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In previous papers we have formulated the theory of magnetostriction arising from single-ion crystal-field 
effects, for cubic crystals, and we have shown that the theory accounts extremely well for the temperature 
dependence of the magnetostriction in yttrium iron garnet. We here summarize that theory, extend it to 
arbitrary crystal symmetry, augment it by the inclusion of two-ion interactions, analyze the dependence 
on magnetic field strength (the "forced magnetostriction"), and discuss the totally symmetric component 
(which exhibits itself as an anomalous thermal expansion). The first part of this paper is concerned with 
the above matters, and the analysis is based entirely on symmetry considerations. I t culminates in expres
sions relating the macroscopic magnetostriction coefficients to the product of microscopic magnetoelastic 
coupling constants and certain spin correlation functions. Only three such correlation functions appear, and 
all temperature and field dependence enters through these correlation functions. In the second part of the 
paper, we evaluate these correlation functions by various approximate theories: molecular field theory, a 
cluster theory, and the random-phase approximation. Applications to Dy and to EuS are cited, and a detailed 
application to Gd is given. In Gd the sign inversion of a particular magnetostriction coefficient, and its full 
temperature dependence, are accurately accounted for theoretically. The field dependence of the forced 
magnetostriction of Gd is also discussed, with special reference to the observed persistence of a pseudo-
linearity slightly above the Curie temperature. 

1. INTRODUCTION 

IN a previous paper1 we discussed magnetostriction in 
cubic ferromagnets. I t was there assumed that the 

magnetostriction arises from the modulation by the 
strain of single-ion energies, such as those involving 
crystal-field splittings. There are, in fact, materials in 
which this source of the magnetostriction is dominant, 
and the theory gave excellent agreement2 with the tem
perature dependence of the magnetostriction in yttrium 
iron garnet (YIG). We here summarize and simplify that 
theory, generalize the analysis to arbitrary crystal sym
metry, include more general mechanisms of the mag
netoelastic coupling, study both the magnetic field 
and temperature dependence, and make several specific 
applications. 

In addition to the single-ion contributions to the mag
netoelastic coupling, we consider two-ion terms. These 
arise from the modulation by the strain of spin-
interaction energies, such as dipolar, pseudodipolar, and 
exchange energies. Whereas the magnetocrystalline 
anisotropy energy and the dipolar and pseudodipolar 
coupling correspond to effective fields of the order of 
103-105 Oe, the exchange interaction corresponds to 
106-107 Oe for metals and spinels and to 105 Oe for rare 

* Supported in part by the U. S. Office of Naval Research. 
i Earl R. Callen and Herbert B. Callen, Phys. Rev. 129, 578 

(1963). 
2 E. R. Callen, A. E. Clark, B. DeSavage, W. Coleman, and 

H. B. Callen, Phys. Rev. 130, 1735 (1963). 

earth ions in garnets. One might then expect that the 
exchange term would usually dominate the magneto-
elastic coupling. However, the exchange term is an iso
tropic invariant, and therefore it makes no contribu
tion to that part of the magnetostriction which varies 
with the direction of the magnetization. I t was for this 
reason that the one-ion theory reasonably could be iso
lated for separate investigation and that it could be 
applied successfully to YIG. However, in other materials 
(such as Gd), the dipolar terms may be particularly large 
and may compete effectively with the one-ion origins 
of the magnetostriction. Furthermore, in any material, 
the effect of strain on the isotropic exchange can con
tribute to the isotropic part of the magnetostriction, 
manifesting itself in the anomalous thermal expansion 
and the forced volume magnetostriction. 

In the first three sections of this paper, the analysis is 
based on symmetry considerations imposed on the mag
netoelastic Hamiltonian (in contrast to the classical 
approach3 in which the symmetry is imposed at the level 
of the phenomenological free energy). We show, in par
ticular, that for purposes of classifying the magneto-
elastic Hamiltonian, the 32 point groups divide into 11 
symmetry types, two of which are subdivisions of the 
cubic system and two of the hexagonal system. In the 
11 different types of Hamiltonians there appear various 
magnetoelastic coupling constants, which we take as 

3 W. Doring and G. Simon, Ann. Physik 7, 373 (1960). 
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undetermined. The free energy then depends on the 
direction of the magnetization, and from it we find the 
equilibrium strains. The resulting expressions for the 
strains classify under the crystal symmetry analogously 
to the Hamiltonian. The coefficients in these expressions 
are the macroscopic magnetostriction coefficients; they 
are, in fact, the products of the magnetoelastic coupling 
constants and certain spin correlation functions. The 
temperature dependence and the magnetic field de
pendence of the magnetostriction coefficients derives 
entirely from these correlation functions. We show that 
only three distinct types of correlation functions enter 
the theory; the self-correlation functions (CSV)2), the 
isotropic correlation function (S rS 2 ) , and the longi
tudinal correlation function (Sy^SV). 

In the second part of the paper, we turn to various 
approximation schemes to evaluate the spin-correlation 
functions and to permit the application of the theory 
to specific materials. 

In Sec. 5, we review existing theories for the one-ion 
spin averages. H. Callen and S. Shtrikman have shown 
that for all "renormalized collective excitation" theories 
(and molecular field theory, the random-phase approxi
mation, and other Green's function theories are all in 
this class) the one-ion averages are the same functions 
of the magnetization. Hence the one-ion magnetostric
tion coefficients can be expressed as functions of the 
magnetization in a way which is not quite model 
independent, but which at least has validity over a wide 
range of models. We have previously explicitly evaluated 
this functional dependence for large spin. Citing the 
measurements of Clark, Bozorth, and DeSavage4 on 
the temperature and field dependence of magnetostric
tion in dysprosium metal, we show that the theory fits 
the data accurately over a range of about four decades. 

In Sec. 6, we demonstrate the relationship of the 
anomalous thermal expansion and the volume magneto
striction to the isotropic correlation function. In Sec. 7, 
we calculate the scalar correlation function (Si*S2) by 
a cluster approximation and by the random-phase 
approximation. We show that the temperature and 
magnetic-field dependence of the volume magneto
striction and of the c-axis strain of gadolinium are con
sistent with the theory. The behavior of the scalar cor
relation function in the paramagnetic region is then dis
cussed in Sec. 8. 

In Sec. 9, we calculate the nearest- and next-nearest-
neighbor longitudinal correlation functions, {SizS2

z)y 

in the cluster approximation. Although this quantity 
varies as the cube of the magnetization (Mz) at suffi
ciently low temperatures, over almost the entire tempera
ture range it is closely approximated by if2, for all 
separations of spins Si and S2, and almost independently 
of the ratios of successive exchange constants. Approxi
mating all longitudinal correlation functions by M2, 

4 A. E. Clark, B. DeSavage, and R. M. Bozorth, Phys. Rev. 138, 
A216 (1965). 

we show that an appropriate anisotropic magneto
striction of gadolinium, which changes sign before 
vanishing at Tc, is accurately represented as the sum of 
one-ion and two-ion magnetostriction terms. 

2. SYMMETRY OPERATORS AND THE 
HAMILTONIAN 

We take the Hamiltonian of the system as 

H=Hm+He+Hme+Ha. (2.1) 

Hm is the Hamiltonian of the spin system, consisting of 
isotropic exchange terms and the Zeeman interaction 
with an external field. We exclude anisotropic exchange 
and Dzyaloshinski interactions. 

He is the elastic energy associated with the homo
geneous strain components eXX) €vy, ezz, exy, eyz and ezx. 
The nonhomogeneous strains, or phonon modes, are not 
included in the Hamiltonian. We define the shear strains 
by €xy—h[_(duy/dx)Jr(dux/dy)~^r whereas the coefficient 
I is often omitted. We assume the crystal to be con
strained so that all "antisymmetric strains" such as 
\[_{duy/dx) — {dux/dy)~]i which correspond to homo
geneous rotations of the crystal, vanish. 

Hme is the magnetoelastic interaction, coupling the 
spin system to the strains. 

Ha is the magnetocrystalline anisotropy energy, rep
resenting the effect of the unstrained lattice on the spin 
system. 

The terms Hme and Ha will be treated as a perturba
tion, Hm will play the role of the "unperturbed" Hamil
tonian, and He will appear as an essentially classical 
additive term. The classical nature of He results from 
the fact that we restrict our attention to the homo
geneous strain modes, for which the natural vibrational 
frequencies vanish. Consequently, in the harmonic 
oscillator Hamiltonian of the form [Jce2+(co0/2c)^e

2], 
the natural frequency co0 vanishes, and the term in
volving the momentum p€, conjugate to the strain e, 
does not appear in the Hamiltonian. Thus He is simply 
quadratic in the strains, which can be treated as classical 
variables. 

The free energy of the system, to first order in the 
perturbation, is of the form 

F=Fm+He+(Hme)+(Ha), (2.2) 

where Fm is the unperturbed free energy of the spin 
system (in the absence of magnetoelastic interactions 
and anisotropy), He is the elastic energy, and the aver
ages of Hme and Ha are to be carried out in the unper
turbed density operator of the spin system. The equilib
rium strains will be evaluated by minimizing the free 
energy. 

