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The pseudopotential method which was previously used to discuss the optical reflectivity of silicon has 
now been applied to study its photoelectric properties. A quadratic interpolation procedure has been used 
in conjunction with the pseudopotential method to get a very dense sampling of the Brillouin zone. This 
allows a detailed comparison of the band-theoretic results for the energy distribution of photoemitted 
electrons with experiment. Most of the structure in the kinetic-energy distributions in the optical and near-
ultraviolet region of the electromagnetic spectrum can be understood in terms of direct interband tran
sitions, although line shapes appear to be distorted by processes which are not treated in the present calcula
tion. The photoelectric yield has been recomputed assuming total randomization of the crystal momentum 
for escaping electrons. The discussion of the optical properties has also been extended. 

I. INTRODUCTION 

A NUMBER of recent experiments have shed 
considerable light on the photoelectric effect in Si. 

The band-bending experiments of Gobeli and Allen1 

and of Van Laar and Scheer2 emphatically demonstrate 
that photoemitted electrons originate in the bulk 
crystal states rather than from surface (Tamm) states. 
Further work indicates, that for energies above the 
appropriate interband thresholds, the electrons are 
produced by k-conserving excitations.3"5 Experiments 
done on Si with a work function artificially reduced by 
deposit of less than one atomic layer of cesium on the 
surface6,7 have provided rich spectral data. Such 
samples have shown very interesting structure in the 
kinetic-energy distributions for electrons emitted at 
various photon frequencies as well as in the spectral 
dependence of the yield efficiency. 

Since it is believed that direct electronic transitions 
between bulk crystal states provide the electrons seen 
in photoemission, one expects that a study of the Si 
energy bands would be critical in interpreting the data. 
A semiempirical pseudopotential model was previously8 

used to construct the energy bands throughout the 
Brillouin zone. From the resulting joint density of 
states, the frequency dependence of the imaginary part 
of the dielectric constant was computed in the optical 
and near-ultraviolet regions. The good agreement be
tween theory and experiment confirmed the pseudo-
potential band model. Thus, we have a realistic band 
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structure to use in the study of the photoelectric 
problem. Below we shall apply it to gain an understand
ing of the Si photoelectric data, particularly the energy 
distributions. The problem is basically more complex 
than the case for the optical-absorption data. This is so, 
since electrons excited into the conduction bands can 
be scattered many times before ultimately being 
emitted from the crystal. However, as a first approxima
tion we shall take a simple point of view in which dy
namical electronic effects are neglected. We shall find 
that this gives a good qualitative understanding of the 
photoelectric data. This is essential to a further more 
quantitative analysis which would ultimately account 
for the dynamical processes as well. 

II. DEFINITION OF PHOTOELECTRIC 
VARIABLES 

The two principal quantities which have been 
measured in the photoelectric experiments for Si are 
the yield efficiency and the energy distributions. The 
first of these which we designate by YB (O>) = number of 
electrons emitted/quanta absorbed. Assuming that all 
electrons escape via the bulk conduction bands of the 
crystal, 

YB(< 
n J BZ 

0 

XP(J2,k)dV£ f r«(M<Pk. (1) 
JBZ 

Here rn(k,oo) is the rate at which electrons are excited 
from the valence bands to a state in the conduction 
band with index n and wave vector k. P(E,k) is the 
probability that an electron produced with energy E 
and wave vector k will escape, and the integral extends 
over the Brillouin zone (B.Z.). I t is true, of course, that 
the probability factor should be dependent on the 
depth z below the surface at which the electron is 
produced. Neglecting dynamical processes, however, 
removes the % dependence from P , provided that we 
also assume a flat-band situation. All of our calculations 
will be done assuming no band bending, and will be 
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compared to experiments in which band-bending effects 
are minor. Considering only vertical transitions (1) 
can be written as 

F*(co) = E f 5(con , s(k)~c)|ilfn , s(k)|2P 
n>s JB,Z 

X A / E /*5(a> r e , s(k)-a)))|MK , s(k)|2A. (2) 

Here the delta function standing alone in the integrand 
would give the joint density of states for the conduction 
band (n) and the valence band (s); con>s= (En—Es)/h, 
and \M|2 is a dipole matrix element connecting the 
bands. 

The energy distribution function N(E,hco) is denned 
such that the number of electrons Arj emitted with a 
range of kinetic energy AE is 

An=N(E,h»)AE; (3) 

co refers to the frequency of the incident light. N can be 
written as follows: 

N(E,ha>) = CZ f 5(G>ns(k)-a>)\Mn>s(k)\2P 

X5(E-En(k))d*k. (4) 

The firstjdelta function picks out the set of states with 
a vertical energy gap hco, and the second delta function 
selects from the first set those with a final conduction-
band energy equal to E. Energies in this expression are 
measured relative to the vacuum level. C is a normaliza
tion constant. We should note that this expression 
assumes that an electron produced with a conduction-
band energy En(k) = E can only appear in vacuum with 
the energy E. If dynamical events such as loss to 
phonons and Auger pair production were to be con
sidered, then electrons produced in state En(k) would 
give rise to a distribution of emitted electron energies. 
We should then have to consider a function g(En(k),E) 
which would give the number of electrons seen with 
energy E as a result of producing one in state En(k). 
For our simple picture g(En(k),E)-> Pd(E~En(k)). 

