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have been measured over the temperature range from 
3 to 300 °K. Phonons are the dominant carriers of the 
thermal energy. I t is suggested that the thermal con­
duction in the molecular solids such as orthorhombic 
sulfur and cubic (white) phosphorus is caused by lattice 
phonons only; the phonons associated with the internal 
vibrations of the S8 or P 4 units do not contribute to the 
conduction because their propagation velocities are 
zero. Since only a fraction of the phonons can carry heat 
and since their mean free path in the solid at the 
melting point is only about one molecular diameter, 
the molecular solids have thermal conductivities much 
lower than those of monatomic solids of similar average 
atomic mass. In monatomic solids such as orthorhombic 
(black) phosphorus there are no molecular groups. Thus 
all of the phonons contribute to the heat transport, 
their mean free paths at the melting point are of the 
order of twenty interatomic distances, and the thermal 
conductivities of such solids are high. 

The /3-rhombohedral form of boron has a crystal 

INTRODUCTION 

SINCE Bloembergen1 showed that nuclear spins could 
be relaxed in an insulating crystal by small amounts 

of paramagnetic impurities, several publications have 
appeared indicating information could be obtained 
concerning paramagnetic ions using nuclear magnetic 
resonance. Most of the attention has been given to the 
effect of impurities on the spin-lattice relaxation time T\ 
of the nuclei. However, Verber, Mahon, and Tantilla2 

have demonstrated that paramagnetic ions also broaden 
the nuclear resonance at low temperatures. By utilizing 
the results obtained from both T\ and linewidth mea­
surements it is possible to eliminate most of the uncer­
tainties of the theory, and thereby get more reliable 
information concerning the paramagnetic ions and their 
behavior in the crystal. In the theory section an ex-

* Work supported by National Science Foundation. 
l N . Bloembergen, Physica 15, 386 (1949). 
2 C. M. Verber, H. P. Mahon, and W. H. Tantilla, Phys. Rev. 

125,1149 (1962). 

structure somewhere between the molecular and mon­
atomic types. Its measured thermal conductivity has a 
value intermediate between the limits predicted by the 
molecular and monatomic models. Because of the simi­
larity in the crystal structures of the several poly­
morphs of boron, it is believed that the other poly­
morphs as well as many of the interstitial compounds 
of boron will also have low thermal conductivities quite 
close to that of the /3-rhombohedral form. 
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pression is derived for the effect of paramagnetic ions on 
the nuclear-resonance linewidth based on Van Vleck's3 

method and Rorschach's4 treatment of the motion of 
the paramagnetic moment. This calculation gives rise 
to an expression for the second moment containing the 
autocorrelation time of the paramagnetic ion, the ion 
concentration, and the average of the square and the 
square of the average of the z component of the magnetic 
moment for the paramagnetic ion. Also a discussion is 
given for T\ based on Rorschach's paper. 

THEORY 

Linewidth 

The nuclear-resonance linewidth of a system of 
nuclear spins can be calculated using Van Vleck's 
moment theory, and is in excellent agreement with 
experiment. If electron paramagnetic impurities are 

3 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
4 H. E. Rorschach, Jr., Physica 30, 38 (1964). 
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This paper is an extension of the work of Rorschach on the interactions of dipolar nuclei with paramagnetic 
impurities in dielectric crystals. The influence of the average "static" moment on the nuclear resonance line-
width is considered. I t is suggested that by measuring T\ and the nuclear resonance linewidth as a function 
of temperature, magnetic field intensity, and sample orientation it is possible to determine the autocorrela­
tion time of paramagnetic ions as a function of these parameters. 



A516 D A Y , G R I M E S , A N D W E A T H E R F O R D 

present in the sample with high enough concentrations 
they may contribute significantly to the linewidth be­
cause of their very large magnetic moment relative to 
the nuclear moment. I t should be possible to take this 
into account by using Van Vleck's theory and a con­
sideration of the effective moment of the impurity as 
seen by the nuclei. 

