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Maxwell's equations are studied for linearly polarized plane waves of intense electromagnetic radiation 
with the displacement field given by a nonlinear cubic function of the electric field. Analysis shows that 
electromagnetic shocks, surfaces of discontinuity for the electric and magnetic fields, are physically admissible 
and can indeed develop from an initially continuous field of radiation. Under ordinary conditions, the shocks 
proceed to "sweep up" and eventually dissipate all of the radiation field energy, giving rise theoretically to 
the complete self-annihilation of the electromagnetic radiation field. Under rather special conditions, a 
steady electromagnetic shock wave train (with some dissipation of the radiation field energy but only by the 
tail shock in the train) may possibly evolve dynamically. There is a rigorous mathematical correspondence 
between the theory here for intense linearly polarized electromagnetic plane waves in an ideal dielectric 
material and the theory of large-amplitude one-dimensional pressure waves in an ideal solid material. 

INTRODUCTION 

RECENTLY, Chiao, Garmire, and Townes1 dis
cussed the possible self-trapping and propagation 

without spreading of a very intense beam of electro
magnetic radiation in an ideal dielectric material. 
Homogeneous, isotropic, nonconducting, and non
magnetic, the ideal dielectric material supports a dis
placement field which is given effectively by a cubic 
function of the electric field2 

D=eE+riE* (1) 

[e and rj~ constants] in the case of intense and linearly 
polarized electromagnetic radiation. It is interesting 
that the self-trapping phenomenon represents the first 
essentially nonlinear mode of propagation that may be 
associated with an intense beam of electromagnetic 
radiation in a dielectric material. Nonlinear effects 
studied previously, such as the generation of second-
and third-harmonic frequencies from an intense beam3 

and the mixing of frequencies between two intense 
beams,4 have been analyzed and understood satis
factorily in terms of "pseudo-linear" electromagnetic 
theory, an effective source term computed by a perturba
tion-iteration procedure for each separate harmonic of 
the radiation field.5 However, an essentially nonlinear 

*R. Y. Chiao, E. Garmire, and C. H . Townes, Phys. Rev. 
Letters 13, 479 (1964). 

2 For a comprehensive discussion of the theory and experi
mental status of nonlinear electric polarization effects, see: 
P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963). 
The constant parameter r\ in Eq. (1) is related to electrostriction, 
high-frequency third-harmonic Kerr effects, and possibly non-
linearities associated with electronic polarization at very intense 
fields (of the order 10M09 V/cm). 

3 P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, 
Phys. Rev. Letters 7, 118 (1961); R. W. Terhune, P. D. Maker, 
and C. M. Savage, ibid. 8, 404 (1962). P. D. Maker and R. W. 
Terhune, Phys. Rev. 137, A801 (1965). 

4 M. Bass, P. A. Franken, A. E. Hill, C. W. Peters, and G. 
Weinrich, Phys. Rev. Letters 8, 18 (1962). 

5 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S* 
Pershan, Phys. Rev. 127, 1918 (1962); N. feloembergen and P. S. 
Pershan, ibid. 128, 606 (1962), and works cited therein. 

solution of Maxwell's equations is required in order to 
get a theoretical description for self-trapping. 

In the present paper we consider the essentially 
nonlinear modes of propagation which are predicted by 
Maxwell's equations with (1) for a very intense and 
linearly polarized one-dimensional plane wave of 
electromagnetic radiation in an ideal dielectric material.6 

It is shown here that electromagnetic shocks, surfaces of 
discontinuity for the electric and magnetic fields, can 
develop from an initially "smooth" electromagnetic 
field of radiation, electromagnetic shock formation 
being a consequence of wave-form distortional effects 
produced by nonlinearity in the displacement field 
[represented here by the rjE3 term in (1)]. Furthermore, 
Maxwell's equations with (1) predict that the electro
magnetic shocks can "sweep up" and eventually dis
sipate all of the radiation field energy, giving rise 
theoretically to the complete self-annihilation of the 
entire field of electromagnetic radiation in certain 
circumstances. Also following unambiguously from 
Maxwell's theory is a steady, essentially nonlinear mode 
of propagation for intense linearly polarized radiation 
which takes the form of an electromagnetic shock wave 
train. The latter mode of propagation exhibits dyna
mical stability and no internal dissipation of radiation 
field energy but, unlike the more natural self-annihila
tion phenomenon, requires rather special initial condi
tions. Whether these essentially nonlinear phenomena 
can be realized in appropriate experiments, say with 
well-focused beams of linearly polarized laser radiation 
and with more or less ideal dielectric materials por 