III. CONTRIBUTION OF THE ENERGY BANDS 

As expressions (2) and (4) indicate we need to com
pute the integrals throughout the zone to get the energy-
band contribution, the dipole matrix elements, and 
finally appropriate escape probability factors. In our 
work on the orbital absorption,8 we found that the 
effect of including matrix elements could be taken as a 
minor correction to the contribution arising solely from 
density-of-states considerations. The same conclusion 
will also apply for the photoelectric properties. Further
more, we shall see below that the results are not highly 
sensitive to the method of computing the escape 
probability (after we take account of energy conserva

tion for the transmission of electrons through the crystal 
surface). In this section, therefore, attention is con
centrated on the method of computing the energy-band 
contribution. 

A. Pseudopotential Calculation 

In Ref. 8 we used a model Hamiltonian HP—K.E. 
+ Vp. Here K.E. is the kinetic-energy operator, and Vp 

is a semiempirical pseudopotential. Vp is a simple local 
potential. Since Vp depends only on the coordinate r, it 
can be written as 

F p = E Vp(Gj) exp[(2*f/a)G.rr]. (5) 
J 

In (5), (2ir/a)Gj are the reciprocal lattice vectors of 
the diamond structure, and a is the lattice constant 
for Si. By using the high symmetry of the diamond 
lattice, it turned out that we could represent Vp ade
quately by using only the lowest three independent 
Fourier coefficients in the expansion. These three 
coefficients could then be treated as disposable param
eters.9,10 The three parameters were determined 
empirically from a set of model interband gap splittings 
at the symmetry points F, X, and L which were known 
through previous work.11-12 The properties of the result
ing eigenvalues of Hp are, first, that they give the proper 
interband gap splittings at the symmetry points, and 
second, that they represent a reliable interpolation for 
the energy bands throughout the rest of the zone. The 
reliability of the interpolation was well established by 
the good results Hp gave for the distribution of elec
tronic states. The eigenfunctions of the Hamiltonian 
represent the smooth slowly varying part of the true 
crystal wave function outside of the atomic-core region. 

I t has been demonstrated13'14 that Vp can be thought 
of as arising from the sum of two terms V^TAL+VR 
where FXTAL is the usual crystal potential, and VR is a 
repulsive potential arising from the orthogonalization 
of the crystal wave function to the core states as in the 
orthogonalized-plane-wave (OPW) method. The effect 
of VR is to cancel out the strong attractive part of the 
crystal potential near the atomic core. One can directly 
compute F X T A L + VR and from it construct the OPW 
solutions. (For a discussion of the general theory of 
pseudopotentials see Ref. 15.) Errors, however, can 
then arise in some of the principal band gaps amounting 
to ~ 3 eV.16 Our Vp can be gotten from F X T A L + F A of 
the OPW method by treating i t as local, and by 
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16 F. Bassani and M. Yoshimine, Phys. Rev. 130, 20 (1963). 
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slightly changing the Fourier coefficients of the latter 
to make the interband splittings agree with the experi
mentally determined model. Since our potential can be 
derived from the theoretical one by a slight readjust
ment of the coefficients, we may refer to it as a semi-
empirical pseudopotential. 

The method of solving for the eigenvalues of Hp was 
thoroughly discussed in Ref. 8. Briefly, we start with a 
plane-wave representation. All plane waves with a 
kinetic energy <EN are treated exactly in the expansion 
of the wave function, while plane waves with a kinetic 
energy >EN but <Ev are treated by perturbation 
theory. EN and Ev are chosen so as to insure reasonable 
convergence of the eigenvalues. Higher lying plane 
waves are ignored. This is rather like ordinary perturba
tion theory when a zero-order degeneracy is en
countered; the degenerate states are treated exactly, 
and the effect of the other states is brought in through 
perturbation theory. Here the group of low-lying states 
are treated in a quasidegenerate fashion. 

As one moves from a given point in the zone to a 
neighboring point the eigenvalues should vary con
tinuously with k. In general, this will be the case for 
our treatment of Hp; however, occasionally a discon
tinuous jump will occur when the kinetic energy of a 
plane wave crosses either the energy EN or Ev. This 
situation is sketched in Fig. 1. When this happens, the 
manner in which the plane wave <£k+Ki=^(k+Ki),r is 
treated according to the present procedure changes, 
thus producing the discontinuity. We wished to reduce 
the discontinuous jumps from the value in our previous 
calculation. To do so we varied EN and Er and examined 
the effect on some representative eigenvalues. The 
results are plotted in Fig. 2. Our values for the choice 
of EN and Ev were 

EN=9.0 ( 2 T T * / W ) ~ 45 eV, 

E r = 24.0(2w2h2/ma2)^ 120 eV. 

FIG. 1. The depend
ence of |K»+k|2.a2/4ir2 

as k is varied across the 
Brillouin zone in the 
(1,0,0) direction. The 
lower curve is for 
K , = (2*-/<0-(-3,1,1) 
and the upper curve for 
K»=(2xA)- (4,0,0). The 
points A and B refer to 
locations in the Brillouin 
zone where there is a 
discontinuous change in 
the treatment of the 
plane wave. 