According to the theory of Van Vleck the dipolar 
term in the truncated Hamiltonian between like spins is 

( # / ) z _ / = l/47z2^2 E ( 1 - 3 cos20,fc) 

Xrjk~z(31zjlzk—Ij'h); 

the mean-square linewidth due to like spins is 

< & O V Z = | T I 4 W + 1 ) E ( 1 - 3 cos20y*)V-6; (1) 

k 

the coupling between unlike spins is 

{H£)i-j = yiyjfi2Y, (1 — 3 cos20ij)rij-3IeiJgj; 
ij 

and the contribution to the second moment is 

f r 1 ! (i-3cos2^-)v,r
6. (2) 

i,3 

In Eq. (2), it is assumed that the magnetic moment of 
the nonresonant spin (represented by / ) is independent 
of the magnetic field, temperature, crystal orientation, 
and lifetime of spin / . This, of course, is not true in 
all cases. In particular, if the spins / are paramagnetic 
ions the probability of occupation of a lower magnetic 
substate can be significantly greater than (27+1) _ 1 . 
That is, the Boltzmann factor can not be safely approxi­
mated as being unity, as is done in the derivation of 
Eq. (2). Another important consideration that must 
not be overlooked is the average lifetime of spin J 
relative to spin i". 

I t should be possible to account for these effects by 
determining the z component of the magnetic moment of 
spin J, Gu2*), effective in broadening the resonance of the 
spins I. Rorschach has proposed a theory to determine 
OLI2*) using harmonic analysis and random time-
dependent perturabation theory. The theory involves 
determining the magnitude of that part of the spectrum 
of the magnetic field due to spin J that is "sufficiently" 
near the Larmor frequency of nuclear spins I to be 
effective in interacting with the nuclei adjacent to J. 
If the spectral density is denoted by J(co), then the 
average static moment which is effective in broadening 
the nuclear-resonance line is determined by that part of 
the spectrum with frequencies between ±T2~

1* Ror­
schach assumed that the autocorrelation function for 
spin / , hereafter referred to as the impurity, was 

*to = (»*)2+ (W)-(»z)2)e~^. (3) 

rc is the autocorrelation time for the impurity. (ixz
2) 

and (/x2)
2 can be computed using statistical mechanics, 

provided the energy levels are known and the impurity 
spins are more strongly coupled to the lattice than to 
each other. The Fourier transform of K(T) is the spectral 
density given by 

/

oo 

/c(r)e^^r=(/x2)227r5(co) 
-00 

+ (M-W)—^-, (4) 
l+a>2rc

2 

where 6(co) is the Dirac delta function. The square of 
the average z component of the moment, effective in 
perturbing the nuclear spins, is thus given by 

1 r1^ 

fe*)2 = —/ /(*>)&> 
2TJ~I/T2 

2 
= <M,> 2+-(<^ 2>-W 2) t an-V c /7Y (5) 

7T 

Now to correct Eq. (2) we must replace lyfh2J(J+1) 
by (/-is)2. One then gets 

<Aco 2 ) w = 72W)WJ"" 1 E fty, (6) 
i,3 

where &,= (1 — 3 cos20#)2r#"~6. Now assuming the im­
purities are located at equivalent sites in the crystal and 
the number of impurities is denoted by Nj, Eq. (6) 
becomes 

3 

The mean-square linewidth (Aw2) total is the sum of the 
two contributions (Aco2)/_j and (Aw2)i_j\ I t is convenient 
to consider 

< A « V , 4i \^(/x3*)2E&7 
£= = , (8) 

(AcoVz 9NT /xz2 Eft-* 

where iiI
2 = \yIWI(I+\). In Eq. (8), the sum in the 

denominator is over all nuclear spins in the lattice, 
whereas the sum in the numerator may not include all 
spins. Nuclear spins very close to an impurity have 
their Larmor frequency shifted far into the wings of the 
absorption line and contribute significantly to the second 
moment. However, in observing the resonance line 
shape, the wings of the resonance are usually not ob­
served. This means one can omit terms in the sum close 
to the impurity. A criterion for the critical radius 
inside of which the terms should be omitted is that 
the dipole field of the impurity at the critical radius be 
equal to the local field of the nuclei alone. A measure 
of the nuclear local field is the root-mean-square 
second moment. 