6 A critical beam power level (actually attainable in the optical 
region with well-focused laser radiation) is derived by Chiao 
et at.1 as a necessary condition for a sustained (steady) self-trapped 
beam of radiation, involving an important transverse spatial 
variation of the electromagnetic field. Since an ordinary intense 
beam of electromagnetic radiation that is not self-trapped pro
pagates like a one-dimensional plane wave to within secondary 
diffraction effects at the beam's boundary, the considerations in 
the present paper logically precede analysis of multi-dimensional 
nonlinear propagation (such as the conjectured self-trapping 
phenomenon), while being manifestly independent of beam power 
level (or beam diameter). 
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which (1) is a good approximation to the actual dis
placement field], is still uncertain at the present time. 
Yet the underlying mathematical theory worked out 
here is rigorous on all counts and certainly worthy of 
consideration in connection with future experiments. 

GENERAL THEORY FOR SIMPLE WAVES 
AND ELECTROMAGNETIC SHOCKS 

The displacement field and the electric field are 
mutually parallel and everywhere perpendicular to the 
direction of propagation for a one-dimensional electro
magnetic plane wave in an ideal (homogeneous, 
isotropic, nonmagnetic, and nonconducting) dielectric 
material. Letting the x axis lie parallel to the direction 
of propagation, Maxwell's equations reduce to 

dE/dx= -/jLo(dH/dt), - dH/6x= dD/dt (2) 

and combine to give 

d2E/dx2=fj,o(d2D/dt2) (3) 

for linearly polarized radiation.7 Simple wave solutions 
to Eq. (3) with (1), solutions that represent wave pro
pagation only in the -\-x direction, are expressed 
implicitly by the form 

E=F[y{E)t-x~], (4) 

where F is a continuous and twice-differentiable func
tion of the indicated argument, and the local (so-
called characteristic) velocity of propagation is 

v(E) = Me+3r}E2)l-U2. (5) 

That the form (4) rigorously satisfies Eq. (3) with (1) 
can be proved by differentiating (4) directly and using 
the chain rule to get the simple wave relation 

(dE/dt)+v(E) (dE/dx) = 0 (6) 

which is readily shown to satisfy (3) with the velocity 
of propagation given by (5). 

7 Throughout this paper, our analysis is concerned exclusively 
with linearly polarized electromagnetic radiation, the form usually 
of practical relevancy to very intense (ruby) laser beams [e.g., 
J. H. Brunton, Appl. Opt. 3, 1241 (1964)], in particular, a beam 
produced by a Kerr-cell (2-switched ruby laser. Circularly polarized 
and other more complicated forms of electromagnetic radiation 
are generally associated with distinctly different essentially non
linear wave phenomena. Indeed, by putting the vector generaliza
tion of (1) D = (e+77|E|2)E into Maxwell's equations, one ob
tains solutions for circularly polarized running waves E = (0, 
A cos<f>, A sin<£) with A= constant and (j>=a>{t— £/j,o(e-\-r}A2)']^x} 
and solutions for circularly polarized standing waves E = [0, 
A(x)coscx)t, A(x)smut2, d2A/dx2-\-noco2(eA-j-rjAs)=0 which ex
hibit no time-dependent wave-form distortional effects or 
dynamical features similar to those for linearly polarized radiation. 
Moreover, one readily obtains essentially nonlinear solutions 
that are "hyperelliptically" polarized (that is, with forms of 
polarization nonexistent in linear Maxwell theory), as exemplified 
by the standing wave solution E = [0, A it) cos&#, A (J) sin&#], 
fj,o(d2(eA+r]A3)/dt2)+k2A=0. Although special attention must 
be given to the polarization in nonlinear electromagnetic radiation 
theory, linearly polarized radiation is "maximal" in exhibiting 
new and essentially nonlinear dynamical features. 