E r*24.0 ' B 

PERTURBATION 
THEORY 

T (0,0,0) X(l,0,0) 

Since it is desired to make the bands vary smoothly 
throughout the zone, it is of interest to estimate the 
discontinuities from Fig. 2. The two examples in 2(a) 
indicate that with Er=24.0 moving ~ 6 plane waves 
from the set included by perturbation theory to the set 
being ignored changes the eigenvalues by no more than 
0.01 eV (a change in Ev of 1.0 shifts ^ 6 plane waves 
across the boundary). This implies that the perturbation 
contribution from plane waves near 24.0 is <0.01 eV, 
and that we can therefore expect discontinuities associ
ated with them to be small, also <0.01 eV. Looking at 
Fig. 2(b) we estimate the effect of moving plane waves 
from the set being treated by perturbation theory to the 
set entering into the exact calculation. Here the effect 
of shifting ^ 4 plane waves is <0.02 eV. Hence, the 
error made by treating plane waves with kinetic energy 
near 9.0 through perturbation theory rather than 
exactly is ~0.01 eV. Therefore, the discontinuities en
countered when a plane wave moves across the bound
ary EN in Fig. 1 is ~0.01 eV, and we conclude that with 
the parameters chosen our energy bands should be 
extremely smooth. 

FIG. 2. Convergence tests for some 
representative eigenvalues. To the 
right of each curve we give the point k 
at which the eigenvalue was computed 
and the level number according to the 
ordering principle described in the 
text, (a) as a function of ET, (b) as a 
function of EN* K 

E N = 9 ' 0 

.04 eV J 
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B. Application of Quadratic Interpolation 

In order to evaluate expressions (2) and (4) we 
calculate the eigenvalues of Hp at a large number of 
points in the B.Z., and replace the integrals by discrete 
sums. In Ref. 8 we found eigenvalues to represent the 
baiids at ^1000 points in 1/48 of the B.Z. This gave 
^50 000 points for the whole zone. For the present 
case, however, the second delta function in (4) implies 
a second sampling such that values are now character
ized by En(k) as well as Ews(k). With this further sub
division histogram statistics based on a 1000-point 
sample would be inadequate. The sample size must be 
increased by an order of magnitude. It would lead to 
an excessively time-consuming calculation if the secular 
equation for Hp had to be diagonalized at so many 
points. Instead we chose to use the following scheme. 
First we found eigenvalues for Hv at a small number of 
discrete points in the shaded region of the B.Z. shown 
in Fig. 3. Then we used an algebraic interpolation to 
find the eigenvalues at neighboring points. The use of 
an algebraic interpolation is computationally very 
simple, and we are not severely restricted in terms of 
sample size. 

For our current work we start by calculating the 
energy eigenvalues over a simple cubic mesh embedded 
in the 1/48 volume of the zone being used. This mesh 
has a lattice constant equal to 1/28 that of the reciprocal 
lattice of diamond. With this spacing we have ^400 
points at which to diagonalize Hp. We call this set of 
points Sp. Next we want to find eigenvalues (and 
matrix elements) for a much larger set of points SA in 
order to evaluate (2) and (4). The details for construct
ing the set SA are discussed below. Here the algebraic 
interpolation will be described. For simplifying the 
discussion we imagine k space to be two dimensional. 
In Fig. 4, A represents a point of the set SA and the 
P's a neighboring group of points from Sp. In order to 
get the eigenvalues at A from the P% we use a simple 
quadratic interpolation. The interpolation can be 
generated as follows. First do a quadratic interpolation 

k, — A - ? -

using standard formulas for the one-dimensional 
problem along the solid lines to get a value at Xh X2, 
and X3. Then use the values generated at Xh X2, and X3 
along the dotted line to get the value at A. In 3 dimen
sions the process involves 27 points neighboring A and 
one extra step. 

The point A may lie near the boundary of the small 
region in which we are working. In this case some of 
the points P of Fig. 4 may not be included in the set Sp. 
There are three ways in which this can happen: 

(i) The point P lies inside the first B.Z. but outside 
the shaded region of Fig. 3. In Ref. 8 this region was 
defined by the conditions 

kx^ky^kz^0. (6) 

Hence, if a point lies outside the region we simply re
order the values of kx, ky, kz so as to satisfy condition 
(6). This is equivalent to an application of the group 
elements of the diamond lattice.17 

(ii) The point P may lie outside the UXW boundary 
of the B.Z. In this case all that is necessary is to use the 
reflection symmetry of the plane to get an equivalent 
point in the shaded wedge. 

FIG. 4. Schematic diagram for the i 
braic interpolation procedure. 

(iii) The point can lie just outside of the boundary 
plane LUWK. Since this plane is defined by the 
equation 

(kx+ky+kz)=(l)(27r/a), 

a point which lies just outside of the plane will be 
given by 

(kz+ky+kz)a/2T=§+A. 