(AH*Yi*=Qi*)/(b'y, (9) 
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where b' is the critical radius. Typically b' is about ten 
lattice spacings, which means the lattice sum can be 
replaced by an integral 

PI ( 1 - 3 cos20)V-4 smddSdr 
J 

16TT 
= P J — (*')- ' . (10) 

15 

Here pi is the number of nuclear spins per unit volume. 
If a simple cubic lattice of nuclear spins is considered, 
one has for the sum in the denominator of Eq. (8) 

£ & * = 1 6 . 4 / ( A ) a - 6 , 
k 

where /(X) = (Xi4+X2
4+X3

4-0.187). The Xt- represent 
the direction cosines of the external magnetic field 
referred to the principal axes of the crystal and a is the 
distance between adjacent nuclei. For a simple cubic 
lattice pi=a~z and the ratio of the lattice sums become 

E ' / V E PJk=0.2M(a/b')'f-i(\). (11) 

3 k 

For a simple cubic lattice 

(AH2yi2=6.06txIar*f1i2(\). (12) 

Combining Eqs. (8)-(12), one obtains 
Z = O.SS(NJ/NIKfaM*)/vI)t

1/2(ti. (13) 

Finally using Eqs. (5) and (13), £ becomes 

£=0.55(iVJ/^i)Mi-1/-1/2(X) 

X[(M2)2+2/X«M2
2)-(M,)2) tan-WTO/*. (14) 

All of the magnetic field and temperature dependence 
for £ is contained in (M*)2, (MZ2), and possibly in rc. 
However, if one knows the energy-level configuration 
for the impurity, the field and temperature dependence 
of (/xz

2) and (/xz)
2 can be calculated. By measuring the 

magnetic field and temperature dependence of §, one 
can then conclude the dependence of r c on these 
parameters. 

I t should be pointed out that it is not necessary for 
the impurity spins to change magnetic substates to give 
rise to a fluctuating z component of magnetic moment. 
For example, the energy levels of the impurity may 
fluctuate due to lattice vibrations through the crystal­
line field splitting. Therefore the autocorrelation time of 
the impurity r c may not be simply related to either the 
spin-lattice or the spin-spin relaxation time of the 
impurity. The significance of r c would depend on the 
type of impurity and its interaction with the lattice. 

Relaxation Time 

Bloembergen1 has shown that nuclear spin-lattice 
relaxation in dielectric solids by means of paramagnetic 
impurities is the result of two processes operating 
serially: spin-energy diffusion and direct relaxation. 

Diffusion of Zeeman energy towards an impurity by 
means of mutual spin-flips occurs as a result of the 
gradient in magnetic energy density created by the 
direct relaxation of nuclei near the impurity through a 
dipole-dipole interaction. This direct relaxation is 
effective only at short ranges due to the inverse sixth-
power radial dependence of the transition probability. 
Thus, it is possible to consider only a spherical volume 
of radius R surrounding one impurity and containing 
N' nuclei as representative of the total crystal. There 
are pj of these spheres per unit volume of the crystal, pj 
being the impurity concentration. The Hamiltonian 
for one of these representative volumes may then be 
written in spherical polar coordinates in the familiar 
form of the sum of six components, arranged according 
to their selection rules. 

B"I-J=T, yzyjWrrtlA'+B'+C'+iy+E'+F'l, (15) 
1 = 1 

where 

N'=NI/NJ=number of nuclear spins associated with 
each impurity spin 

A' = IziJz(l — 3 cos2^); Ami=Amp=0 

B'= - i [ / r / + + W ~ ] ( l - 3 cos204); 

Ami—— Aw p ==bl 

C'=D'*= ~ f [ / ;+/*+/+/*;] sinfli cos0»X*-"•**; 

Aw;=0; A m p = ± l ; Aw»-=±l ; Amp = Q 

E'=F'*= - | W + sitfOiXe-***; Amt= Amp= + 1. 

I is the spin operator for ith. nuclear spin 
J is the spin operator of the impurity spin. 

Because of the large energy difference between nuclear 
transitions and impurity transitions, the only term of 
interest is the third term (C) which involves a nuclear 
transition with the impurity remaining in its same mag­
netic substate. 

Using first-order perturbation theory of the 7th 
term of # / _ / ' to calculate the probability that the 
jth nucleus will undergo a downward transition while 
the impurity does not change its state, one obtains 

X sin20y cos%rrQJ («<), (16) 

where a represents the quantum numbers that specify 
the state of the impurity and / (coy) = | ( J,OJ | \xz it) \ — \yd) \2 

is the intensity of the Fourier spectrum of jjiz(t) 
evaluated at the resonant frequency of nucleus j . Since 
I (!,«I Ij+ j — | , a ) j 2 = 1, the transition probability is 

Wj= 9 /4 T jVr 6 sin2^ cos%J(a>j). (17) 

All variations in r,-, 0y, and #y, due to lattice vibrations 
have been neglected, on the assumption that the im­
purity is much more effective in relaxing the nuclei 
than are the lattice vibrations. 