In addition to perfectly continuous simple wave 
solutions of the form (4), Eq. (3) with (1) also admits 
discontinuous solutions that represent physically ad
missible wave propagation in the -\-x direction. Such 
solutions are composed of simple waves connected by 
electromagnetic shock surfaces of discontinuity, ex
emplified say at x—vst by a finite jump in the electric 
field 

E=Ei for x>vst 

= Ef for x<vst, (7) 

where the (instantaneous) shock velocity of propaga
tion is given by 

vs= Me+vZEf+EiEf+Ef2])}-!'2. (8) 

To show the admissibility of the shock jump condition 
(7) with the shock velocity (8), we seek a local solution 
to Eq. (3) of the form 

E=S(x-vst) (9) 

in the neighborhood of the plane x=vsL By putting 
(9) into Eq. (3), we obtain the necessary condition on 5 

S-fxoVs
2(eS+r]Sd) = constant, (10) 

so that if we impose the jump condition (7) by setting 
S(0+)~E{ and S(0-) = Ef, then (8) follows from 
(10) if Ef^Ei. In the limiting case of an infinitesimal 
discontinuity with Ef—^Ei, the shock velocity (8) 
approaches the ordinary characteristic velocity (5). 
For finite shock discontinuities, it is also possible for Ei 
to remain (exactly) constant with time but only if 
vs=v(Ei), requiring the special jump condition 
Ef=—2Ei. Ordinarily the latter condition cannot be 
maintained, and the electromagnetic shock overtakes 
the E= constant characteristics of the simple wave 
radiation field, the quantities Ei and Ef (and therefore 
vs and the functional form of S) changing slowly with 
time. Nevertheless, the shock jump condition (7) with 
(8) holds good approximately at any instant of time, 
despite gradual dynamical changes in Ei, Ef, and vs. 

Let us investigate the effect of an electromagnetic 
shock on the flow and conservation of radiation field 
energy. Normally the field energy density 

U=hE2+h&+hoH2 (11) 

satisfies the conservation law 

dU/dt+d(EH)/dx=0 (12) 

by virtue of Maxwell's equations (2) with (1) if the 
electric and magnetic fields are continuous (and there
fore necessarily differentiable in a homogeneous 
medium) at x and /. In the special case of a shock dis
continuity, however, the energy conservation law (12) 
breaks down at the shock front, and the rate of field 
energy absorption by the shock is expressed as the finite 
quantity 

Ss^VsiUi-U^-EiHi+EfHf, (13) 
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where the subscripts i and / refer to field conditions 
before and after the shock front, respectively. Using 
the jump condition for the magnetic field 

ffi-ff^W.)-1 ( £ . • -£ / ) (14) 

derived from (7), (9), and the first Maxwell equation 
in (2), expression (13) is evaluated algebraically: 

k*=hv*(E*-Efl+lvn(E*-Ef) 
+±vsfxo(Hi*-Hf*)-EiHi+EfHf 

= fari{E%*-E?)(Ei-Ef)* ergs/cm2 sec. (15) 

Thus, the electromagnetic shock can act (at least 
formally) as a source or sink for radiation field energy, 
depending on the relative magnitudes of E? and £ / . 
The former possibility, that the shock acts as a source 
for radiation field energy, is clearly inadmissible on 
physical grounds, and hence from (15) we obtain an 
additional necessary condition for a physically realiza
ble electromagnetic shock, 

Ef%E?, (16) 

in order to have a non-negative rate of field energy 
absorption, £ s ^ 0 . 

