transformation is 

Lft-jbU L—vk uk JLjff_fctJ 
where 

uk= «Ak+Vk)/2Qkyi*, vk^ ((Ak-Vk)/2Vkyi\ (32) 
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and 

^k=y[HA{HA+2HE)+HB^\-yi?)Ji\ (33) 

Under this transformation Eq. (28) becomes 

aeAF = E*0*(«* t a*+ |8A t ) . (34) 

B. Magnon-Phonon Interaction 

Let us now investigate the effect of lattice vibrations 
on our antiferromagnetic modes. These modes can 
interact in a number of ways. First of all, if the lattice 
parameters change, the dipolar energy between the 
spins will change. Similarly, since the exchange integral 
/ is a function of the lattice parameters, the exchange 
energy will also change (exchangestriction). Another 
source of magnon-phonon coupling arises from the fact 
that the anisotropy constants are also functions of the 
lattice parameters (magnetostriction). Whatever the 
source of this coupling, one usually represents it by a 
power series expansion in the strain and spin variables. 
Therefore we take as our total Hamiltonian 

3C=3CAF~T"3CP+3CME . (35) 

Here 3CAF is given by Eq. (34). Assuming that the lattice 
vibrations have already been quantized into phonons 
with amplitudes cqs, propagation vectors q, and polari
zations s, then 3CP is 

«Jyp / , OJqSCqs Cq (36) 

For the magnetoelastic interaction we take 

+GT.J (SfSW+SjiSw) , (37) 

where G is the magnetoelastic constant and e is the 
strain. In this expression x, y, and z refer to crystallo-
graphic axes. I t will be assumed that the sublattice mag
netizations are directed parallel and anti-parallel to the 
crystal z axis. The strain is related to the phonon 
operators by 

C (q • */») (*« • &») + (q • &) (*« • *M) ] 

(2NMa>qsyi* 

Xfa.-*Vy , ,r'. (38) 
q,S 

If the phonon polarizations are defined as in Fig. 1, 
the total Hamiltonian then becomes 

k,s 

+Dkscksa-k+Dks*cksak
i+Dkscks

fak 

+Dks*Cks
fa-kf—Ekscks(3kf—Eks*CkSl3--k 

(39) 
where 

Dks=lGSuk(S/Mo>ksyi* 
X[(k - r - ) ( l s -2 )+ (k -g ) (e s - r - ) ] (40) 

FIG. 1. Orientation of 
phonon propagation and 
polarization vectors. 

and 
Eks=(vk/uk)Dks. (41) 

Then 3C can be written in the form of Eq. (1) with 

Oik 

OL-k 

13k 
p-k 
Cks 

x= 
C-ks 

(42) 

and 

H = 

ttk 
0 
0 
0 

Dks 
-Dk 

0 

0 
0 

0 
0 

0 

0 
0 
0 

-Eks 

Dk8* 
Dks 

— Eks 

-Ek* 

Oiks 

0 

~Dks 

Eks 

FT * 
J^ks 

0 
Oiks 

(43) 

With the magnon-phonon coupling expressed in this 
form we can apply the perturbation theory results of 
Sec. I l l to determine the new coupled modes. 

C. Parametric Excitation of Phonons 

One particular phonomenon which depends upon a 
knowledge of the normal modes of the system is para
metric excitation at high-power levels. I t is a well-
known phenomenon in ferromagnetic insulators that if 
a magnetic field, oscillating at a frequency comparable 
to or greater than required for magnetic resonance, is 
applied transverse to or parallel to the saturating field, 
spin waves are parametrically excited when this field 
exceeds a certain critical value.5,6 I t has also been ob
served that if one drives the system at a frequency far 
below the resonant frequency it is possible to para
metrically excite phonons.7*8 In antiferromagnetic 
materials only the so-called second-order Suhl trans
verse spin-wave instability has been observed.9 Part of 

6 H. Suhl, J. Phys. Chem. Solids 1, 209 (1957). 
6 E. Schlomann, J. J. Green, and U. Milano, J. Appl. Phys. 31. 

386S (1960). 
7 B. A. Auld, R. E. Tokheim, and D. K. Winslow, J. Appl. 