The chemical point group of the crystal is denoted by 
9; it is the group obtained by replacing all translation 
operations by the identity operation in the chemical 
space group of the crystal. The macroscopic magneto
striction has the full symmetry of this group. As we shall 
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TABLE I. Isomorphisms of spherical harmonics, elastic strain components, one-ion spin operators, 
and two-ion spin operators.5 

Classical polynomials or 
spherical harmonics 

Strain 
functions 

One-ion operators of spherical 
tensor operators 

Two-ion spin 
operators 

Bilinear 
direction 
cosines 

1 = (4TT)1/2F0O 

(V3/2)(z2-i)=cF2o 
J(*2 -3,2) = (C/ ^2) [F22 + F2-23 

xy = ( -ic/ y/2) CF22 - F a"*] 
y3 = (^/V2)CF21+F2-i] 
^ = - ( c / V 2 ) C F 2 i - F 2 - 1 ] 

ea^exx+eyy+ezz 1 = (25+l)V2<y0o 
WS/2)lezz~^axl (V3/2) [ (^ )2- i5 (5 '+ l ) ] = (l/V2w2)cy20 

Kex*-*wl i[(^)2-(^)2]=(l/2W2)[ fy22+Cy2-2] 
exv KS*Sy +SyS*l = ( - i / 2 m ) £W - <y 2~2] 

S/-Sfl 1 
( V3/2) [ S ^ V " *S/ • Sg] ( V3/2) [«*2 - *] 

§ tSf*Sg* SfVSgyl k [«x2 - a » 2 ] 
hZSf*SgV+SfVSg*l CtxCiy 
hZSf»Sa'+Sf*SgVl ayaz 

€xz hZS*SV+S>S*l = ( - 1 / 2 ^ 2 ) [ ^ 2 ! - ^ 2 - ! ] KS,*Sg*+Sf*Sg*l 

a Here c = (47T/15)1/2. The phase convention of the spherical harmonics is that of M. E. Rose [Elementary Theory of Angular Momentum (John Wiley 
& Sons, New York, 1957)], and the Yim are orthonormalized with respect to integration over the unit sphere. The spherical tensor operators are ortho-
normalized with respect to the trace operation; trace [(<yzw)tcy*'m'] =8ii'8mm'. Following A. Meckler [Nuovo Cimento Suppl. 12, 1 (1959)], the operators 
are denned by 

W=ni(S+Vi ( m ) 2 = ^ y ^ g ^ = ^ ; ^ - i = ^ [ W + l ) - m ( m + l ) ] - i / 2 D S - , <yp]; 1Jr» = ( - l )»OJi«) t ; S± = = ( = F ^ - ^ ) / ^ . 
(ll)H2S+l+l)l 

see, the only terms in Hme and Ha which contribute in 
first order to the observed magnetostriction and anisot-
ropy are the terms which are fully symmetric under g. 

Although the form of He is well known, we briefly re
view the considerations which dictate its form. We 
thereby introduce notation and establish a prototype for 
the derivation of Hme. Under the operations of g, the 
six strain components transform into each other and 
thereby generate a six-dimensional representation of g. 
This representation is reducible. In particular, the 
quantity ea^(exx+eyy+ezz) always transforms under 
the fully symmetric representation Ta of g. The re
maining five-dimensional representation is further re
duced by the linear combinations [_ezz—\(exx\- eyy+ ezz)~], 
[_exx— eyy], exy, eyz, and exz. These are the combinations 
which transform isomorphically with the real combina
tions of spherical harmonics, as shown in Table I . The 
basis strains (or rather their isomorphic classical poly
nomials) which correspond to each of the irreducible 
representations are given in Table I I for all 32 point 
groups. I t is seen from Table I I that the 32 point 
groups classify into 11 distinct symmetry types. 

In several cases, the real representations generated by 
the linear combinations of strains listed in Table I can 
be further reduced by taking complex combinations. 
Thus, in the tetragonal groups 4, 4/m, and 4, the two-
dimensional representation with basis functions eyz and 
€zx can be reduced to two one-dimensional representa
tions by the complex functions eyzzLiezx. Such cases are 
indicated explicitly in Table I I . 

Now let ei r, €2r be a pair of strain functions which 
support the two-dimensional representation T. Then the 
scalar invariant ei r*ei r+e2

r*€2 r is fully symmetric, and 
the elastic Hamiltonian can contain the term §c r[€i r*ei r 

+ €2r*e2r], where cv is a phenomenological elastic con
stant. Similarly, with one-dimensional and three-
dimensional representations. 

Two special cases require comment. For all point 
groups other than those in the cubic system there are 
two different strain functions, each of which supports 
the fully symmetric representation T«. These are 

Hamiltonian can contain the three terms %cna(ea1)2 

-\-2c^a(ea2)2+ci2aealea2. A similar situation arises in 
the trigonal point groups 32, 3m, 3m, where [_eyz,€zx] 
and [|(ex»—€yy),€ajJ each support the same two-
dimensional representation; again there are three elastic 
constants, one of which corresponds to the cross term. 

Finally, a closely analogous situation arises for the 
complex representations. Thus, if eyzdtiexz, each sup
ports a one-dimensional representation, we might 
expect two independent fully symmetric products 
| €gy+iexs\

2 and | eyz—iexz\
2, but these are equal. Hence, 

there is only one phenomenological elastic constant. 
Equivalently, we can ignore the possibility of reduction 
of the real two-dimensional representation. This dis
cussion applies to the complex representations which 
appear in the first set of tetragonal point groups, in the 
first set of hexagonal point groups, and in the first set of 
cubic point groups. However, a slight additional com
plication appears in the first set of trigonal point groups. 
Here two distinct real representations are each reducible 
in complex form, forming the same two one-dimensional 
representations. In particular, \_^{x2—y2)-\-ixy~] = \e2i<i> 

and [^(x2—y2) — ixy'] = ^e~2i4> form the same one-
dimensional representations as do [xz—iyz~] = e~~i(i> and 
[xz+iyz] = ei<f>. From the first two functions we get one 
elastic constant and from the second two we get one 
elastic constant, and the two cross terms are distinct, 
giving two additional elastic constants. 

The number of phenomenological elastic constants 
for each point group is listed in the fifth and sixth 
columns of Table I I . 

Summarizing, then, let eiv*3'(i=li 2,- • •, n) be the 
strain functions which form the basis for the ^-dimen
sional representation T. There may be two such sets, 
in which case we distinguish them by the superscripts 
j=l,2. Then the elastic energy density is 

ff«=EEi**'rE«r'V'''. (2.3) 

eal=€zx+€yy+ezz and ea - €22 3 t . Then the elastic 

The elastic energy He can be read directly from the 
group properties given in Column 3 of Table I I . As a 
specific example, and for subsequent application to Dy 
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TABLE II. Group table for crystal point groups. 

System 

Triclinic 

Monoclinic 

Orthorhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 

Point 
groups 

u 
2}m,2/m 

222, 
mm2} 
mmm 

4,4, 
A/m 

422, 
4/mmm, 

4mm, 
42m 

3,3 

32,3m, 
3m 

6/m 

622, 
6mm, 
6m2, 

6/mmm 

23, 
mS 

432, 
43m, 
m3m 

Basis functions* 

x2,y2,z2,xy,yz,xz 

x2,y2,z2,xy 
xz,yz 

x2,y2,z2 

xy 
yz 
xz 

x2+y2+z2, (VJ/2) (z2~ ir2) 
l(x2—y2), xy 

{yz,xz} 

x2+y2+z2, (^/2)(z2~ir2) 

xy 
[yz,xz~\ 

{(x2-y2)/2,xy], {yz,xz} 

x2+y2+z2, (v3/2)(z2-fr2) 
[_{x2—y2)/2,xy\ \jyz,xz~] 

x2+y2+z2, (y/3/2)(z2~ir2) 

{xy,xz} 

{{x2-y2)/2,xy} 

x2+y2+z2, (V3/2) (z2-\r2) 
[yz,xz~] 

t(x2-y2)/2,xyl 

x2+y2+z2 

{{x2-y2)/2, i^/2){z2~lr2)} 

{_xy,yz,xz~\ 
x2+y2+z2 

(x2~y2)/2, (V3/2)(z2-ir2) 
[_xy,yz,xz~] 

Dimensionality 
of irreducible 

representation 

1 

1 
1 

1 
1 
1 
1 

1 
1 

fl complex 
\ l complex 

1 
1 
1 
2 

1 
fl complex 
\1 complex 

1 
2 

1 
fl complex 
\ l complex 
fl complex 
\ l complex 

1 
2 
2 

1 
fl complex 
\1 complex 

3 
1 
2 
3 

Number of 
elastic 

constants 

21 

10 
3 

6 
1 
1 
1 

3 
3 
1 

3 
1 
1 
1 

3 

4 

3 
3 

3 

1 

1 

3 
1 
1 

1 

1 

1 
1 
1 
1 

21 

13 

9 

7 

6 

7 

6 

5 

5 

3 

3 

Number of 
one-ion 

magneto-
elastic 

coupling 
constants 

30 

12 
4 

6 
1 
1 
1 

3 
4 

2 

3 
1 
1 
1 

3 

8 

3 
4 

3 

2 

2 

3 
1 
1 

0 

2 

1 
0 
1 
1 

30 

16 

9 

9 

6 

11 

7 

7 

5 

3 

2 

Number of 
two-ion 

magneto-
elastic 

coupling 
constants 

( = number of 
macroscopic 

magneto
striction 

coefficients) 
for/=0,2 

36 

16 
4 

9 
1 
1 
1 

4 
4 

2 

4 
1 
1 
1 

4 

8 

4 
4 

4 

2 

2 

4 
1 
1 

1 

2 

1 
1 
1 
1 

36 

20 

12 

10 

7 

12 

8 

8 

6 

4 

3 

a Pairs of functions in a square bracket form a two-dimensional irreducible representation. Pairs of functions in a curly bracket form a real two-dimen
sional representation which is reducible to complex one-dimensional representations. The numbers of magnetoelastic constants refer to terms coupling 
strains to spin operators of degree zero and two only. 

and Gd, the elastic Hamiltonian for certain hexagonal 
groups is given explicitly in Sec. 4, Eq. (4.1). 

