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It is demonstrated that for diamond an extension of the pseudopotential theory using ¢ matrices yields
covalent bonding. The covalent bonds arise from multiple scattering of the valence electrons by the lattice
ions. It is estimated that about 1.2 valence electrons are localized per bond. We obtain approximately
—0.45 rydberg for the cohesive energy. The experimental value for the cohesive energy of diamond is
—0.54 rydberg. An approximate expression for the self-consistent crystal field is given in terms of multipole
fields. The determination of lattice force constants, fundamental in lattice dynamics, is discussed.
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I. THEORY

HE pseudo-crystal-potential theory as developed
by Kleinman and Phillips' and Cohen, Heine,
et al.? has been used with great success for self-consistent
determination of the valence-electron density in metals
and semiconductors. It has been shown® that an ex-
tension of the pseudopotential theory using ¢ matrices
yields covalent bonding in diamond. The covalent
bonding arises from multiple scattering of the valence
electrons by the lattice ions.
The system of valence electrons is described by the
Hamilton operator H. The one-electron Green’s func-
tion G(r,r’; ko) defined by

(H—ko))G(t,t'; ko)=0(r—r) .1

can be split in accordance to the procedure in the
orthogonalized-plane-wave method as

G(l’,l‘l; ko) =G’ (r,r' > k0)+GH (r:r,; k()) ) (12)
ith
" (H+ VR——ko)G’(l',r/; ko)=5(l‘—l‘l) N (13)
and .
G'(rf s ko)== 2 {X eu(r) o™ (t)ou(p)be™ ()
Q et

— @i (1)e® " — @y (1)e® b, (p)}G' (0,05 ko), (1.4)
bi(p)=(¢:|D). (1.5)

Vg is the repulsive potential resulting from orthogo-
nalizing the valence-electron states to the states ¢, of
the closed-shell core electrons. G'(p,p’; ko) is the
Fourier transform of G'(r,t’; ko). In general G is much
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1 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
2 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
3 K. H. Bennemann, Phys. Rev. 133, A1045 (1964).
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smaller than G’. Furthermore it becomes obvious that
G" is not much affected by multiple scattering. Writing

H4-Ve=H+-AH, (1.6)
7? 1
Hy=——V24— / ErVdeal(n)+Cot+4o, (1.7)
2m Q

where V2l denotes the local part of the pseudo-
potential and Cy and 4, result from C and 4, respec-
tively, for AV, =V,—(V,)=0, we get

dg
G'(p,q; po) =G0(p7P0)5p,q+/ 2—060(11,?0)
™

XT(p,a; 90)Go(g, po—qo). (1.8)

G, is obtained from Eq. (I.3) by replacing H+ V p with
H,. The ¢ matrix T'(p,q; qo) contains all information
about the scattering of the valence electrons by the
lattice ions and reflects the lattice configuration. To
make the dependence of 7 on the lattice configuration
more explicit, AH is split into

AH=3; AH,, (1.9

where AH; is the contribution to AH due to the ion L
The scattering matrix 7" can then be written in terms
of the scattering matrix #;, describing the scattering of
the valence electrons by AH;, putting AHy=0, with
U'5£1, as follows:
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T(p,a; 90 =221 Tu(p,q5 90) (1.10)
with
b (prl ’ 90)
et LOA=p) 1+ (o=N) 11+ (q—0) -x177]
aé\  d
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The scattering matrices ¢, are approximately independent of the ionic positions. The higher terms in Eq. (I.11)
result from multiple scattering. Under certain conditions the multiple-scattering terms in Eq. (I.11) can be par-
tially summed up.? However, it may be noted that multiple scattering can be treated more elegantly and directly
by solving in closed form the integral equation for 7'; symbolically given by T;=AH;+G,T'AH. If AH,(R)) is a
smoothly varying function with respect to R;, and for simplicity is assumed to be independent of /, one derives
approximately

ap
(2m)