To get a corresponding point inside the wedge, construct 
the quantity 

JP (P 
A 

fi * fa 
1P 1P 

/2TT 

\ a 

2TT 2W 

a a 

This corresponds to first reordering to get kz, ky, kx, then 
inverting toiget — kz, —ky, and — kx, and finally adding 
the reciprocal lattice vector (2ir/a, 2ir/a, 2ir/a). All of 
the operations are group operations; therefore, the 
resulting poijnt will be equivalent to the initial one, and 
will be inside of the wedge since 

I \ (kx'+ky'+k,')a/2ir=i-A. 

Of courjse, we may have to do more than one of the 

17 Reflections in the (110) planes will interchange a pair of 
FIG, 3. Brillouin zone for Si. values for the components of k. 
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operations indicated by (i), (ii), and (iii) in some 
instances. 

C. Monte Carlo-Generated Sample 

The next question is the generation of the sample SA 
which will be used for constructing the histograms. In 
the previous work the points SA lay on a lattice having 
the bcc structure, so that the sampling points were just 
contained within the elementary region of the B.Z. To 
get some idea of the statistical fluctuations expected 
with this spatially uniform sample we examine Fig. 5 (a). 
Here we have a two-dimensional problem in which we 
wish to estimate the area of the square by the number 
of sample points within it (this corresponds to finding 
the size of a region for which the energy lies in some 
range AE). For this case the error is approximated by 
the total number of points on the boundary (iV&) 
divided by the total number of points in the square (N); 
i.e., error ~Nb/N. For a three-dimensional problem 
N^l/l3 and iV^^l//2, where / is the dimension size of 
the sampling lattice. We then have 

erroT^P/l2~l~l/N11*. (7) 

We can imagine another situation. Suppose the bound
ary of the region whose area we want follows a complex 
path through k space as in Fig. 5(b). This we can 
suppose to be essentially a random path with respect 
to a rectangular sample. There will then be no correla
tion between the position of the boundary at one 
surface sample point and a neighboring one. In this 
case, 

erxoT~Nb
ll2/N^lz/l~l2~l/N21*. (8) 

If, on the other hand, we use a randomly generated 
sample, then irrespective of the shape of the region 
being sampled the fluctuations will go like 

error- 1/N112. (9) 

We see that (9) in its rate of convergence as a function 
of N is superior to (7) but inferior to (8). Previously 
we found a good deal of boundary correlation error 
when a rectangular sampling grid was used. Hence, in 
our present work, we generate SA by a Monte Carlo 
technique. 

IV. ESCAPE PROBABILITY 

In expressions (2) and (4) there appears the escape 
probability factor P(E,k)i. To treat this exactly would 
necessitate having rathe? detailed information about 
the surface potential. For the purposes of the present 
study we neglect partial reflection of electrons from the 
surface barrier which iŝ  probably small, throughout 
most of the Brillouin zone^18 With thi^ model; an electron 
impinging on the surface; is either totally reflected or 

o o 

o o o o o o o o 

o o o o . 0 . 0 o o 

(a) (b) 

FIG. 5. Evaluation of the area of a given region by counting the 
number of sampling points it contains (a) for a region with a 
simple rectangular boundary, showing how a large number of 
boundary points can be moved as a group across the boundary if 
the sampling mesh dimension is changed slightly, (b) for a region 
with a highly irregular boundary. 

transmitted. We then compute the escape probability 
according to two different assumptions. 

(i) We assume that the electron after being excited 
into the conduction band propagates with no scattering. 
With this assumption all electrons which initially travel 
with a group velocity away from the surface continue 
to do so and cannot possibly escape. Electrons whose 
group velocity is directed toward the surface may, under 
the correct conditions, be emitted into the vacuum. For 
these electrons we write 

P (E,k) = Constant, if JSn(k) > h2kT
2/2m 

= 0, otherwise 
(10) 

18 C. Herring and M. H. Nichols, Rev. JViod/ Phys. 21, 185 
(1949). 

with all energies measured relative to the vacuum level. 
In Eq. (10), &r is the component of the received wave 
vector parallel to the crystal surface. The factor 
h2kT2/2m comes from the wave-mechanical boundary 
condition. It gives the minimum kinetic energy with 
which the electron is able to appear in vacuum. 

(ii) We now assume that dtoic-scattering processes 
randomize the crystal momentum before the electron 
reaches the surfaces.19 Doing this removes the k de
pendence from P. The resulting P(E) as found from 
the energy-band model of Si is shown in Fig. 6, where 
the vacuum level W was taken as 2.5 eV above the top 
of the valence band. 

V. RESULTS 

A. Yield Efficiency 

We previously analyzed the structure of YB(U) on 
the 0% scattering model.8'20 Here we have recomputed 
it on both tjhe 0 and 100% scattering model. In Figs. 
7(a) .and 7(b) we compare the results for the two 
limiting cases with the experiment of Allen and Gobeli.21 

*? This does not contradict the earlier statement concerning the 
.neglect: of dynamical events. The 100% scattering as treated here 
"assumbsno energy transfer, and is equivalent to taking the 
electron's crystal momentum as being random immediately after 
excitatiorr into the conduction band. 

20 fi'.Brust, M. K Cohen, and J. C. Phillips, Phys. Rev. Letters 
9,389 (1962). 