We turn now to the one-ion terms in the magneto-
elastic Hamiltonian. We explicitly consider only the 
lowest-order contributions, which are linear in strain 
components and of zero and second degree in spin com
ponents; terms linear in spin components are excluded 
because they are not symmetric under time reversal. 
Higher order terms are fully analogous to the lowest 
order terms and will be discussed generally below. Again 

there are six spin operators of zero and second degree for 
a single ion, these being (S*)2+(Sy)2+(Szy = S(S+l), 

L(s*y-is(s+in [(s*)2-(5^)2], ioraH-S'S*], 
i Q S ^ + S ^ ] , and KSXSZ+S"S^. The antisymmetric 
products such as [SxSy—SySx~] = iS* are of first degree 
rather than of second degree because of the spin com
mutation relations. The six symmetric spin operators 
transform isomorphically with the strains, or with the 
spherical harmonics, as shown in Table I. In fact, these 
spin operators are linear combinations of the spherical 
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tensor operators yim, which are the operator analogs 
of the spherical harmonics. The isomorphism between 
the one-ion spin operators and the classical polynomials 
(or between the spherical harmonics and the spherical 
tensor operators) will provide the basic tool of our 
symmetry analysis. 

To obtain the fully symmetric magnetoelastic cou
pling terms, we form the scalar invariant of the elastic 
functions and the spin operators belonging to the same 
representation. Thus for the tetragonal point group the 
two-dimensional representation with basis functions 
[yz,xz~\ permits the coupling terms B[^(SySz+SzSy)eyz 

+%(SxSz+SzSx)exz], where B is a phenomenological 
magnetoelastic coupling constant. 

We note that the particular site symmetry of a given 
spin may be lower than the symmetry of Q. Thus the 
coupling of a given spin to the strain field may contain 
terms of lower symmetry than the fully symmetric 
terms above. The sum of such terms over all ions in the 
unit cell must be fully symmetric, but term-by-term the 
symmetry may be lower. However, all such terms give 
no contribution to the free energy in first order, for their 
average in the unperturbed density operator vanishes 
term-by-term. Hence these terms make no contribution 
to the magnetostriction and need not be written 
explicitly. 

Unlike the elastic case, the spin operator correspond
ing to ^o0 is simply a constant. This reduces the num
ber of magnetoelastic coupling constants relating to the 
product of fully symmetric basis functions. The number 
of one-ion magnetoelastic coupling constants for each 
point group is listed in Columns 7 and 8 of Table I I . 

The case of complex representations again warrants 
special comment. Consider the case in which (zy-\-ixz) 
and (yz—ixz) each support a one-dimensional rep
resentation. Then the two independent magneto-
elastic-coupling terms are ( e ^ + i e ^ X S ^ + i S ^ ) * and 
(eyz—iexz)($yz—i$X2)*, where we employ the notation 
$yz==±[_SySz+SzSyJi, and similarly for S**. Each of 
these terms can be multiplied by a complex constant, 
but the self-ad joint property of the Hamiltonian re
quires one of these constants to be the complex conjugate 
of the other. Thus there are two arbitrary real constants. 
Equivalently, we can take the two real combinations 
(eve$yz+exe$xz) and (eyz§>xz—exz$yz)] each is to be 
multiplied by a phenomenological coupling constant. 
Hence the complex representations are fully effective in 
forming the magnetoelastic Hamiltonian, whereas they 
were not in forming the elastic Hamiltonian. This fact 
is reflected in the numbers of magnetoelastic coupling 
constants listed in Table I I . Such tables have, of course, 
been given by many authors.8 '6 

To summarize, let S / , y ( i= 1, 2,- • •, n) be the spin 
functions which form a basis for the ^-dimensional rep-

5 H. B. Huntington, Solid State Phys. 7, 246 (1958). 
6R. S. Krishnan, Progress in Crystal Physics (Interscience 

Publishers, Inc., New York, 1960). 

resentation T, different sets being distinguished by 
j=l, 2. Then the one-ion contributions Hme

T to the 
magnetoelastic Hamiltonian are 

#».'= - Z E E B]yr(f)Z ct*W(f)+8MS, (2.4) 
/ r jj' i 

where S r , i ' ( / ) refers to the spin operators of the ion at 
site / , and the summation over / extends over all ions 
in the crystal. The magnetoelastic coupling constant 
BjyT(f) may be a function of the ionic position if all 
ions are not equivalent. Finally, Hm} contains all terms 
which are of lower symmetry term-by-term. 

With the isomorphisms of Table I, the one-ion mag
netoelastic Hamiltonians can be read directly from Table 
II . As a specific example, and for purposes of applica
tion, Hme

T is given explicitly for hexagonal point groups 
in Sec. 4, Eq. (4.11). 

Finally, we discuss the two-ion magnetoelastic 
Hamiltonian Hme

u. The spin function analogous to 
£ [ S W - S * S * ] is KSf*Say+S0'Sf*], and similarly for 
the five remaining spin functions listed in Column 4 of 
Table I. These six functions are symmetric in the inter
change of the site labels. In addition, there are three 
antisymmetric functions, such as %\jSfxSgv— Sg

xSfp~]. 
These may also couple to the strains, but their average 
in the unperturbed density operator (which is symmetric 
under interchange of sites) vanishes, and we need not 
consider them explicitly. Obviously, the discussion now 
parallels the single-ion case. Summarizing, let §>iT,3(f,g), 
(i~ 1, 2- • -n) be the set of two-ion spin functions (sym
metric in the ion labels / and g) which form the basis of 
the ^-dimensional representation T; different sets are 
distinguished by j= 1, 2. Then the two-ion contribution 
to the magnetoelastic Hamiltonian 

(/,») r jj' 

XZcfWifd+S*.11. (2.5) 
i 

The first summation is over all distinct ion pairs (f,g). 
The constants Djj'r(f,g) are phenomenological two-ion 
magnetoelastic coupling constants. The term Hme

u 

contains all terms which have lower symmetry term-by-
term, and it also contains all terms which are anti
symmetric under the interchange of the site labels. 

Again the explicit form of Hme
11 for hexagonal point 

groups is given in Sec. 4, Eq. (4.12). For other groups, 
Hme

u is easily read directly from Table I I . 
The final term in the Hamiltonian is the anisotropy 

energy Ha. For all but the cubic groups, there are fully 
symmetric terms which are of second degree in spin 
operators. These are the one-ion term | v 3 [ ( 5 / ) ? 

- 1 5 ( 5 + 1 ) ] , and the two-ion t e r m J v ^ S / ^ V - J S / . S J ; 
the remaining two-ion fully symmetric term' -S/-Sfl is 
spherically symmetric and therefore does not appear as 
an anisotropic term. Terms of fourth degree in spin 
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operators can be read from Table I I by taking products 
of second-degree basis functions belonging to the same 
irreducible representation. These fourth-degree terms are 
the complete spin analogue of the elastic Hamiltonian. 

3. EQUILIBRIUM STRAINS 

The free energy, as given in Eq. (2.2), is now observed 
to be the sum of contributions arising separately from 
each irreducible representation of the point group Q. 

F = F m + ( f f f l > + L F , (3.1) 
r 

where 

jj' i 03f f i 

- E D^ifSZeM^Ug))- (3.2) 
jj'U,9) i 

The equilibrium values of eiTJ, designated as e/ 'y , 

where 
A r=cn rc22 r—c12

Tc2iv . (3.6) 

The solution for e*r'2 is obtained from Eq. (3.5) merely 
by interchanging the labels 1 and 2. Specific examples 
are given in Eqs. (4.13)-(4.25), andinEqs . (4.32)-(4.35). 

Again the special cases of complex representations 
merit special attention. Consider the first hexagonal 
type, for which {yz,xz} form a pair of complex one-
dimensional representations. Then, suppressing various 
indices and summations, 

F r = K ^ 2 + € y . 2 ] - 5 1 € M < S M > - 5 2 e y # < S y # > (3.7) 

plus two-ion terms. Thus each of the real strains in a 
pair such as {exz,eyz} can be considered as independent 
and obeys the result given in Eq. (3.4). The sole effect 
of the reducibility to complex representations is the re
striction that both exz and eyz have the same elastic con
stant. Similarly, the case of two degenerate complex 
representations (encountered only in the first trigonal 
set) gives two one-dimensional pairs, each of which cor
responds to Eq. (3.5). 

We now turn our attention to the dependence of the 
spin averages on the direction of the applied field. The 
unperturbed Hamiltonian Hm is assumed to have a 
spherically symmetric component (arising from ex-

minimize Fv. Differentiating Fv with respect to €iTJ, 

E*V J"=EB/( i ) (§/ j ' ( i ) ) 

Two cases of interest arise; that in which / takes only 
the single-value unity, and that in which f takes two 
values. The only cases in which there are more than two 
basis sets corresponding to the same irreducible repre
sentation are the fully symmetric representations of the 
triclinic, monoclinic, and orthorhombic groups, for 
which a trivial extension is required. 

For those cases in which j takes only a single value, it 
can be suppressed in the notation, and Eq. (3.3) 
becomes 

+ (c r)- 1 E £>r(/,g)<Sir(/,g)>. (3.4) 
(f,Q) 

For those cases in which j takes two values, Eqs. (3.3) 
are easily solved, giving 

change interactions) plus a term of cylindrical symmetry 
arising from the external field. This latter term is de
scribed entirely, for our purposes, by specifying the 
direction a of the net magnetization. We consequently 
seek the dependence of the spin averages on the com
ponents (ax,ay,ag) of a. I t will be recalled that the co
ordinate axes are fixed in the crystal so that ax, ay, az 

describe the orientation of the magnetization relative to 
the crystallographic axes. 