Ti(ak: ko)=|:AHz(q,k)+ / AH:<q,p>AHl(p,k>Go(p,ko>cl<p,q>]

d3 ds —1
x[l— / / G 7: - (2:)3AH1(s,p)AH;(p,s)Go(p,ko)Go(S,ko)cz(P,s)Cz(S,p)] . (L12)

The ion-ion correlation function ¢;(p,q) is given by
a(p,)=2 v ¢, (L.13)
Eq. (1.12) gives an exact result if the perturbing potentials AH; are nonlocal and separable. If AH, is merely a
smoothly varying function with respect to R;, then T} is expanded in spherical harmonics and the resulting radial
functions (T1)ym are determined similarly to 7. The integral equation for #;(q,k; ko) is similarly solved. Then ¢; is
given by Eq. (I1.12) with the ion-ion correlation functions replaced by 1.
II. VALENCE-ELECTRON DENSITY
Using Eqgs. (I1.9) and (I.11) and expanding the valence-electron density p(r) in a Fourier series one gets
p(r) =2k pxe'®, (IL.1)
with
px=px’+px" +px"’. (I1.2)

px’ results from G” and gives in lowest order no local crystal-field corrections contributing to covalent bonding.
It is

dko ,
pxl=//d37—2-“G”(r,r; ko)e*zK-r' (II.3)
™

px”’ is given by

d
PK”= SK/ “@
2w

&p
Golp,po)Go(0—K, po) [tzo<p, p—K; p0)
(2ny

[N
_.f Ez—sgtlo(pygv; Pt (3, r—K; PO)GO(Q»,?O)—- Ce } . (I1.4)

lo denotes any lattice ion. Sk is the crystal structure factor:
Sx=(1/Q) X1 ek, (IL5)
Averaging the ¢ matrices with respect to po and approximating AH, by a local potential, Eq. (I1.4) can be rewritten

as
2

a\
px"=sx{ [e(K,0)— 170, (K) — f oo (R 030 (K)o } , (IL6)

. 4re?
with

d d?
F(KQ\-)E/ —;—0/ 2 i;ng (04K, p0)Go(p,p0)Go(p+2, o). (IL.7)

e(K,0) designates the static dielectric function of a uniform electron gas.*

4 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 28, 8 (1954).
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px’"’ arises from multiple scattering of the valence electrons and is given by

dpo &%

" o _K’ 0)Go(p— /’
- §f / (@2r)? (zw)sG"(‘.”P")G (=K, 20)Go(p—K', o)

X {SK'SK—K'(flo([’, p—K’; po)t3,(p—K’, p—K; PO)"’/

a3\
(2m)?

XGo(X,p0) 11, (0,25 p0)t1, (X, —K'; po)t3, (p— K, p—K; o)

1 (=K', 2 20y (3 D—K; 201y (0, p—K'; m)])

+3 SwSeSex-xrGo@—K'—K", po)tiy(0,0—K'; p0)

K’/
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} . (I11.8)

Using the same approximations as in deriving Eq. (I1.6) one gets

o= S POK1, ()t (K= K) = [ ROK D000 (K= 21, (K=K
KI

a3\
1y (0 Kty (K— 215, (K) - -] )+ S SeSeScx-xRK, K, K4K")
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X1, (K, (K3 (K—K'—K") - -+,  (11.9)
dSP dpo
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By use of these formulas, some Fourier coefficients px
of the valence electron density in diamond are calcu-
lated. AH,(q) is determined using earlier results ob-
tained by Herman® and Kleinman and Phillips.® The
scattering matrix #;(q,k; ko) is expanded in Legendre
polynomials and then the resulting radial part of
t:(q) is determined as mentioned earlier. The obtained
results for px are given in Table I.

TaBLE 1. Fourier coefficients px of valence-electron charge
density in diamond, given in units of electrons per atom. Column 2
presents the results following from the approximation 7'=2;-AH;
and neglecting px’. In Column 3 the results of the previous column
are corrected by taking into account px’. Column 4 results from
T2zt Column 5 results from Ty=t+2 a0 LGolyr=+ - - -.