21 F. G. Allen, Bull Am. Phys. Soc. 8, 422 (1963). 
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FIG. 6. Sketch of the escape probability assuming total random
ization of the electrons before they reach the surface. Ee is the 
conduction-band energy measured from the top of the valence 
band. The vacuum level is taken as 2.5 eV above the valence band. 
As E becomes large P(E) —»0.5, which means that all electrons 
with a group velocity directed toward the surface will escape. It 
has also been assumed that the crystal is cut on a (111) plane. 

YB(of) has been constructed using interband transitions 
4 —» 5 and 4 —» 6 only. The dipole matrix element has 
been taken as a constant. 

Examining the figures indicates that treating the 
problem in the 100% scattering limit gives somewhat 
better results. This is what one might expect, as the 
experimental curves were taken with nearly one 
monolayer of Cs on the surface. Experiment indicates 
that deposition of more than about 0.3 of a monolayer 
of Cs on a silicon surface will result in total randomiza
tion of escaping electrons.5 We note, however, that the 
principal features in the structure are similar to that 
obtained before, and we have made no changes in the 
previous identifications. 

B. Kinetic-Energy Distribution 

We have computed the kinetic energy distributions 
for escaping electrons with photon energies between 3.2 
and 6.2 eV. The kinetic-energy range is 0.0-2.8 eV. 
In Fig. 8 we present the results of the calculation using 
only the 100% scattering model. The results are quite 
similar if the 6% scattering situation is assumed except 
that the peaks are sharper (particularly for E=2.0 eV 

and fto=5.0 eV). In computing the dipole matrix 
element appearing in expression (4) for one of the 
randomly generated points in our sample we substituted 
the matrix element at a neighboring point of the simple 
cubic interpolating mesh. This simplification will have 
a very minor effect on the results presented here. In 
order to evaluate the matrix elements the eigenfunctions 
of the pseudopotential Hamiltonian were used. This 
corresponds to using only the smooth part of the wave 
function, and as was previously discussed8 generally 
should lead to errors no more than ^ 2 0 % . 

In arriving at the graphs of Fig. 8 we used only 
transitions involving bands 3, 4, 5, 6, and 7, i.e., 
(3,4) —> (5,6,7). For the photon and kinetic-energy 
range under discussion these transitions will dominate 
the bulk photoelectric response. This is apparent from 
examination of Fig. 9 where the symmetry directions 
A, X, and 2 are drawn. I t should be noted that we have 
shown all our results with a vacuum level 2.5 eV above 
the top of the valence band. We have done the calcula
tions for other values, but the results can essentially be 
generated by shifting the curves to higher or lower 
energies as the vacuum level is moved down or up. 

VI. DISCUSSION OF THE KINETIC-ENERGY 
DISTRIBUTIONS 

A. Role of the Conduction-Band Structure 

Before comparing theory with experiment, we find 
it valuable to develop some basis for understanding the 
results of the calculations. The discussion of the results, 
however, should be preceded by a brief digression on 
the question of normalization. From Eq. (4) we have 

[N(E,ha)dE=CT, f *(«»..(k)-«) 
J »»« J BZ 

X|Af M , s (k) | 2 i \ (11) 
We recall that 

1 
€2(o>) S 8[« l ,1 .(k)-»]|Jf. l ,(k)|Wk, (12) 

GOBELI AND ALLEN — 

THEORY WITH SCATTERING — 

THEORY WITHOUT SCATTERING - r 

4.0 5.0 

Tiw(eV)-

(a) 

GOBELI AND ALLEN 

THEORY WITH SCATTERING 

THEORY WITHOUT SCATTERING 
FIG. 7. Spectral de

pendence of the yield 
efficiency (a) experi
mental vacuum level 
= 2.7 eV, theoretical 
vacuum level=2.5 eV, 
(b) experimental vac
uum level=3.2 eV, theo
retical level=3.0 eV. 
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FiG.f8. Kinetic-energy distributions with the vacuum level taken 2.5 eV above the top of the valence band. E refers to the kinetic 
energy in vacuum. The curves are plotted for several values of fa* as a computational parameter. For a discussion of normalization 
refer to the text. 

from which follows 

\N(EMdE=DYB(o))e2(^
2. (13) 

D is an unspecified constant whose value may be set by-
finding the area under any one of the curves of Fig. 8, 
and then satisfying condition (13). The constant D will 
be the same for all other curves. This has essentially 

(0,0,0) 

FIG. 9. The energy bands of Si from the pseudopotential model. 
The bands between X and K are drawn along the straight line 
connecting them in the plane defined by kz — 0. 

been done in Fig. 8 except that we have decreased D by 
a factor of 2 upon going from 8(a) to 8(b) which 
corresponds to shrinking the vertical scale by the same 
factor. 

Examination of Fig. 8 indicates that the most 
prominent and persistent features of the computed 
kinetic energy spectra are the peaks near 1.0 and 2.0 eV 
(we shall refer to these as series A and JB, respectively). 
The origin of these two series can be qualitatively under
stood in terms of the conduction band density of states. 
Figure 10 shows a sharp maximum near 4.5 eV (which 
corresponds to a vacuum kinetic energy of 2.0 eV when 
the vacuum is 2.5 eV above the top of the valence 
band).22 Broadly speaking, series B results from transi
tions between the valence bands and states near the 
maximum. Series A results from the maximum near 
3.0 eV in the conduction-band density of states. How
ever, since this maximum occurs just above the 2.5-eV 
vacuum level the peaks associated with it are somewhat 
more complex. At this energy P(E) is still rapidly 

FIG. 10. Electronic den
sity of states for Si. In this 
case E refers to the energy 
measured relative to the 
top of the valence band. 
This includes only the 
highest valence band (4) 
and the lowest conduction 
bands (5,6). 