Consider first a one-ion average {§/*'(/)). The spin 
operators are linear combinations of spherical tensor 
operators yf, as indicated in Table I. Hence 

<s/*WHEW'-<<yr>. (3.8) 
m 

We re-express the spherical tensor operators in a rotated 
(k,i\£) coordinate system, with the f axis along a. Let 
the spherical tensors in this new coordinate system be 
distinguished by a tilde. Then 

^im^Y,(Yim'\Yim)%m\ (3.9) 

where we have used the isomorphism between spherical 
tensor operators and spherical harmonics to identify the 
expansion coefficients. Taking the average value of both 
sides of Eq. (3.9), in the density operator with azimuthal 

e^= (A*)-* E [^22 r 5i i r ( / ) -^ i2 r 5 2 1 r ( / ) ] (S / . i ( / ) ) 
/ 

+ ( A r ) " 1 E [ t e r 5 1 2
r ( / ) - ^ i 2 r 5 2 2

r ( / ) ] ( S / ' 2 ( / ) ) + ( A r ) - i Z &22
r51 1

r(/>g)-C l 2r52 i r(/ ,g)]<S<
r-1(/^)> 

/ (f,g) 

+ (A r ) - 1 E fe2r512r(^)-,12rjD22r(/^)](S/,2(/^))? ( 3 > 5 ) 
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symmetry about a, it is clear that only the m! = 0 term 
remains 

. . . ' . . . . . (3.10) 
Furthermore, 

{?i°\Yim)=Yim(a), (3.11) 

where YI™(OL) is the spherical harmonic whose arguments 
9 and 0 are those of the magnetization direction a rela
tive to the crystal axes. Collecting these results, 

(&Mf))=(%°yi: w-wF«~(«) (3.i2) 
n 

or 
(ZiF-W)=(yi°)KMod, (3.13) 

where KiT'j(a) is the same function oiax, ay, az as SiT,j(f) 
is of Sf, S/y, Sfz. That is, Kiv>3' is the classical function 
of ax, ay, az which is isomorphic with S / J in the sense of 
Table I. Recalling that the yim are normalized with re
spect to the trace operation, we can express (3.13) in a 
form which is independent of this definition: 

1 
{$Mf))=z —KM*), for 1=0, 

<*/•'(/)> = 

(trl)1 '2 

<(S')2-

(3.14) 

15(5+1)> 

{ t r [ ( 5 , ) 2 _ i 5 ( ^ + 1 ) ] 2 } 1 / 2 •KM*), 

for 1=2. (3.15) 

For simplicity, we have written z in place of f in the 
spin averages. It is quite clear that the result above 
depended entirely on the isomorphism between the one-
spin operators and the classical polynomials, whose 
transformation properties, in turn, are determined by 
the spherical harmonics. This isomorphism holds also 
for the two-spin operators, so that we find, in analogy 
with Eqs. (3.14) and (3.15), 

< * ' r ' ' l f o ) > ~ ^ ^ for l=°> <3'16) 
{tr tSrSj 2} 1 ' 2 

<*W,«)>=-
( V S / - | S r S g ) 

{ t r ^ ^ z - i S y S , ] 2 } ^ 2 KM«), 

for 1=2. (3.17) 

We now obtain the final form of our general result. If 
the representation T is supported by only a single set of 
basis functions, then [from Eqs. (3.4), (3.14)-(3.17)] 

e /=A r ( r ,# ) i^ r ( a ) , (3.18) 

whereas, if T is supported by two different bases, 

^ r '1 = X11
r(r,i7)^ r '1(«)+Xi2 r(r,^)Z, r .2(a), 

e/'2=x21
r(r,Jff)z/.l(«)+X22r(r,i?)z/.2(«). 

(3.19) 

Here X#/r absorbs all the magnetoelastic coupling con
stants, elastic constants, and spin correlation functions. 
These X's are therefore functions of the temperature and 
of the magnitude of the applied field. They play the role 
of the macroscopic phenomenological magnetostriction 
coefficients. Before examining their temperature and 
field dependence, we note that Eqs. (3.18) and (3.19) 
can be read directly from Tables I and II. In particular, 
we consider the totally symmetric direct product of 
strain functions from Column 2 and bilinear direction 
cosines from Column 5 of Table I, combining these as 
dictated by Table II. If eM and #/• ' ' («) are the func
tions which are paired in this way, then the equilibrium 
value of Ziv>j are given by Eqs. (3.18) and (3.19). 

The magnetostriction constant Xr of Eq. (3.18) is 
given by 

\r(T,H) = (cryii:Br(f;T,H) 
f 

+ (cr) rv-i E DT(f,g;T,B), (3.20) 
(f,o) 

whereas the magnetostriction constants of Eq. (3.19) 
are 

\jr
v(T,H) = (A^ E ZcjfBw*(f; T^-c^Bj^if; T,H)~] 

+ (A0"J E LclfD^(fjg;T9H)-c,fD3^(J9g;T9H)29 (3.21) 
(f,o) 

where we use the notation j ("not j") to denote ,7 = 2 if j=l, and vice versa. Also Xr=Xnr»1, BT=BuTi\ and 
Z>r==Z>n

r'1, the superfluous indices being omitted for convenience in Eq. (3.20). 
The effective magnetorestrictive coupling coefficients are given by 

B„>*(fiT,B) = 0, if T=Ta and f=l 
=Bjr

l\f)£f(T,H), otherwise, 

Djj^(f,g;TiH)=Dj^(f,g^fg(T,H)} if T=Ta and f=l 
=Dj3'T(f,g)£fg(T,H), otherwise, 

(3.22) 

(3.23) 

where ea'1 is always taken as the volume dilatation (exx-{-eyy-\-ezz). 
The one-ion and two-ion longitudinal correlation functions, and the two-ion isotropic correlation function are 
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defined by 
, , < ( 5 / O s - i 5 ( 5 + l ) > / (25+3)1 V'» 

£A.T,H) = = ( ] < (5 /» )*- i5 (5+l )> , (3.24) 
{ t r [ ( S / * ) 2 - i S ( S + l ) ] T / 2 \ S ! ( 2 5 - 2 ) I / 

< 5 / 5 / - i S r S , > 3 v 5 ( 5 / ' 5 , ' - i S , - S e > 
£fe(T,E)= = , (3.25) 

{ t r [ 5 / 5 / - § S r S c ] T / 2 v £ 5 ( 5 + l ) ( 2 5 + l ) 
( S r S 9 ) \ff<S,.S.) 

<Sfsl{T,H) = =• - . (3.26) 
{ t r (S , .S , )*}" J 5 ( 5 + l ) ( 2 5 + l ) 

The temperature and field dependence of all effective magnetostrictive coupling coefficients, and hence of all magneto
striction constants, is characterized entirely by the three correlation functions £/(T,H), £f9(T,H), and &fB(T,H). The 
isotropic correlation function 3/g(T,H) enters only in the discussion of fully symmetric strains (T=Ta); all less-
symmetric strains are associated only with longitudinal correlation functions. 

The volume dilatation e"'1 is the only fully symmetric strain for the cubic point groups. The corresponding mag
netostriction constant [Eq. (3.20)] contains two-ion contributions only [cf., Eq. (3.22)]. For all noncubic point 
groups, the volume dilatation is degenerate at least with ea '2=(v3/2)[€2Z—|ea>1]. The resulting temperature de
pendence arises from a linear combination of longitudinal and isotropic correlation functions. 

The anisotropy energy which arises from the term of degree I in spin operators similarly has the temperature 
dependence of (^i0). 

Finally, the one-ion magnetoelastic coefficient, arising from higher degree magnetoelastic terms, first order in 
strains and Zth degree in spin, has the temperature dependence of (^z0). The two-ion coefficient of the same degree 
has the temperature dependence of (yi°(f,g)), where yi°(f,g) is the two-ion operator isomorphic with yi°(f). 

Adding a superscript I to Bjj>T to indicate the degree of the spin operators associated with it, we summarize: 

B&T'l(f;T,H) = 0, if r = T « and f=l (i.e., if 1=0) 

=Bjj>T'l(f)(cyi°), otherwise; (3.27) 
and, similarly, 

D,yT>Kf,g; r,^=Ayr^(/,g)<<«i0(/^)>=Ai'r(/,g)^(r,fl), if *=o (i.e., r = r a and / = i ) 
=D^(f,g)£fg(T,H), if 1=2 (3.28) 

=DH>T'l(f,g){y*v,g)) > i n g e n e r a l • 

We shall illustrate these results for hexagonal crystals e^J, and these in turn in terms of a by Eq. (3.19), one 
in the following section and then consider various ap- obtains the relation between the two types of magneto-
proximate calculations of the correlation functions in strictive coefficients. This relationship is illustrated in 
subsequent sections. the following section. 

Finally, we note that the magnetostrictive coefficients We note in passing that the hexagonal and cubic sys-
\jj>v(T,H) are closely related to, but not identical to, the terns each have two symmetry types, only one of which 
conventional magnetostrictive coefficients. The latter is commonly familiar. Thus the hexagonal point groups 
are defined as follows: Let 81/1 be the fractional change treated above (622, 6mm, 6m2, and 6/mmm) have six 
in length of the crystal, measured in the direction magnetostriction constants, whereas the remaining 
(Px,Pv,Pz), when the magnetization is in the direction hexagonal point groups (6, 6 and 6/m) have eight mag-
(ax,ay,az). Again this quantity must be fully symmetric, netostriction constants (of degree zero and two in the 
so that 81/1 can be read from Table I by taking the direct direction cosines of the magnetization). Similarly, the 
product of the bilinear a functions (Column 3) with the common cubic groups (432, 43m, and m3m) have three 
bilinear 0 functions. The independent constants in this magnetostriction constants, whereas the cubic point 
biquadratic expression are the conventional magneto- groups 23 and mS have four magnetostriction constants.3 

strictive coefficients. This is essentially the method used As a matter of interest, the particularization of Eq. 
by Doring and Simon.3 Alternatively, we can calculate (3.29) to the cubic point groups 23 and m3 is given in 
81/1 directly by7 Eq. (4.36) below. 