(1) (2 (©)] @ ®)

(a/2m)K PK PK PK PR
(1,1,1) 1.14 1.09 0.81 0.91
(2,2,0) 0.43 0.37 0.19 0.12
(3,1,1) 0.10 0.09 0.05 —0.10
(2,2,2) 0 0 0 —0.13
(4,0,0) 0.05 0.02 0.02 —0.11

8 F. Herman, Phys. Rev. 88, 1210 (1952).
6 L. Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959).

Then, the results given in Table I are used to estimate
the number of electrons #..1,. located in a covalent bond
in diamond. It is

nc,b_=2/ o(x)dx,
/2

where © denotes the volume of the region around the
[111] axis between two nearest-neighbor lattice atoms
in which the covalent bonding charge is presumably
located. For symmetry reasons 3 is approximately
given by 3Q,, where Qq is the volume of the atomic cell.
One finds that 1.2 electrons are approximately located
in a covalent bond in diamond.

The valence-electron density along the [1117] axis
is studied in detail in Figs. 1, 2, 3, and 4.7 Figs. 1, 2, and
3 display the significance of the approximations
T=2AH;, and T\==t;, and the importance of the higher
Fourier coefficients px, which are strongly affected by
multiple scattering. Fig. 4 shows the total contribution
to the valence-electron charge density along the [111]
axis due to multiple scattering.

(I.11)

7 L. Kleinman and J. C. Phillips, Phys. Rev. 125, 819 (1962).
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F16. 1. Valence-electron charge density along a [111] axis in
diamond as resulting from po and p(i11).. Curve “a” results from
approximating the scattering matrix T; by AH;, curve “b” from
T2, and curve “c” from T1=24+Z1a tGotr+ -+ -

III. COHESIVE ENERGY

The cohesive energy of diamond is approximately
given by
Ecoh= %¢+Eel/N_ Efree atom . (III. 1)

¢ gives the electrostatic energy of one lattice ion due to
the interaction with all other lattice ions and the
uniform gas of valence electrons. ¢ is determined using
the Ewald method.® Efree atom 1S the energy necessary
to remove the four valence electrons from the free atom.

[} [Electrons per Atomic Volume]

O —~= N W D>y 3 0w

U
—

1
1 2 3 4 5
Atom

1
N

6 a 7 8
X (35

F1c. 2. Valence electron charge density along a [111] axis in
diamond obtained by taking into account multiple scattering.
Curve “a” results from pg and p(111). Curve “b” results from po,
p(11), plazody péan), Plaoo), and p(zez). Note that the effect of the
higher Fourier coefficients px is to transfer charge from the
atomic site at x=2 to the region between two nearest-neighbor
atoms.

8 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
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Fic. 3. Valence-electron charge density in diamond resulting
from po, pl111), pla2ody plsir), plaoo), and p(aee). Curve “a” results
from T,=~AH,; curve “b” from T:=f;, and curve ‘“c” from

Tz=t1+2;¢p LGotyr -+ ..
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N gives the number of lattice ions. E, is the total energy
of the system of valence electrons. It is approximately

Ea=NE¢+N > x Ex, (1I11.2)
with
Eo=4{2.21/r—0.916/7s4 Ecor:
H(Vatdiv)—HV+C)}, (IIL3)
and
Ex=px(AV E+AVEXAAvE
+3ACk+3AA4K)a?/8, (1I1.4)

where 7, is the radius of the sphere which contains 1
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Fic. 4. Contribution Ap to the valence-electron charge density
due to multiple scattering presented by Zi.q- HiGolrr+ - - +-
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TasLE II. The various contributions to the cohesive energy of diamond are given. All energies are in rydbergs. The value in the 4th
column results from neglecting multiple scattering in determining Ex. Column 5 gives the cohesive energy if multiple-electron scattering
is neglected. Columns 6 and 7 result from taking into account multiple-electron scattering.

) 2 () (€ (&) ©) Q) @®
2 Ex
[ 2 Ex K
- ) K Tir=t+ Z tuGotr+---)
2 Eftee atom Ey (Tz%h) Ecoh Lol Ecoh Emhexp
—6.45 —11.29 1.03 —6.02 —0.15 —6.32 —0.45 —0.54

valence electron in the uniform gas of valence electrons,
E,..: is the correlation energy per valence electron in
the uniform sea of valence electrons, and 4 ;v describes
the interaction between the tightly bound core electrons
and the valence electrons ¢ is the lattice constant.