Phys. 34, 2281 (1963). 
8 R. L. Comstock and R. C. LeCraw, Phys. Rev. Letters 10, 

219 (1963). 
9 A. J. Heeger, Phys. Rev. 131, 608 (1963). 
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ANTIFERROMAGNETIC 
UNIFORM PRECESSION 
(OFF RESONANCE) 

— - * • 

PHONON 

Y]/2H^I 

(b) 

FIG. 2. (a) Schematic representation of parametric phonon 
excitation, (b) Dynamics of the parametric process in relation 
to the normal-mode dispersion diagram. 

the reason for this is the practical difficulty in obtaining 
high-power sources at frequencies comparable to the 
antiferromagnetic resonance frequencies. The question 
of low-frequency phonon instabilities is therefore of 
importance. 

In antiferromagnets characterized only by isotropic 
exchange and uniaxial anistropy it is not possible to 
excite phonons by parallel pumping because the z com
ponent of the magnetization does not have a time-
varying part. When dipolar interactions are introduced 
in the absence of an external field the individual spins 
on the sublattices process elliptically but in such a way 
that the z component is still time independent.10 Only 
by adding an external field to such a system can a time-
varying z component of magnetization be produced. 
However, the normal modes of such a system are ex
tremely complicated. Therefore we shall consider only 
the excitation of phonons by transverse pumping. 

The lowest order transverse process is that in which 
the antiferromagnetic uniform precession, driven far 
below resonances, parametrically excites a q, — q pair 
of phonons. This is illustrated schematically in Fig. 2. 

The interaction responsible for this process is again 
the magnetoelastic interaction. However, since this is a 
three-boson process it must arise from terms of the form 
(Six)2tixx, etc. As a particular case let us calculate the 
instability threshold for a longitudinal phonon propa
gating in the xz plane (i.e., (j)q—0 in Fig. 1). The per
tinent terms in the Hamiltonian are then 

3C=G[E< CS<")V*+Ei ( S / D V * ] . (44) 

Using Eqs. (27), (31) and the perturbation results for 
the transformation which diagonalizes Eq. (43), we 
obtain terms of the following form: 

5C = | A z a o , ^ z , t ^ Q / + + c . c . - | A z ^ o , ^ / t ^ - e / t + c . c . , (45) 

where 

fql = 
G2S2a>qi sin

30ff c o s ^ S HE l1/2 

2Mvt
2yHA L v (2HEHA)1/2J 

(46) 

and aof, /V, and cj are the new coupled-mode operators. 
The sum over q has vanished because there is only one 
longitudinal mode at half the pump frequency, w^ = |w. 

The rate at which the number of phonons builds up 
through the excitation of the aQ mode is, by perturba
tion theory, 

(dnqi/dt)aQ=21 fqi\
2naonqi/rjqi, (47) 

10 R. M. White, Ph.D. dissertation, Stanford University, 
Stanford, California, 1964 (unpublished). 

where rjqi is the relaxation frequency of the longitudinal 
phonon. The rate at which they relax back to the 
thermal value nqi is described by 

(dnqi/dt)vei^= — 2rjqi(nqi—nqi) . (48) 

Parametric growth will therefore result when 

nao>yqi
2/\fqi\

2. (49) 

Expressing the phonon relaxation frequency by its 
"Q"> Vgi — ̂ qi/Qqb the threshold of the driving magnetic 
field is 

\2Mvl
2gyiBHA{2HEHAyi2\ 

Ai«rit=Min . (50) 
I G2SsQqt sin3^ cos*?,, J 

The minimum threshold occurs for that longitudinal 
phonon which makes an angle 0 = 60° with the z axis. 
For the typical number JkfcdO-22 g, ^ ~ 5 X 1 0 5 cm/sec, 
HAc^.lOd Oe, Z7E£^10 6 Oe, and G~10~13 erg this reduces 
to A lcrit~104 QqC1. Since acoustic Q's are of the order 
of 103 such an instability should be relatively easy to 
produce. This instability will be characterized by a 
sudden increase in the imaginary part of the suscep
tibility %" or equivalently by a sudden increase in 
the effective acoustic Q. 