In order to evaluate J (00) it is necessary to assume 
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some mathematical description of fxz. Following 
Rorschach, it is assumed that [iz is a randomly fluctuat­
ing stationary function of time, which can be described 
by the autocorrelation function given in Eq. (3). 

The spectral density given in Eq. (4) gives the 
amplitude of that part of the random motion of \xz 

occurring at frequency <a. Substituting Eq. (4) into 
Eq. (17) and averaging over the solid angle yields, for 
the average direct interaction transition probability 
of these nuclei at a radius r from the impurity, 

{W{r))={C/2)r~* 

= hi2 «M*2>- W 2 ) (re/ (1+cVr,2) )r-6 . (18) 

The substitution of the average Larmor frequency co0 

for o) is valid for all nuclei except for those within a 
distance b' of the impurity, whose resonant frequency 
is shifted out of the resonance line shape. This radius 
bf, the critical radius, may or may not correspond to 
the spin-diffusion barrier radius b, as pointed out by 
Blumberg,5 but the two are of comparable magnitude 
and usually small compared with the distance between 
impurities. Now by integrating Eq. (18) from b' to 
R, where R is the radius of the sphere associated with 
each impurity, one has for the spin-lattice relaxation 
time 

T1=3(br/^CPJj (19) 

where pj is the impurity concentration (A/3TTR^)~1. 

& W. E. Blumberg, Phys. Rev. 119, 97 (1960). 

INTRODUCTION 

RECENTLY, several experiments have been re­
ported on electroabsorption spectra in indirect-

*This work was sponsored by the U. S. Atomic Energy 

tNATO Fellow (Deutscher Akademischer Austauschdienst, 
Bad Godesberg), on leave from the Institute fur Theoretische 
Physik der Technischen Hochschule Karlsruhe, Germany. 

This agrees with Blumberg's expression for the rapid-
diffusion Ti. 

Rorschach4 has recently derived a general expression 
for Ti which has two asymptotic forms, according to 
the magnitude of a dimensionless parameter. This 
parameter 8 is equal to %(P/b)2, where /3 is the pseudo-
potential radius as defined by DeGennes6 and b is the 
barrier radius for spin diffusion. For 5<<Cl, the asymp­
totic form is the same as that above, while for 5̂ >>1, 
the form is that of the original diuffsion limited expres­
sion of DeGennes. 

I t should be pointed out that, if one knows the energy-
level configuration of the impurity and the impurity 
concentration, then the only unknown in the expression 
for Ti is the autocorrelation time rc of the impurity. 
By measuring Ti as a function of magnetic field, tem­
perature, and sample orientation one should be able to 
determine r c as a function of these experimental 
parameters as in the case for £. 

CONCLUSION 

Preliminary measurements of the second moment and 
Ti have been made on CaF2 :Eu2+ for two concentrations 
as a function of temperature and magnetic field in­
tensity. The results tend to confirm the essential features 
of the theory. Currently a number of other rare-earth 
and iron-group ions doped in CaF2 are being studied 
and the results will be published shortly. 

6 P. G. DeGennes, J. Phys. Chem. Solids 7, 345 (1958). 

bandgap materials.1-3 These observations refer essen­
tially to the change Aa in absorption produced by an 
applied electric field & in the material under study. 
The particular photon energy region explored has been 

1 A. Frova and P. Handler, Appl. Phys. Letters 5, 11 (1964). 
2 M . Chester and P. Wendland, Phys. Rev. Letters 13, 193 

(1964). 
3 AvFrova and P. Handler, Phys. Rev. Letters 14, 178 (1965). 
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Recently several experiments have been reported on electroabsorption spectra in indirect-bandgap ma­
terials. These observations refer essentially to the change in absorption produced by an applied electric 
field 8 in the material under study. The particular photon-energy region explored has been that where 
phonon-assisted interband absorption obtains. Usually, considerable structure appears in the experimental 
curves. The absorption change Aa varies quite radically with photon energy both in amplitude and in sign. 
All theories extant on the phenomenon of electroabsorption are concerned with direct-bandgap transitions. 
In the light of recent experimental results, however, in the neighborhood of indirect transitions, it is appro­
priate to calculate the electroabsorption spectrum for phonon-assisted processes in order to have a more 
applicable theoretical model with which to compare experimental results. The present paper reports just 
such a calculation. A formula for Aa is presented in the case of phonon-assisted interband absorption. 