In order to obtain good agreement between the
experimental and theoretical value for the cohesive
energy of diamond it is important to determine (V;+C)
carefully and not to use for this quantity —3Er re-
sulting from the approximation #=2AH; Er is the
Fermi energy. Thus AC;(q) needs to be determined.
Itis

dpe &
scw=—2e [ [ 75

X Go(p,p0)Go(p4-4, po)ti(p+4q, P; p0),

where v(q) denotes the electron-electron interaction.
Averaging £, with respect to po and approximating
AH; by a local potential, one obtains approximately

ACi(q)=—"[e(g,0)—11:(a). (II1.6)

(I11.5)

This yields
(Vit-Cy=lim{Vi(a)—[e(a,0)— Ut (@)} . (ITLT)

1; is approximately given by

Li(q)=AH(9)D(q), (IIL3)

with

D(q)<(1+</%G0(P,ko)AHzo(k+q, P)>k>

SP d3

X(l—/ f ((;r)a (zyrs)JMI“(s)12

-1
XGo(pts, ko)Go(s,ko)) > . (IIL.9)
ko
Then Eq. (IIL7) can be written as
Vi(q)
(ViC)=lim (T11.10)

=0 14D (q)[e(q,0)—1]

The various contributions to the cohesive energy
are given in Table II. The used ionization energies are

given by Slater. It becomes obvious that the binding
energy resulting from multiple electron scattering plays
an important role in the cohesion of diamond.

IV. CRYSTAL POTENTIAL IN TERMS OF
MULTIPOLE FIELDS

It is useful for many studies, for example of optical
properties of the crystal, to expand the total crystal
field V (r) which a valence electron feels in terms of the
Coulomb field due to spherically symmetrically dis-
tributed charges around each lattice side, dipole fields,
and higher multipole fields. The multipole fields are a
consequence of the lack of spherical symmetry of the
valence-electron charge distribution within the ele-
mentary cell of the crystal or the atomic cell. It is clear
that the multipole fields become more and more im-
portant as we go from metals to crystals with strong
covalent bonding.

The crystal is divided into atomic cells of volume Q,
defined by

Q=0/N. (IV.1)

For simplicity we work within the Hartree approxi-
mation and assume a spherically symmetrical charge
distribution of the tightly bound core electrons. Then
the multipole fields are contained in AC (r),

AC()= / l:irjldsr'. (1V.2)
AC(r) is rewritten as
AC(r)=X; AC;(x—T1;), (Iv.3)
with
AC(t—1)= f ds/l’ ir :,T) (IV.4)
2 -

Then, approximating Qo by a sphere and expanding the
integrand in Eq. (IV.4) in terms of spherical harmonics,
one gets

AC;(x—1))= ZO M o(ro,(Ri/R;))R;,
—
Rj=r—r;>r,, (IV.5)

where 7, is the radius of the sphere with volume Q.
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The moments M, are defined as
Mo (ro,Ri/Rp)=4m 3 x %7 (K,ro)px Py Tk x,)

with
1
TR ) =— /
K¢7+1 0

where j, are spherical Bessel functions.
Jo can readily be evaluated for the most important
small g values. If R;<ro, one gets

(Iv.6)

Ko

dyy*je(y), av.m

AC;(R)=3" [M,(R;R;/R)R7

) +Q,(roR)R7], (IV.8)

with

Qo(ro,R))=4miv 3. px P,(dx,x;)
K0

0
x / dyyr1j,(Ky). (IV.9)

R;

Note that the functions M, and Q, can be readily
determined, provided the px are known.

Using for example the Slater approximation for the
exchange potential, it is easily possible also to expand
the crystal field in terms of multipole fields within the
Hartree-Fock approximation.