22 The maximum at 4.5 eV appears somewhat sharper than it 
should due to our omission of band 7 in computing the density 
of states. 
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FIG. 11. Energy 
contours of band 6 
plotted in a (110) 
reflection plane. The 
energies are mea
sured relative to the 
vacuum level of 2.5 
eV. 

increasing as E is increased. Hence, the peaks in the 
kinetic-energy distribution occur at slightly higher 
energies than the maximum in the density of states 
would suggest. 

The origin of the 4.5-eV maximum in the density of 
states can itself be understood after examination of 
Fig. 11 in which the energy contours of band 6 are 
drawn in a (110) reflection plane. The band is extremely 
flat near the A symmetry line giving rise to the sharp 
maximum. Therefore, we can associate our correspond
ing peaks in series B with A electrons. The lower maxi
mum appears to come from states distributed through
out a large part of the zone, and there does not seem to 
be a simple way of identifying it with a definite location. 

Further analysis of the structure requires a much 
more rigorous examination of the energy-band contours. 
In the next section some further aspects of the energy 
distributions are examined. We will develop a somewhat 
more quantitative understanding of the results; how
ever, the basic picture described in this section will 
remain unaltered. 

B. Analysis in Terms of Critical Lines 

Before further analyzing the results of the computed 
kinetic-energy distributions presented in Fig. 8, we 
briefly discuss the analytical tools which are helpful in 
giving meaning to the structure. In the discussion of the 

Ens(k)sTicu 

Ens(k)=Tiw+AE 

dielectric constants of Si and Ge,8 the concept of a 
critical point was extremely useful. Most of the com
puted structure in that case was attributed to critical 
points (c.p.) in the joint energy bands, i.e., points where 
| VkEns(k)\ = 0. The c.p. gave rise to Van Hove singu
larities in the integral for the density of transitions 

Jns(u>)<~ 
£n s(k) =tUa 

ds/\VkEns(^j\ 

The theoretical and; corresponding experimental line 
shapes were then well understood in terms, of the 
behavior of the joint density of states in the vicinity 
of the c.p. 

I t is not to be expected that we can achieve as good 
an account of the experimental line shapes for the 
energy distributions as for the optical constants, since 
we are neglecting dynamical processes and are using an 
approximation to the surface reflection problem. Never
theless, further analysis of the theoretical structure can 
be useful. Below we shall use an approach due to Kane23 

to examine the analytic behavior of the bands in a way 
similar to the c.p. analysis. 

In order to understand the contribution of a given pair 
of bands to the kinetic-energy distribution N(E,fio)), 
consider the frequency fixed. This then defines a surface 
Sha in k space given by the condition Ens(k) = fio). Next 
attention is fixed on the energy contours of the conduc
tion band En(k) imbedded in 5««. To compute the 
density of states satisfying the conditions En8(k) = ho) 
and En (ft) = E, one must integrate along a line / in Snu 

defined by En(k) = E. The density of states will then be 

dl[ iV'(£,feo)~E 
n,sJZEn(k)=EQ,Ensm--

|V k (5*„)E„(k) | |V k E^(k) | . (14) 

Here V^(Sn<a)En(k) gives the components of the VkEn(k) 
lying within the surface Snw This two-dimensional 
gradient is proportional to the distance Akc between two 
contour lines differing in energy by AEC. This is shown 
in Fig. 12. The | VkEns(k)\ is a measure of the distance 
between two surfaces Sn^ and (̂w+Aco)* Expression (14) 
is equivalent to (4), the kinetic-energy distribution, 
except f6r the omission of the matrix element | Mns (ft) |2 

and the probability-of-escape function P(E). Points 
on Sfio) where | Vk(S?l03)En(k)\ =0 give rise to two-
dimensional critical points. The functional dependence 
of En(k) within Sn<a can be of three types near a two-
dimensional c.p., i.e., a minimum, maximum, or saddle 
point. Kane shows that near a minimum or maximum 
we expect a discontinuity in N' of expression (14) as 
a function of E; whereas, near a saddle point a logarith
mic singularity is expected. This behavior is shown 
in Fig. 13. 

FIG. 12. Intersection of the Ens(k) surfaces with E«(k) surfaces. 23 E. O. Kane (to be published). 
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If the photon energy is changed slightly we define a 
new surface ^ ( W + A W ) . According to Kane the'(two-
dimensional c.p.'s on the first surface will be in one to 
one correspondence with a neighboring set on the 
second surface. The trajectory which is a two-dimen
sional c.p. follows in k space as fua is varied is called a 
critical line (c.L) (we use Kane's terminology). That is, 
if k0(feo), defines a c.l., the energy E»(£ 0 (M) plotted 
as a function of fua is called an E—foa) image of the c.l. 
Kane also shows that every three-dimensional c.p. 
either in the joint energy bands or in the conduction 
bands (OCP or ECP) has at least one critical line 
passing through it. 