The preceding analysis closely parallels the classical 
theory of shock waves in an ideal fluid.8 As in classical 
shock-wave theory, the electromagnetic shock is re
garded here as a surface of discontinuity without inter
nal structure, and the energy-dissipation mechanism 
that works within the shock is not treated explicitly by 
our theory. Nevertheless, it is obvious from physical 
considerations that finite conductivity effects and the 
modification they render to the second Maxwell 
equation in (2) can account for detailed (finite) shock 
structure and the associated energy dissipation mech
anism. That Maxwell's equations (2) are valid outside 
the electromagnetic shock is however sufficient in itself 
to give the over-all rate of field energy absorption (15), 
although not the rate at which this "shock energy" 
is then spent irreversibly within the shock. 

FORMATION OF ELECTROMAGNETIC SHOCKS 
AND THE SELF-ANNIHILATION 

OF RADIATION FIELDS 

Subject to initial or boundary conditions of experi
mental interest, solutions for the electromagnetic field 
given implicitly by the form (4) can develop shock dis
continuities for certain finite values of x and t, like the 
simple wave solutions of other nonlinear hyperbolic 
partial differential equations.9 Once formed, the elec-

8 See, for example: R. Courant and K. Friedrichs, Supersonic 
Flow and Shock Waves (Interscience Publishers, Inc., New York, 
1948). 

9 For instance: P. D. Lax, J. Math. Phys. 5, 611 (1964), and 
works cited therein. 

tromagnetic shocks usually proceed to overrun the 
simple-wave domains, "sweeping u p " and eventually 
dissipating all of the radiation field energy and thereby 
giving rise to the complete self-annihilation of the 
electromagnetic field. This extraordinary phenomenon 
is illustrated in the following paragraphs for two cases 
of practical importance involving monochromatic 
radiation. 

Case 1. Monochromatic electromagnetic radiation at 
normal incidence to a semi-infinite dielectric for t^O 
[with no delay in the nonlinear electric polarization, 
represented in (1) by the rjE3 t e rm] ; we have the pure 
harmonic boundary condition on the semi-infinite 
domain x^O, 

E=Esino)t at x=0 for t^O (17) 

with no electromagnetic field initially in the domain 
x^O, E = 0 at / = 0 . Adjusted for the boundary condi
tion (17), the form (4) vanishes for negative values of 
the argument, while for positive values, (4) gives the 
electromagnetic field implicity as 

E=Es inco[*- (xACE)) ] for t^x/v(E)^0. (18) 

Some elementary analysis applied to (18) demonstrates 
that electromagnetic shock discontinuities develop from 
this simple wave solution, the first electromagnetic 
shock appearing at about />7r/^[(l+(3?7/€)E2)1/2— 1], 
that is, the earliest time at which two E= constant 
characteristics intersect. Using the method of char
acteristics in conjunction with the shock conditions 
(7) and (8), the space-time evolution of the radiation 
field can be worked out numerically for all positive 
values of t, as shown in Fig. 1 for the numerically 
convenient parameter value E2 =e/ri, the space-time 
evolution being qualitatively similar for all values of E2. 
In Fig. 1, positive acceleration of the first electromag
netic shock is apparent during the phase of formation 
with / >7r/co; the shock velocity of propagation increases 
monotonically and approaches Gu0e)~~1/2 in an asymptotic 
fashion as the electromagnetic shock overruns E— 
constant characteristics, absorbing and eventually dis
sipating radiation-field energy. The complete self-
annihilation of the radiation field is clearly evident. 

Case 2. Monochromatic electromagnetic radiation 
propagating in the +x direction at £=0 through an 

FIG. 1. Space-time evolution 
of the electromagnetic radia
tion field for Case 1 with 
J§2 = e/77. Dashed lines repre
sent the E — constant char
acteristics while heavy solid 
lines represent the electromag
netic shocks. 
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FIG. 2. Space-time evolution of the electromagnetic radiation 
field for Case 2 with &~e/v. Dashed lines represent the £ = 
constant characteristics while heavy solid lines represent the elec
tromagnetic shocks. 

unbounded dielectric (sudden activation or "switching 
on" of the nonlinear electric polarization); we have the 
pure harmonic initial condition for the unbounded 
domain — °o < # < + oo, 

E=£sinkx at / = 0 . (19) 

Adjusted for the initial condition (19), the form (4) 
gives the electromagnetic field implicitly as 

E=JEsink£x-v(E)t2 for feO. (20) 