V. NEW METHOD FOR DETERMINING
LATTICE FORCE CONSTANTS

Using Egs. (L.3), (I1.8), and (1.10) the total energy
of the system of valence electrons can be expressed
explicitly in terms of the ionic positions. This is very

&p &g dpo

alzo:‘l
—ff]
dr;0r, (27)? (27)? 2x

€' @05} (q,p)Go(9,£0)Go (A, p0) AT (p,45 po)/Irs, 5% 7.
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important for determining the force constants funda-
mental in lattice dynamics. According to a familiar
statistical formula? one gets

dEq/dr;=((3/0r))H), (v.1)

where the average is over the ground state of the system
of valence electrons. Eq. (V.1) can approximately be
rewritten as

AE1 / / / ap dq dpo
=—/Ze _ et (p—a) 1§
or; (27)? (2m)® 2«

XM<qap)G(p’q’ PO) )

(V.2)
with

T
M(q,p>z<q];]p +3 5 (@)

t,t/

><<w(r>

bié(p)= (e (r)|p),

where M (q,p) is independent of the ionic positions. It
has been assumed for simplicity that the states ¢, are
given by a linear combination of nonoverlapping
atomic-core states ¢;/. Further, for the repulsive
potential ¥z we have taken the form given by Cohen
and Heine.? Note that Eq. (V.2) can be used for a
self-consistent determination of lattice distortion due
to lattice defects.

The second derivative of Ee with respect to an ionic
position yields the lowest order force constants of
interest in lattice dynamics. One gets from Eq. (V.2)
the expression

w’(r)>+- L (V.3)

r
73

(V.4)

(V.5)

The corresponding expression for 7= j can most easily be obtained from the familiar sum rule for the lattice force

constants of this type. It is

9 a i\
—T(p,a; po) =1:(p,4; po)—e P Fit /
61‘1 ari (27!')3 1=

+2 0P (p,3; po)li(q; po)Go (0 po) det &V X /ori-- - -}

14

{2 @M (a5 po)la(D,%; p0)Go(X,po) dei P wi/r;

(V.6)

Again, averaging i; with respect to po and approximating AH, by a local operator, Eq. (V.5) can be rewritten as

Jr,0r;

2r)?

with

L(g,r;r5)=1qv" (q)[1— €(g,0) Jts,(— q)e™a=id,

aEe1 daq
= ——ZB/ ( M(‘l)(L(qyri;rj)+K(q;ri7rj))+ Tt

i%7, v.7)

(v.8)

9 L. D. Landau and E. M. Lifshitz, Statistical Physics, English transl.: E. Peierls and R. F. Peierls (Addison-Wesley Publishing

Company, Inc., Reading, Massachusetts, 1958).
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and
d*\

K(qyrhrf)zi lz

=iJ (2m)

Finally, the function K can be rewritten as

&\

Klaror)=i f :

)3

In the same way higher derivatives of E,; with respect
to ionic positions can be determined.

VI. CONCLUDING REMARKS

It has been shown how the pseudopotential theory
can be extended by using ¢ matrices. The f-matrix
approach yields an analytical method for describing
covalent bonding in diamond. It has been demon-
strated that covalent bonding arises from multiple
scattering of the valence electrons by the lattice ions.
The theory yields a satisfactory result for the cohesive
energy of diamond. A more proper treatment of ex-
change and residual correlation among the valence
electrons will probably improve the agreement between
the theoretical and experimental value of the cohesive

K. H. BENNEMANN

F(,2)1, (= @)ty (— ) [ et mtdri 4 (q—Q)gilariithnd ], (v.9)
) F(q,2) 1 (0= @)t3,(— N)ges 7143 (q+K)SgeiarirtKriy (K), (—q—K)
K
X[F[q, ¢+K)+F(q, —K)]. (V.10)

energy. In a forthcoming paper the cohesive energies of
diamond, silicon, and germanium will be studied in
great detail.

The ¢-matrix approach makes it possible to evaluate
explicitly the dependence of the energy of the system
of valence electrons on the lattice positions of the
individual ions. This dependence turns out to be very
simple. Thus, it seems that we have a promising direct
method in hand to determine lattice force constants.
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