81/l-Zh^^ Qi,p=x,y,z) (3.29) 
H,P PARTICULARIZATION TO HEXAGONAL 

AND CUBIC SYSTEMS 
and expressing the eM„ in terms of the symmetry strains 

7 R.Becker and W. Doring, Ferromagnetismus (Julius Springer- T o ^ s t r a t e the general formalism, and to facilitate 
Verlag, Berlin, 1939). application to particular systems, we first indicate the 
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specific form taken by the theory in the special case of a e{* = \[_txx— eyy~], e2
7 = exy, (4.4) 

hexagonal system. e _ e_ . . 
For the second type of hexagonal symmetry (point i y z , 2 e x z , 

groups 622, 6mm, 6ml, and 6/mmm), the elastic Hamil- and where the symmetry elastic constants are related to 
tonian is the conventional Cartesian elastic constants by 

He^%c11
a(ea>1)2+Cna6a'ha>2+%c22

a(ea'2)2 c n
a = i[2cii+2^12+4^13+^33], (4.6) 

+ ^ C ( € i ^ ) + ( ^ ) 2 ] + ^ C ( 6 i 0 2 + ( 6 2 € ) 2 ] , (4.1) c i a « = ( 2 / 3 ^ ) [ - c u - ( ; 1 2 + c 1 » + C 3 8 ] , (4.7) 

where the symmetry strains are related to the Cartesian c^a == (2 /3)cn+ (2/3)ci2— (8/3)ci8+ (4/3)c33, (4.8) 

strains by ^ = 2 [ c n - c i 2 ] , (4.9) 

€a '1=ea;x+€j /2 /+ezz, (4.2) ce = 4c44. (4.10) 

ea , 2= (v3/2)[eZ2—Je"'1], (4.3) The one-ion magnetoelastic Hamiltonian is 

- S n ^ i E ^ , * ) 2 - ^ ) ^ (4.11) 

and the two-ion magnetoelastic Hamiltonian is 

^ , I I ( / , g H - 5 i i " 6 « ' 1 S / : S , - 5 i 2 « 6 « ' K v ^ / 2 ) [ V ^ / - i S / . S J 

- P 2 i«e« ' 2 S r S f l ~ Z V * e « ' W ^ 

- ^ { € i * i C V 5 / + 5 / ' 5 ^ ] + € 2 ^ [ 5 / « 5 / + 5 , ^ ] } . (4.12) 

The equilibrium strains are then given by [Eqs. (3.18)-(3.19)] 

€«'1 = Xii«Z«'K«)+Xi2^«'2(a) = X u «+X 1 2 «(v3/2) [« 2
2 - i ] 5 (4.13) 

€«'2=X2 2
air«.K«)+X22^a '2(«) = X2 1-+X2 2«(V5/2)[a2

2- | ] , (4.14) 

2^ = X^ i^ (« ) = X ^ [ a , 2 - a y
2 ] , (4.15) 

h7 = X^2 7 («) = X^xtty , (4.16) 

€ic=X€i^i€(o:) = X ^ a , , (4.17) 

e2
€ = Xeir2

e(a) = XW*2, (4.18) 

where [Eqs. (3.20)-(3.26)] 

Xx«=(l/A«) E [ ^ ^ ^ ( / ^ - ^ ^ ^ ( / ^ ^ / . ( r , ^ ) , (4.19) 

X2i«= (1/A«) E Lc11^D^(f,g)-c2^D11^f,g)yfg(T,H), (4.20) 

XM«=(1/A«)E lcn
aSu«(f)-cnaSna(m^f(T9H)+(^a) E &22«5i2«(/,g)-c i a«522«(/,g)]£/a(r,ff), (4.21) 

X M « = ( I / A - ) E [Cli^22«(/)-c;2i^12«(/)]£/(r,iy)+(i/A«) E &ii«5M«(/,g)-c21«512«(/,g)]je„(r,ff), (4.22) 

x^=(i/^)E ^ ( / ) £ / ( r , # ) + ( i / ^ ) E Dy(f,g)£fg(T,B), (4.23) 
/ (/,e) 

X«= (l/c«)E 5*(/)£,(r,^)+(lA«) E Dif,g)£fg(T,H), (4.24) 
/ (/.«7) 

and 
A« = cn«c2 2

a-(ci2a)2 . (4.25) 
Finally, the fractional change in length measured in a direction (5 (with direction cosines (3X, j3„, /32) is [TEq. (3.29)] 

«//K*«a 'W*a '2+«i7]W^^^ (4.26) 
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or 

5///=|Xn
a(r^)+(l/2^)X12«(r,H)(a2

2-|)+2X21«(r,^)(/33
2-|) 

+2\*(T,H){ayaz(3yf3z+a,azpxpz}. (4.27) 

This equation establishes the relation between our magnetostriction coefficients and the conventional ones [in 
which the numerical coefficients in Eq. (4.27) are absorbed into the A's]. 

The reader is cautioned that our definition of A#a differs slightly from that adopted in the companion paper by 
Clark, De Savage, and Bozorth4, although the definitions of X? and X6 do agree. The relation between our coeffi
cients and those of Clark, De Savage, and Bozorth (which appear in the right-hand members of the equations 
below) are 

X11«=2X1«'0+X2«'0+2X1
a'2+X2«'2, (4.28) 

(v3/2)X12«=2Xi«'2+X2«'2, (4.29) 

2X2 i a=-Xi a ' °+X2«'° , (4.30) 

V3x22«=--Xi*'2+X2
a '2. (4.31) 

As mentioned at the end of the preceding section, there are certain hexagonal groups (6, 6,6/m) and certain cubic 
groups (23, m3) which have more than the accustomed number of magnetostriction constants. The method out
lined above leads to the following expressions for the 23 and mS cubic groups 

ea=exx+eyV+ezs=\a, (4.32) 

6 i ^ ( l / 2 v 3 ) [ 2 6 2 , - e ^ - € , J = X i ^ ( v 5 / 2 ) ( a / - l - ) + X ^ K « , 2 ~ V ) , (4.33) 

€ 2 ^ = J [ € M - e y v ] = - X 2 ^ / 2 ) ( a . 2 - i ) + X i ^ W - « y 2 ) , (4.34) 

€i€= €yz = \eayaz; €2
6= €xz = \€axaz; ez€= e^^X^^y, (4.35) 

and 

5 / / ^ | X « + | X 1 ^ [ 3 ( « / - - | ) ( ^ 2 - i ) + ( ^ 2 - a 1 /
2 ) ^ , 2 - / 5 l /

2 ) ] 

+ ( ^ / 2 ) X 2 ? [ ( a , 2 - ^ ) ( & 2 - ! ) ^ (4.36) 

5. THEORIES OF THE SINGLE-ION SPIN 
FUNCTIONS: DYSPROSIUM 

As is well known, the low temperature behavior of the 
spin averages is related to the low-temperature behavior 
of the magnetization. Van Vleck8 has shown that, at 
sufficiently low temperatures in ferromagnets, 

< V ( / ; ^ # ) > / < V ( / ; 0 , o ) > 
= (%Ug;T,H))/(%%fjg;0fi)) 

= [m(T,B)yw"2. (5.1) 

This power law was applied by Kittel and Van Vleck9 to 
the magnetostriction coefficients. The result in Eq. (5.1) 
is an immediate consequence10 of the Wigner-Eckart 
theorem for the matrix elements of spherical tensor 
operators. When particularized to the spin functions of 
direct interest to us, it states 

<ffg(T,H)/cifg(Ofi) = ni»(T,H) = l, T<4TC, (5.2) 

£f(T,B)/£f(Pfl) = £f0(T,H)/£fg(0fl) 
= m 3 ( r , # ) , r « 7 V (5.3) 

8 J. H. Van Vleck, J. Phys. Radium 20, 128 (1959). 
9 C. Kittel and J. H. Van Vleck, Phys. Rev. 118, 1231 (1960). 
10 H. B. Callen and E. Callen (to be published). 

Unfortunately, this [/(/+l)/2]-power law is rather a 
weak theorem; it states only that the coefficients in the 
leading term (T3/2) in the series expansions of both sides 
of the equation are equal, whereas even the T5/2 terms 
may be different. 

In a separate publication, H. Callen and S. Shtrikman11 

show that a wide range of theories of ferromagnetism 
predict a universal relationship between (yi°(f; T,H)) 
and m(T,H), for all temperatures. These theories in
clude all "renormalized collective-excitation" theories— 
that is, all theories which describe the ferromagnet in 
terms of collective excitations, while permitting the fre
quency of an excitation to depend upon the presence of 
other excitations. Spin-wave theory is in this class, as are 
the random-phase approximation12'13 and other Green's 
function theories.14 A trivial example of such theories is 
molecular-field theory, which is equivalent to a spin-
wave model with all spin-wave frequencies degenerate 
(analogous to the Einstein model of vibrational modes). 

The dependence of (y2°(f;T,H)) and <^40(/; T,H)) 

1 1H. B. Callen and S. Shtrikman, Solid State Commun. (to be 
published). 

12 S. V. Tyablikov, Ukr. Mat. Zh. 11, 287 (1959). 
13 R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962). 
" H . B. Callen, Phys. Rev. 130, 890 (1963). 
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FIG. 1. Magnetization dependence of spherical tensors (%°(S)) 
for various degrees I and spins S. From Wolf (Ref. 15) and Callen 
and Callen (Ref. 16). 

on tn(T,H) has been calculated by W. P. Wolf15 for 
several spin values, by molecular-field theory. Also the 
present authors have calculated (ctfz°(/; T,H)) as a 
function of m(T,H) for general / but infinite spin.16 As 
remarked above, these calculations are in fact of much 
greater generality than the molecular-field theory on 
which they are nominally based. 