Below we shall draw E—hcc images for some of the 
principal peaks in our energy distributions. These can 
be compared with the analysis recently completed by 
Kane for the 110 symmetry plane. In particular, we 
shall find that the structure can be partially related to 
c.l.'s in the 110 plane. I t should be emphasized that 
our bands are all ordered by increasing energy. Kane, 
however, takes advantage of the reflection symmetry 
of the 110 plane to classify his states according to the 
reflection parity of the wave functions. The even and 

4.4 5.0 5.6 
naj(eV) >• 

FIG. 14. Strength plots for the separate histograms contributing 
to N(E,hJ). The peak contribution for each histogram (near 
£ = 2 . 0 eV) has been selected and plotted as a function of ha. 

c.p.'s into one another. Assuming that the analytical 
assignments of Fig. 15 are basically correct, we can 
draw E—foio images. This has been done, and the result 

FIG. 13. Behavior of the density 
of states near a two-dimensional 
critical point according to Kane. 
Mi comes from an absolute mini
mum, Ms from a saddle point, and 
Mu an absolute maximum. E refers 
to the conduction-band energy 
and ha is the interband-gap energy 
(taken as fixed). 
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odd states after having been separated are then ordered 
by increasing energy. Hence, when an even band crosses 
an odd band in the 110 plane there will be a discon
tinuity between our definition and Kane's. 

We are now in a position to re-examine our computed 
kinetic-energy spectra in terms of their analytical 
properties. The first thing to be discussed are the peaks 
of series B. Examination of the individual histograms 
shows that the largest contribution to N{Efioy) near 
£ = 2 . 0 eV comes from the 4—^6 transitions (see 
Fig. 14), i.e., transitions from the topmost valence band 
to the second lowest conduction bandi Attention is 
therefore focused on this pair of bands. In Fig. 15, 
N (Efio)) is drawn including only the contribution from 
the 4 —> 6 transitions for a number of different fre
quencies. We have attempted to resolve the structure 
in terms of the singularities expected from Kane's 
analysis of two-dimensional critical points; although, 
this is somewhat difficult to do in a categorical way. 
This is particularly difficult when several c.p. fall near 
the same energy as is apparently the case for the higher 
frequencies of Fig. 15. The three-point averaging which 
is used to reduce statistical scatter tends to blur the 

t 
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UJ 
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• ( c ) - 1 • - I t W * 5 ; 0 W ' • " • • 

l * \ M s 

\ r \ 
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(f) T>w»5.9eV 
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FIG. 15. The contribution of the 4 —> 6 histograms to N(E,ho) 
for several choices of ha. The dotted lines represent analytical 
behavior associated with two dimensional critical points (c.p.). 



A 498 D A V I D B R U S T 

/ , 2.4 

UJ 
1.6 

1.2 

-

Ms 

" ^ 

t i 

M ^ 

Mu/ 

M L ^ - ^ 

i J 
4.4 5.0 

Tiw(eV)-

FIG. 16. E—iia) images for the two-dimensional c.p. of Fig. 15. 

is shown in Fig. 16. We can compare our results with 
the E—foa) images of the strongest c.l.'s which Kane 
finds for the 4—» 6 transitions in the (110) plane. The 
direct comparison of our E—fioy images with Kane's 
does not appear entirely satisfactory. Our strong saddle 
point does seem to have approximately the same 
features as the E—hco image of Kane's strong saddle 
point for foo<5.3 eV. It should be mentioned that the 
path of Kane's strong saddle type of critical line in k 

space is near to A. This agrees with our earlier identi
fication for the series B peak. Furthermore, we notice in 
Fig. 14 that the strength curve for the 4—^6 transition 
peak has a maximum near ĉo = 5.3 eV. This corresponds 
to the L<1 —> Lz direct energy gap. The kinetic energy 
of the peak is also what one would expect for Lz elec
trons. This is satisfactory, since Kane's strong c.l. 
passes through L, and one expects a maximum in the 
strength curve as a c.l. approaches a symmetry point 
(actually Kane shows that the strength curve tends to 
infinity as the symmetry point is approached). 

We can also analyze the peak occurring in the 
distributions for #co=4.1 and 4.4 eV with kinetic energy 
^1.1 eV. This can be traced to a c.l. which apparently 
includes the transition marked "C" in Fig. 9. Checking 
Kane's results we corroborate our interpretation. He 
shows a transition between his V-. and Ci+ bands 
corresponding to a 4—>5 transition in our case. The 
characteristic of this peak is that it has a very rapid rise 
in intensity near fto)=4.4 eV and then disappears. 