Like solution (18), the simple wave solution (20) 
develops electromagnetic shock discontinuities, but in 
the case of the latter solution an infinite number of 
uniformly spaced shocks appear simultaneously at about 
/>7r( juoe)1 /2 /2^[( l+(3y€)E2)1 /2- l] . Figure 2 shows 
the space-time evolution of the radiation field for the 
parameter value £?= e/rj. Again positive acceleration 
of the electromagnetic shocks is apparent during the 
phase of formation with />7r(;uoe)1/2/2&; the shock 
velocity increases and asymptotically approaches 
(noe)~112 as E— constant characteristics are overrun 
and the radiation field energy is absorbed and eventually 
dissipated. Once again the complete self-annihilation 
of the radiation field is clearly evident. 

The preceding cases are typical for an intense, 
linearly polarized electromagnetic plane wave of radia
tion in an ideal dielectric material with the displace
ment field given by (1). Electromagnetic shocks gener
ally develop from the continuous simple wave solutions 
of Eq. (3) with (1), and the shocks then proceed to 
"sweep u p " and eventually dissipate all of the radiation 
field energy. Hence the theory predicts the extraordinary 
phenomenon of complete self-annihilation of the elec
tromagnetic radiation field. 

THE ELECTROMAGNETIC SHOCK 
WAVE TRAIN 

Let us now consider the possibility of steady, time-
independent wave-forms composed entirely of piecewise-
constant electric and magnetic fields through space-
time domains separated by electromagnetic shocks, 
an electromagnetic shock wave train, without any simple 
wave of the form (4) being present in the radiation 

field. Whereas, the shock formation and self-annihilation 
phenomenon discussed in the section above appears to 
be rather general in theory, the development of a shock 
wave train would require very special initial conditions 
that are much less likely to be realizable in an experi
ment. Nevertheless, the electromagnetic shock wave 
train, being wholly consistent with Maxwell's equations 
and exhibiting dynamical stability, is of considerable 
theoretical interest. 

Consider a solution to Eq. (3) that takes the form (9) 
for all values of x^xi with limx->_o0£= 0. Condition 
(10) then gives 

S = + £ * , -E*, or 0 , (21) 

where 

v^v+^Me+iiE*)*)-]-1* (22) 

and E* is a disposable constant electric field amplitude, 
assuming that S is not identically equal to zero for all 
values of (x—vst). Thus, the solution is composed 
entirely of domains in which the electric and magnetic 
fields are piecewise-constant, in accordance with (21). 
Furthermore, Eqs. (21) and (16) admit an arbitrary 
number of electromagnetic shock discontinuities in the 
field function S provided that | A S | = 2 £ * across a 
shock, but if the electromagnetic field shocks to 5 = 0 , 
say at {x—vst) — xoy then ,5=0 for all x< (xo+vst) by 
virtue of (16). Let us suppose that a perfect absorber of 
radiation exists at x= x\ so that the electromagnetic shock 
wave train propagates at a constant velocity (22) with 
Z£=d=E* throughout the finite spatial region (xo+vst) 
^x^%i. Equation (15) shows radiation field energy is 
absorbed and dissipated only by the tail shock at 
(x—vst) = xo, for which 8S= JZJS*T?(£*)4. Moreover, 
linearization of Eq. (3) for the perturbed solution 
£ = ± E * + 0 ( * , O with | 0 | « £ * gives the elementary 
wave equation 

\j(E*)J(d2d/dx2)- (d20/dt2) = 0, (23) 

implying that small perturbations in the field propagate 
without growth in amplitude at the characteristic 
velocity (5) with E2= (Z£*)2. Therefore, an electro
magnetic shock wave train exhibits dynamical stability. 