The results of Wolf and of Callen and Callen are 
shown in Fig. 1. As expected, the results for moderate 
spin rapidly converge toward the results for infinite spin; 
the relevant parameter is the number of discrete azi-
muthal levels (25+1) over which summations are 
carried. As the infinite-spin case is expressible in closed 
form, it is particularly convenient and, in most cases, it 
is of quite sufficient accuracy for practical applications. 
For infinite spin we have16 

<ty"(/; T,H))/(%V; 0>0))=/I+i /s(*), (5.4) 

where 11+1/2 is the ratio of the hyperbolic Bessel function 
of order (/+§) to the hyperbolic Bessel function of 
order J; ti+i/2(oc) = Ii+i/2(x)/Ii/2(%). The argument x is 
to be considered as a parameter to be expressed in terms 
of the magnetization by inversion of the relationship 

m(T,B) = (W, T,H))/iW{f, 0,0)) 
— Izi2{oc) = QoXhx—\/x. (5.5) 

15 W. P. Wolf, Phys. Rev. 108, 1152 (1957). 
16 E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 

(1960). 

It will be noted that U/2(%) is the familiar Langevin 
function, and analogously f 1+1/2(00) can be considered as 
a "higher-order Langevin function." Equation (5.4) 
was first given by Keffer.17 

In the molecular field theory, the significance of x is 

x=(3fx(h+H), (5.6) 

where (3= 1/ksT, /x is the magnetic moment per ion, H 
is the external field, and h is an effective molecular field 
which is simply proportional to rn(T,H). However, we 
again stress that Eqs. (5.4) and (5.5) have greater 
generality than molecular-field theory, and that, in 
general, x does not have the significance of Eq. (5.6). 
From the formal point of view, x is simply defined as a 
function of m(T,H) by Eq. (5.5), and m(T,H) is con
sidered either to be given by an independent calcula
tion or to be taken from experiment. 

To illustrate the application of the above results, we 
first consider the paramagnetic region (T>TC), where 
m(T,H) is small. Then, from Eq. (5.5), we conclude 
that x is small, and 

i» ( r , f l )= i*+- - - . (5.7) 

We then recall that 

Ii+if2(x) = tl/(2l+l)iqxl+-> - , x«l, (5.8) 

whence 

W * M W ( r , f l ) / ( 2 I + l ) l ! , m«l9 (5.9) 

and, in particular, 

£/(r,ff)/^/(0,0) = /572(a) = (9/lS)mKT,H) 
= (9x

2(T)/15Mo2)H\ T»TC. (5.10) 

Here (2?+1)11 denotes 1X3X5- • -(2/+1) and xiX) is 
the susceptibility. 

Below Tc, it is convenient to expand tn(T,H) and x 
around their zero-field values, m(Tfi) and Xo. For this 
purpose, we recall the recurrence relations 

d . I 
—In 1/2(3)=——A-1/2O&) 
dx 21+1 

and 

l+l 

21+1 
Il+S/2(%) — l3/2(x)Il+l/2(x) (5.11) 

/W/2(*) = /w/2(*)-[ (2/+l)A]/^ 1 / 2 (*) . (5.12) 

In particular, we find 

£f(T,H) 

£,(0,0) 
•=l6/2(x) = It/2(x<,) 

dl'5/2(^0) dxo dm(T,0) 

dxo dm(T,0) dH 
-27+• (5.13) 

17 F. Keffer, Phys. Rev. 100, 1692 (1955). 
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3m(r,0) 3 3m(T,0)-Xoll-m2(Tfi)^ 

x0 x0 2m(Tfi)-xoZl-m2(T,0)~] 

X(T) 
X # + • • • , (5.14) 

Mo 

where xQ is to be eliminated by the relation 

m(Tfl) = cothxQ-(l/x0). (5.15) 
If m(Tfi) and x(T) are known from experiment, this 
relation determines the temperature and field de
pendence of £f(T,H). However, if x (^ ) is not known 
empirically, we can make the further approximation of 
taking x(T) from molecular-field theory. Then 

/©-*,= 

£f(T,H) 3m(Tfl) 1 fxH 
-1 + 

£/(0,0) xo x0kTc 

(5.16) 

Finally, we note the simplification of these equations 
at very low temperature. For small T (large #), 

^i/«(o;) = l - p ( / + l ) / 2 » ] + . • • (5.17) 
and 

w=/8 /2(*) = l - ( l / * ) + - - - , (5.18) 
whence 

/ W 2 ( * ) = 1 - P ( / + 1 ) / 2 ] ( 1 - I » ) 

+ •• ,ml(l+l)!27 ( 5 < 1 9 ) 

corroborating the p(Z+l)/2]-power law. 
Clark, De Savage, and Bozorth4 analyze in detail the 

field and temperature dependences of the magnetoelas-
tic strains in dysprosium metal. Their measurements 
extend over the ferromagnetic, antiferromagnetic, and 
paramagnetic phases. In the intermediate phase, the 
antiferromagnetic spiral structure is suppressed by a 
sufficiently large magnetic field in the basal plane, to 
cause ferromagnetic alignment. Below the Neel tempera
ture of 178°K, magnetic anisotropy restricts the mag
netization to the basal plane, and only the X7 coefficient 
can be measured. Figure 2 shows this coefficient, at 
fixed field, as a function of temperature, from just above 
the Curie temperature (85°K), far into the paramagnetic 
region. Over this interval, \ y varies by four orders of 
magnitude, but it obeys the single-ion theory through
out. The saturation magnetostriction follows the theo
retical temperature dependence, and the "forced" field-
dependent part is linear in field below TV, quadratic 
above, and with the single-ion temperature dependence 
everywhere. Clearly the two-ion term of Eq. (4.23) is 
not contributing, in this case. In their paper, Clark, 
DeSavage, and Bozorth show that the shear magneto
striction X6 also obeys the single-ion theory through the 
paramagnetic range in which it can be measured. On 
the other hand, their measurements of the volume strain 
and c-axis elongation do not follow the one-ion theory, 
as one would expect. However, because of the aniso-

100 200 300 

TEMPERATURE °K 

FIG. 2. Temperature dependence of magnetostriction coefficient 
\y of dysprosium. From Clark, De Savage, and Bozorth (Ref. 4). 

tropic susceptibility, Clark, DeSavage, and Bozorth do 
not separate these particular one- and two-ion strains, 
hence we cannot apply to their data the analysis of the 
two-ion terms to which we now turn. 

6. ISOTROPIC CORRELATION FUNCTION; 
ANOMALOUS THERMAL EXPANSION 
AND VOLUME MAGNETOSTRICTION 

In the following two sections, we shall discuss two 
approximate calculations of the isotropic correlation 
function $fg(T,H). However, we first recall the ob
servable magnetostriction components which depend 
upon this correlation function; these are the fully sym
metric strains la*L For cubic crystals, there is only 
one such strain, the volume dilatation, and its field 
and temperature dependence is entirely dictated by 
$fg(T,H). For all other crystal symmetries, both the 
volume dilatation e"'1 and ea,2 = %\jeg—te"'1] are fully 
symmetric, and hence each is a linear combination of 
&f0(T,H) and of the longitudinal spin functions £>/ 
and £>fg: 

€ « . 1 = « 7 / 7 = X u a ( r i ^ ) + X 1 2 - ( r j £ 0 ( ^ / 2 ) ( a . 2 - i ) , 
(6.1) 

+ X 2 2 « ( r , F ) ( ^ / 2 ) f e 2 - i ) , (6.2) 

where, as in Eqs. (4.19)-(4.22), Xua and X2i
a depend 

only on $fg(T,H), whereas Xi2
tt and X22

a depend on 
<£/ and <£//. 

Xn"(r,H) = ( l / A « ) £ |>22«5ii«(/,g) 
(f,g) 

-c^D^iU^fo^H), (6.3) 

X21«(r,#) = ( l / A « ) £ lcn"Bn"(f,g) 
(f,9) 

-cn"Dn°(f,g)l*f*(T,H). (6.4) 

The two terms of Eqs. (6.1) or (6.2) can be dis
tinguished experimentally. Thus the volume dilatation 
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FIG. 3. Thermal expansion coefficient of nickel. The dashed 
curve represents the normal Gruneisen behavior. From Nix and 
MacNair (Ref. 18). 

can be measured as a function of the magnetization 
direction a, and the average over all directions can be 
determined as a function of temperature. This isotropic 
component of the volume dilatation will be denoted 
by eisotr"'1 or (5F/F)iSotr- Consequently, for all crystal 
symmetries, 

(8V/V)isotr=\ua(T,H) (6.5) 

and, similarly, 
€-iSotr a ' 2=X 2 1«(r ,#) . (6.6) 

In fact, the isotropic component of the volume dilata
tion is simply the anomalous thermal expansion coeffi
cient, or the magnetic contribution to the thermal ex
pansion coefficient. Thus 

1/dV 
(^magnetic = 

( - ) -
\ dT/isotr 

d\n"(T,H) 

dT 
(6.7) 

In Fig. 3, we show the thermal expansion coefficient of 
nickel18 and, for comparison, the Gruneisen behavior 
typical of a nonmagnetic material. The difference of the 
two curves is a:magneticj a n d it is seen that this difference 
peaks at the Curie temperature where 3fg(T,0)~ (S/« Sg) 
is strongly temperature-dependent. Integrating ^magnetic 
from infinite temperature down to temperature T gives 
((5F/F)iSotr=XnO£(r,0). In nickel, this dilatation at 
0°K is about 10~4, whereas the other magnetostriction 
coefficients are of the order of 10 -6 . 

In 1921, Chevenard19 observed that in some metals 
the anomalous volume dilatation (<5F/F)iSOtr is approxi
mately proportional to m2(Tfi), below Tc. This is, of 
course, just the result expected by molecular-field 

18 F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941). 
19 P. Chevenard, Compte Rend. 172, 1655 (1921). 

theory. However, the relationship between m2(jf,0) 
and (5F/F)iSotr is not a very satisfactory one. Whereas 
m2(Tfi) vanishes at Tc, the anomalous volume dilata
tion falls at Tc to about 28% of its zero temperature 
value, and it then maintains appreciable values in the 
paramagnetic region to about 1.2TC. This is consistent 
with our identification of (SF/T)iSOtr as proportional 
to the correlation function (S/« S0), which is known20 to 
persist well above Tc. 