EXR(Tiw*3.70eV)-
THEORY(ftOJ«3.50eV)-

3.0 
E(eV) 
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EXR (*<o»5.37eV) / 
|THE0RY(Tia)»5.3eV) 1 

EXR (hw =4.41 eV)-
THEORY (Tiu>= 4.4 eV) -
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FIG. 17. Comparison of the preliminary energy distributions of Gobeli and Allen with the results of computation. 
The experimental vacuum level is ^2.7 eV and the theoretical one is 2.5 eV. 
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C. Comparison of Theory and Experiment 

In Fig. 17 we directly compare our current theoretical-
energy distributions with the preliminary^results !of 
experiments by Gobeli and Allen24 which are similar, 
apart from peak heights, to those of Spicer.25 We find 
that all of our structure is in good one-to-one relation
ship with experiment for the values of fto) under study. 
The only disappointment in this respect is the failure 
of the experiment to show any evidence for the S4 —> Si 
peak we see in our 4.4-eV distribution. There is a 
possibility that the experiment missed the narrow-
frequency range required to observe it. From the experi
ment it appears that the series-2? peaks are rigidly fixed 
with respect to kinetic energy for &a>>5.0 eV, whereas 
our results show a slight movement of the peak. The 
experimental resolution, however, is such as to not rule 
out a slight variation in kinetic energy as fio) is 
changed.26 The point of greatest disagreement between 
theory and experiment is in the difference between our 
peak intensities and those seen experimentally. The 
main discrepancy is the relative heights of peaks of 
series A and B. We might assume that a large number 
of A electrons are degraded in energy, as, for example, 
by Auger processes. This would lower the peak heights 
of series B with respect to those of series A. For the 
sake of discussion, we may assume that the heights of 
the peaks of series B are reduced by a fixed fraction. 
In Fig. 18 we compare the experimental strength of 
series B with theory (the latter reduced by a fixed 
factor), where both have been normalized to the peak 
heights of series A. This procedure allows us to eliminate 
errors which enter the problem due to an inapprorpiate 
treatment of P(E). It is clear that P(E) may be sub
stantially reduced at energies corresponding to that of 
series B by energy-dependent scattering effects. This 
method of comparison eliminates P(E) from the 
problem by comparing intensities at nearly fixed 
energies (i.e., series A and series B). We therefore get 
a good test of the density-of-states arguments upon 
which the analysis of the photoelectric emission 
depends. 

It would appear then that our model of the photo
electric process in Si including only direct transitions 
between bulk valence and conduction bands is able to 
explain the basic features of the data. A more complete 
calculation to give better results for the line shapes 
should include dynamical effects that we have neglected. 
From the present calculation it seems that indirect 
transitions are considerably weaker than for cadmium 
sulfide where Spicer27 has found that they must be 
included to explain his data. 

24 G. W. Gobeli and F. G. Allen (to be published). 
26 W. E. Spicer and R. E. Simon, Phys. Rev. Letters 9, 385 

(1962). 
26 F. G. Allen (private communication). 
27 N. B. Kindig and W. E. Spicer (to be published). 
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FIG. 18. Ratio of peak heights in series B to those of series A, 
Series B has been multiplied by an arbitrary factor to approxi
mately normalize the two curves. 

VII. FURTHER DISCUSSION OF THE 
DIELECTRIC CONSTANT 

In Ref. 8 we considered €2(0̂ ), the imaginary part of 
the dielectric constant. We found good over-all agree
ment between theory and experiment for Si, however, 
there did not seem to be any evidence for the sharp peak 
at 3.4 eV seen in the measurements.28 Our present study 
including a sample 20 times larger than previously em
ployed does clearly show the peak (see Fig. 19).The peak 
is associated with a critical point at T(r25—^Tis), and 
perhaps another one on A as seen in Fig. 20; although, an 
increase in our interband energy ~0.02 eV at the critical 
point would serve to flatten out the kink in the bands 

n o j ( e V ) -

FIG. 19. Comparison of €2(o>) as presently computed with experi
ment (Ref. 28). We have taken a constant dipole matrix element 
in constructing €2(co), and have normalized the two curves at 
4.2 eV. Only the 4 —> 5 contribution was included since for this 
energy range contributions from all other pairs of bands are 
negligible (Ref. 8). 

28 H. R. Philipp and E. A. Taft, Phys. Rev. 120, 37 (1960). 
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FIG. 20. The 4 —> 5 energy bands in the 110 plane for interband 
gap energies near ^3 .5 eV. The shaded portion represents the 
region of the 110 plane which contributes to the 3.5 peak. The 
two narrow strips along A are drawn considerably wider than they 
actually appear. 

along A enough to eliminate this c.p.29 The important 
thing to notice in Fig. 20 is that most of the states 
contributing to the 3.4-eV peak come from points near 
A; although, we may speak of the c.p. from the topo
logical viewpoint as being located at T. 

This interpretation is supported by reflectance meas-
29 Actually a thorough survey of k space near T might very well 

show a cluster of weak critical points. Since the positive identifica
tion of these is probably beyond the limits of our present proce
dure, the search for them does not appear to be warranted. 

BRUST 

urements on stressed Si samples by Gerhardt.30 Gerhardt 
finds, when he applies a stress along the (111) direction, 
that the effect is to shift the optical peak in energy but 
to leave its shape the same. This is what we expect with 
our model, since all the A axes should be equally 
affected by a (111) stress. When Gerhardt applies a 
(100) stress, however, the peak broadens. Again this is 
what our model should predict since a (100) stress will 
move states on different A axes by different amounts 
depending on whether the A axis is perpendicular or 
parallel to the stress direction. 
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