If an electromagnetic shock wave train were to 
develop from an intense and linearly polarized beam of 
radiation in a suitable dielectric material, then the 
radiation would propagate at the special velocity (22). 
I t is relatively easy to measure the transit time for an 
intense laser beam through ten meters or so of suitable 
dielectric material, photomultipliers and fast electronic 
circuitry determining the transit time accurately to 
within a couple of nanoseconds. Such an experimental 
measurement would give the velocity of propagation 
accurately to about 5 % and enable one to discern 
propagation of the radiation at the special shock velocity 
(22) and to infer the existence of an electromagnetic 
shock wave train. 
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F I G . 3. Pressure-versus-
specific volume diagram for an 
ideal solid of Type CA-CX in 
the Duvall10 classification, the 
functional dependence repre
sented by Eq. (24) here. 
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LOCAL SPECIFIC VOLUME 

A REMARKABLE PHYSICAL ANALOGY 

There is a rigorous mathematical correspondence, 
and therefore an illuminating physical analogy, be
tween the theory presented here for intense linearly 
polarized electromagnetic plane waves in an ideal 
dielectric material and the theory of large-amplitude 
one-dimensional pressure waves in an ideal solid 
material.10 With the latter theory already established on 
an experimental basis,11 the mathematical correspond
ence provides some additional insight regarding the new 
and essentially nonlinear electromagnetic phenomena 
conjectured theoretically in the preceding sections. 

We consider an ideal solid material for which the 
local specific volume 1/p is given effectively by a cubic 
function of the local pressure p, 

l/p=(l/Py)-a(p-py)-b(p-pyy (24) 

[_a, by py, and py~ constants] in case of extremely high 
pressure waves (see Fig. 3). Equations expressing mass 
continuity and momentum conservation take the 
standard form for ideal one-dimensional unsteady flow12 

10 G. E. Duvall, Les Ondes de Detonation (Centre National de la 
Recherche Scientifique, 15 Quai Anatole-France, Paris (VII6), 
1962), pp. 337-352. R. G. Payton, J. Acoust. Soc. Am. 35, 525 
(1963). W. Band and G. E. Duvall, Am. J. Phys. 29, 780 (1961). 
W. Band, J. Geophys. Res. 65, 695 (1960). 

11 J. O. Erkman, J. Appl. Phys. 32, 939 (1961). L. V. Al'tshuler, 
K. K. Krupnikov, and M. I. Brazhnik, Zh. Eksperim. i Teor. 
Fiz. 34, 886 (1958) [English transl: Soviet Phys.—TETP 34, 
614 (1958)]. 

12 M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State 
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc., 
New York, 1958), Vol. VI. G. E. Duvall and J. S. Koehler, Bull. 
Am. Phys. Soc. 4, 283 (1959). 

and combine, with rigorous elimination of the local 
velocity field, to give the governing dynamical equation13 

d2(l/p)/dt2+d2p/dip2=0, (25) 

where \p is a Lagrangian mass coordinate, a constant 
value of \p referring to a fixed element of the solid. 
Since a formal mathematical correspondence between 
Eq. (3) with (1) and Eq. (25) with (24) can be set up, 
as shown in Table I, it follows that the two nonlinear 
wave theories are mathematically equivalent. 

TABLE I. Mathematical correspondence between the two non
linear wave theories, one for large-amplitude mechanical pressure 
waves in an ideal solid, the other for intense linearly polarized 
electromagnetic waves in an ideal dielectric. 

Quantity in the theory 
of large-amplitude 
pressure waves in 

an ideal solid 

Quantity in the theory 
of intense electro

magnetic waves in an 
ideal dielectric 

aty 

(b/a)Kp-pv) x 
(&A*3)K1/P,-VP) 

(rj/e^D 

For the theory of large-amplitude pressure waves in a 
solid, there is an extensive literature10,11 concerned with 
the formation of shock discontinuities, their propaga
tion, stability and dynamical decay behavior in a 
pressure field of simple waves. We find qualitative 
evidence in support of the essentially nonlinear dynami
cal phenomena discussed above for linearly polarized 
electromagnetic radiation [for example, the existence 
and dynamical stability of rarefaction shocks with 
p/<pi provided that (pf—py)

2^(pi—py)2, in cor
respondence with our condition (16)3- A more detailed 
comparison of the two theories is encumbered at the 
present time by considerable dissimilarity in the initial 
and boundary conditions germane to specific problems 
of practical interest. 
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