In a completely analogous manner, the c/a ratio of a 
uniaxial crystal will change with temperature, with a 
pronounced dependence in the vicinity of the Curie 
temperature. The isotropic part (that part independent 
of magnetization direction) is given by Eqs. (6.6) and 
(6.4) and is determined by 3fg(T,H). 

At constant temperature, a change in the magnitude 
of the applied field also changes $fg(T,H). The resultant 
change in (SV/V)isott is the isotropic forced volume mag
netostriction. The analogous change in the s-axis dilata
tion cisotr"'2 is also an isotropic forced magnetostriction. 

Thus, to recapitulate, Xa for cubic crystals and both 
Xn" and \2ia for all other crystals, depend on the iso
tropic correlation function 3fg(T,H). They determine 
the isotropic volume dilatation and the isotropic linear 
strain fv3[€ 2 2 - - | (5F /F) ] . The spontaneous tempera
ture dependence of $fg(T,H) thereby determines the 
anomalous thermal (volume) expansion coefficient 
^magnetic and the isotropic, anomalous, thermal, s-axis 
expansion. And, finally, the magnetic field dependence 
of gfg(T,H) determines the isotropic forced volume mag
netostriction and the isotropic forced £-axis dilatation. 

7. CLUSTER THEORY OF gfg(T,H); EuO 
AND EuS: GADOLINIUM 

To calculate 3fg(T,H), we must adopt a particular 
model. Unfortunately, the simplest theory, molecular-
field theory, is inadequate for this purpose. In fact, 
dfg{T,H) reduces to m2(T,H) in molecular-field theory, 
and for H=0 it therefore vanishes at the Curie tempera
ture. However, the value of 3fg(Tcfi)/3fg(0fi) has been 
obtained by high-temperature series extrapolation for 
nearest-neighbor models,20 and it has the very appreci
able value of 0.596 for spin J, at the Curie temperature. 
Hence we must have recourse to an approximation more 
powerful than molecular-field theory. 

In another paper,21 we have developed a two-spin 
cluster approximation for ferromagnets with nearest-
neighbor and next-nearest-neighbor exchange inter
actions. We there applied the theory to EuO and EuS, 
which are cubic ferromagnets with positive nearest-
neighbor exchange Ji and smaller negative next-
nearest-neighbor exchange J2. Using the exchange con
stants Ji and J2 suggested by Charap and Boyd22 (on 
the basis of a spin-wave analysis of low-temperature 

20 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 
21 H. B. Callen and E. Callen, Phys. Rev. 136, 41675 (1964). 
22 S. H. Charap and E. L. Bavd, Phys. Rev. 133, A811 (1964). 
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FIG. 4. Nearest and next-neighbor isotropic correlation func
tions for various values of J2/J1 calculated by the cluster theory 
(Ref. 21). 

data), the cluster theory predicts Tc= 16.92°K for EuS, 
whereas the observed value is 16.52°K. The theoretical 
specific heat is also in excellent agreement with the 
observed23 X-like anomaly at the Curie temperature, 
particularly in the ferromagnetic region (below Tc). 
This agreement attests to the success of the cluster 
theory in predicting the isotropic correlation function 
^fg(TyH)^{Sf'Sg) on which the magnetic energy de
pends. The results of the cluster theory are shown in 
Fig. 4, where we give (SfSg) for nearest neighbors and 
for next-nearest-neighbors, for various ratios J2/J1 of 
exchange constants. 

In applying the cluster theory to the magnetostriction 
in the europium chalcogenides, it is plausible that 
Da(f,g) should also be short-ranged. In fact, we might 
reasonably expect that the magnetostrictive coupling 
arises by the strain dependence of the exchange inter
action: Da(f,g) = dJfg/dea. Accordingly, we tentatively 
adopt the simplifying assumption that Da(f,g) is non
zero only for nearest and next-nearest neighbors. Then 
Fig. 4 provides the theoretical prediction of the various 
effects discussed in the preceding section. 

The close analogy between the anomalous thermal 
expansion coefficient and the magnetic specific heat is 

also of interest: 

vSS«(l,2) d 
CKmagnetic = NZ\ ( S i • S2) 

S(S+1)(2S+1) dT 

\ 3 J D « ( 1 , 3 ) d 

+Nz2 ( S r S 3 > , (7.1) 
S{S+1){2S+1) dT 

d d 
cv = NztJ12—(Si- S2)+Nz2Ju—<Si- S3). (7.2) 

dT dT 

Here N is the number of ions per unit volume, Z\ is the 
number of nearest neighbors {z\—12), z2 is the number 
of next-nearest neighbors (22=6), and ions 2 and 3 are 
representative nearest and next-nearest neighbors of 
ion # 1 . For EuO, /13 is very small compared to /12, 
and it is plausible that only the first terms in Eqs. (7.1) 
and (7.2) need be retained; in that case, cemagnetic a n d cv 

should exhibit the same temperature dependence. In 
EuS, the second-neighbor exchange is appreciable, but 
^magnetic and cv should be compared. In passing, we note 
that even in nickel, with a long range of interaction, the 
behaviors of cv

u and ^magnetic a r e suggestively similar, 
as is indicated by comparison of Figs. 3 and 5. 

Unfortunately, no data on the forced magnetostriction 
of the europium chalcogenides are available, but we can 
note the similarity between our theoretical results 
and the observed forced volume magnetostriction in 
gadolinium. 

Corner and Hutchinson25 first observed that the 
forced-volume magnetostriction in gadolinium is linear 
in field below Tc and quadratic well above Tc, but that 
the linearity below Tc appears to persist several degrees 
above Tc. However, the linearity above Tc can only be 
apparent, for time-reversal symmetry in the paramag
netic state precludes odd powers in the field. Bozorth 
and Wakiyama26 have confirmed the observations of 
Corner and Hutchinson and have also measured the 
isotropic and anisotropic parts of the c-axis forced mag
netostriction [the first and second terms of Eq. (6.2), 
respectively]. Again, both of these are linear in H be
low Tc, and the anisotropic term is only about 1.5% of 
the isotropic term. This is in contrast to dysprosium, 
in which the anisotropic term of the c-axis magneto-

FIG. 5. Specific 
heat of nickel. From 
Moser (Ref. 24). 
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23 V. L. Moruzzi and D. T. Teaney, Solid State Commun, 1, 127 
(1963). 

24 H. Moser, Phys. Z. 37, 737 (1936). 
28 W. D. Corner and F. Hutchinson, Proc. Phys. Soc. (London) 

75, 781 (1960). 
26 R. M. Bozorth and T. Wakiyama, J. Phys. Soc. Japan 17, 

1669, 1670 (1962); 18, 97 (1963). 



M A G N E T O S T R I C T I O N A N D T H E R M A L E X P A N S I O N I N F E R R O M A G N E T S A469 

l I. I 1 1 I I I I I I 1 I l I 

. V I 1 1 1 1 1 1 I i ! 1 ! I 1 I ! 1 I 1 1 1 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 3840 

FIG. 6. Magnetic-field dependence of the nearest-neighbor 
isotropic correlation function for various T/Tc. Calculated by 
cluster theory (Ref. 21) with nearest-neighbor interactions. 

striction is large. In more physical terms, this observa
tion implies that elongation of the c axis of gadolinium 
alters the isotropic exchange energy (5i2

a(/,g)S/« Sge
a>2) 

but does not introduce appreciable anisotropic exchange 
C522 a( / ,g)(vS/2)(^/- iS / .S,)€^2] nor lead to one-ion 
anisotropy terms [5"(/)(v5/2)[(5 /

3)2-|5(kS+l)]ea>2]. 
Finally, Coleman and Pavlovic27 and Coleman28 have 
made comprehensive measurements of the temperature 
and field dependence of all six magnetostriction coeffi
cients of gadolinium [Eqs. (4.19)-(4.24)]. To summarize, 
then, all investigators observe that \2i

a, the coefficient of 
the isotropic part of the c-axis elongation, is linear in 
field below Tc and quadratic well above Tc, but that 
the linearity appears to persist several degrees above Tc. 
We shall now show that, although the magnetostriction 
of gadolinium apparently arises through the long-range 
Ruderman-Kittel-Kasuya-Yosida interaction, an analo
gous pseudolinearity occurs also in a nearest-neighbor 
model. Again we stress, however, that the pseudo-
linearity is the sum of even terms (aH2+bH4+cH*-\ ) 
in a series which converges slowly just above Tc; true 
linearity above Tc is disallowed by time-reversal 
symmetry. 

In Fig. 6, we show the field dependence of the iso
tropic correlation function (and therefore of A2i

a) for 
a nearest-neighbor model, as computed by the two-spin 
cluster theory. For T<TC, the expected linearity for 
small fields is clear, as is the expected quadratic de
pendence for r » r c . The curve for T= 1.10 Tc exhibits 
an apparent linearity, which appears to persist up to 
perhaps 1.3 Tc. 

Davies29 has also discussed the anomalous pseudo-
linear field dependence of the forced magnetostriction of 
gadolinium just above Tc, again using a nearest-
neighbor model. His analysis starts with the thermo-

27 W. E. Coleman and A. S. Pavlovic, Phys. Rev. 135, A426 
(1964). 

28 W. E. Coleman, thesis, West Virginia University, Morgan-
town, West Virginia, 1964 (unpublished). 

29 J. T. Davies, Proc. Phys. Soc. (London) 79, 821 (1962). 

dynamic identity 

(dV/dB)T.p=-Vo(dM/dP)T,H, (7.3) 

which Davies then writes as 

dV /dM\ /dJ\/dTc\ 
—=-( — ) ( )( )dE. (7.4) 
V0 \dJ/H,T\dTc/\ bPl 

Davies calculates (8M/dJ)H,T by the constant coupling 
approximation, takes dJ/dTc from the same theory, and 
relies on independent experimental data for dTc/dP. 

To exhibit the relation to our method, we note that 

m= (l/NS^itrSfe-w/tre-W), (7.5) 
3 

so that, recalling the form of 5C and recalling that 
(52)=0 in the paramagnetic range, 

dm/dJ^j:(SfSrSg). (7.6) 

In our analysis, the dominant terms in the volume 
dilatation are 

8V/V=2 £ 5u"(/,*)<S rS,>. (7.7) 

And the derivative with respect to the field would be 

d 8V 
4 E Z>u«(/,g)<S/S,.S,>. (7.8) 

dH V /(/,*> 

Thus the correlation functions which appear implicitly 
in each theory are identical. The above considerations 
can be extended to second derivatives as well, so that 
our treatment of the forced magnetostriction in the 
paramagnetic range is implicitly related to Davies' 
analysis. 

Tonegawa30 has also analyzed the forced magneto
striction and anomalous thermal expansion of gadolin
ium. He calculates the exchange interaction by the 
Ruderman-Kittel-Kasuya-Yosida mechanism, and re
lates the anisotropy of the forced magnetostriction and 
anomalous thermal expansion to an asphericity of the 
Fermi surface. 

8. SCALAR CORRELATION FUNCTION IN THE 
PARAMAGNETIC REGION: RANDOM 

PHASE APPROXIMATION 

Although the cluster expansion of Ref. (21) yields 
scalar correlation functions and a specific heat in ex
tremely close agreement with the measured curve for 
EuS below Tc, it is less satisfactory in the paramagnetic 
region, and we turn to the random phase approximation 
as formulated for general spin by Tahir-Kheli and ter 
Haar.14 Their analysis can be cast in the following form. 

T. Tonegawa, J. Phys. Soc. Japan 19, 1168 (1964). 
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FIG. 7. Nearest-neighbor isotropic correlation function in the 
paramagnetic region, for 5 = J, calculated by random phase ap
proximation. The point represents the high-temperature series 
extrapolation of Domb and Sykes (Ref. 20). 

Let £ be the susceptibility in units of 2ZJ/IJL2. Then 

<S / .S ,>/5(5 '+l) = ^(R / „{) /^(0 , f ) , (8.1) 

where 

< f t R , ^ ( l / ; V ) L { < r * - V [ l + S ( l - Y * ) ] } (8.2) 
k 

and 
zyre=F(-i)/#(o,$). (8.3) 

Here y^ is the Fourier transform of J/g, in units of zJ, 
and F(-1) is 1.51638 for simple cubic, 1.39320 for body-
centered cubic, and 1.34466 for face-centered cubic. 

For each £ and R/g we have evaluated #(R/tf,£) by 
numerical integration through one octant of the Bril-
louin zone, on the NOL 7090 computer. Thus Eq. (8.1) 
gives (§fSg)/S(S+l) as a function of £. Elimination of 
5 gives (SrSg)/S(S+l) as a function of T/Tc. The re
sultant theoretical curve, for nearest-neighbor exchange 
and 5 = | , is given in Fig. 7. For comparison, we show 
the value of (SfSg)/S(S+l) at the Curie temperature, 
as calculated by Domb and Sykes20 by extrapolation of 
the high-temperature series expansion. In this latter 
connection, we note that the random phase approxima
tion gives <S/ .S„) r»r c= 0.2554 5 ( 5 + 1 ) for the fee 
lattice. 

9. TWO-ION LONGITUDINAL CORRELATION 
FUNCTION £fg(TyH) 

The last of the three spin functions which arise in the 
theory of magnetostriction is the two-ion longitudinal 
correlation function £fg(T,H)~(SfzSg

z—|SrSJ. 
I t will be recalled, from Eq. (5.1), that this function 

satisfies the [ | / ( /+l)]-power law at sufficiently low 
temperatures, whence 

(3/2S2)(Sf
zS/-^rSg) = m^T,H), T«TC. (9.1) 

However, this result applies only to ions / and g which 
are strongly correlated (by virue of being reasonably 

close together). For ions / and g sufficiently far apart, 
the spins are independent and 

W2S*)(St'Sg'-\&r St) = m*(T,H). (9.2) 

I t is of interest to consider briefly the range parameter 
R(T) which determines the transition from the mz to the 
m2 behavior. This range is roughly equal to the shortest 
wavelength of spin wave which is thermally excited at 
the given temperature: 

kBT= ha>c^2SzJa2k2~2SzJa2(27r/R)2. (9.3) 

Our range parameter R(T) is the "Debye length" of 
Horwitz and Mattis,31 who show that the exchange in
teraction between spin pairs at separation Ri is mag
netization renormalized for RiS>R(T). 

The temperature dependence given by Eq. (9.2) for 
distant neighbors is valid at almost all temperatures. 
However, the mz temperature dependence for near 
neighbors holds only at low temperature. In the physi
cally interesting range of temperature, we must have re
course to approximation methods. 

By an extension of the cluster theory,21 we have cal
culated the two-ion longitudinal correlation function for 
several spin values and for various ratios of exchange 
constants Ji/Jv These correlation functions for nearest-
neighbor and next-nearest-neighbor spins are shown in 
Fig. 8, as a function of m2, assuming 5 = J , fee lattice, 

I 1 1 1 I I I 

3/2 <S?SJ-l/3(~s'rS2)'> • 

3/2 <S?Sf-l/3(SrS3)> 

••/*/«/,»-0.4 :< / J> 

l \ /-J2/Jis0<l3>tAND m2 - | 

| J2/Ji = i:<l2> AND<13> 

FIG. 8. Nearest- and next-nearest-neighbor longitudinal correla
tion function versus the square of the magnetization, calculated by 
cluster theory (Ref. 21), with S = i and fee, and for several ratios 
/ 2 / / 1 . 

31 L. P. Horwitz and D. C. Mattis, Phys. Rev. Letters 10, 511 
(1963). 
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FIG. 9. Temperature dependence of magnetostriction coefficient 
X? of gadolinium. Experimental data from Coleman (Ref. 28); 
theoretical curve calculated by Eq. (9.6). 

zero magnetic field, and three ratios JilJ\. Curves for 
other spin values are almost identical to those for 5 = | . 
Although the correlation functions do vary as mz at 
sufficiently low temperature, as required by Eq. (8.1), 
the range of temperature in which this law is valid is 
extremely narrow. Over almost the entire temperature 
range, both the nearest- and next-nearest-neighbor cor
relation functions vary very closely as m2, for all ratios 
J2/J1' We conclude that, for the purposes of applica
tions, it is sufficient to represent the two-ion longitudinal 
correlation function by m2\ 

£/ . (r , f l )= 
3^<5/5/- iS rS«> 

y/2S(S+l)(2S+l) 

6li2S 

(S+1)(2S+1) 
m2(T,H). (9.4) 

As an illustration of the application of this result, we 
consider the magnetostriction coefficient \y of gadolin
ium. The measurements of Coleman28 are shown in Fig. 

9, and it is seen that this coefficient changes sign before 
vanishing at the Curie temperature, in quantitative 
agreement with the measurements of others. 26»32.33 The 
magnetostriction equation used by Coleman is not iden
tical to Eq. (4.27), as Coleman's function transforming 
as F7 is an admixture of both 1=2 and Z=4, whereas our 
functions are pure 1=2. However, the magnetoelastic 
coefficient of the 1=4 angular dependence presumably is 
negligibly small, as has been carefully confirmed in 
dysprosium.4 Consequently, Coleman's Rz coefficient 
can be associated directly with our XT; i?5=A7. 

From Eqs. (4.23), (5.10), and (9.4), we have 

X*= 
r / (25+3)! y / M _ -! 

L\51(25-2)!/ cy f J 

+r 
!(25-2)! 

61I2S 

L(5+l)(25+l)c* 
- E 2Kf,g)l 
;v (f,o) J 

M2(T,H), (9.5) 

where x is to be expressed in terms of m(T) by Eq. (5.5). 
The magnetization of gadolinium has been measured by 
Elliott, Legvold, and Spedding34 and by Nigh, Legvold 
and Spedding.35 Regarding the bracketed quantities in 
Eq. (9.5) as adjustable constants, we obtain exact 
agreement with experiment over the entire range, as 
shown in Fig. 9, by choosing 

X^351X10-6/5/2W-243XlO-6m2(r,^). (9.6) 

Tsuya and Clark36 have shown that the real magnetic 
dipole contribution to the two-ion magnetoelastic 
coupling is much too small to account for the coefficient 
of m2 in Eq. (9.6). Those authors have also estimated37 

the coefficient of the hii{oo) term above for the heavy 
rare earth metals. They have shown that the coefficient 
of the ls/2(x) term in gadolinium can arise from a 4% 
admixture of a Tb-type wave function into the Gd 
ground state. 

32 K. P. Belov, R. Z. Levitin, S. A. Nikitin, and A. V. Ped'ko, 
Zh. Eksperim. i Teor. Fiz. 40, 1562 (1961) [English t ransl : 
Soviet Phys.—JETP 13, 1096 (1961)]. 

33 G. Alstad and S. Legvold, J. Appl. Phys. 35, 1752 (1964). 
34 J. F. Elliott, S. Legvold and F. H. Spedding, Phys. Rev. 91, 

28 (1953). 
35 H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 

1092 (1963). 
36 N. Tsuya and A. E. Clark (private communication). 
37 N. Tsuya, A. E. Clark, and R. M. Bozorth, in Proceedings of 

the International Conference on Magnetism, Nottingham, Eng
land, September 1964 (unpublished). 


