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The elastic differential scattering of He+ in He is calculated at the barycentric energies 15, 50, and 300 eV 
for comparison with the experiments of Lorents and Aberth (preceding paper). We use available computed 
potentials of the g and u states of He2+ dissociating smoothly to ground-state He+-fHe. The quantal 
interference pattern is reproduced by applying the principle of superposition to the classical scattering 
amplitudes appropriate to the pure g and u states, i.e., amplitudes whose magnitudes and phases are given 
by classical integrals over the trajectories corresponding to the g and u potentials separately. The interference 
takes place at the common angle 0, and usually involves different values of the angular momentum in the 2 
states. Nonzero minima occur even in 2-state elastic scattering because the 2 interfering terms may differ 
in magnitude. A secondary interference at large angles is identified as an effect of nuclear symmetry that 
should disappear in an experiment using 2 different isotopes. The 2-state theory appears able to account 
quantiatively for the 5 principal features of the experimental elastic scattering: the upper and lower enve
lopes, the rainbow scattering, and the primary and secondary oscillations. For further improvement in 
detail, better information is needed on the behavior of the potentials at large and small internuclear distance. 
At large angles and high energies the experimental upper envelope falls below the elastic 2-state theory. 
This discrepancy is probably due in part to losses into inelastic channels. 

I. INTRODUCTION 

TH E calculations we are reporting here of the 
scattering of He + by He were provoked by the 

fascinating experimental data of the preceding paper by 
Lorents and Aberth.1 Just as their work is intimately 
related to the experiments of Everhart and his assoc
iates2 on symmetric charge-exchange scattering, so the 
theory is related to an even longer history, beginning 
with the classic work of Mott3 and of Massey and 
Smith.4 Indeed, the basic theory we shall need is already 
present in those papers of more than thirty years ago. 
I t is a mark of the natural foregetfulness of physicists, 
ameliorated only by the memory on our library shelves, 
that the remarkable oscillations first seen by Everhart 
were greeted by many of us a few years ago with 
startled surprise and even incredultity. 

The special features of collisions between identical 
particles in quantum mechanics were first investigated 
by Mott in connection with the scattering of a particles 
by He nuclei. Massey and Smith4 applied similar 
considerations to H e + + H e scattering in their study of 
the motion of positive ions through gases, and derived 
the basic formulas we shall use. They ultimately 
calculated a total cross section, using potentials for 
He2

+ due to Pauling,6 but they could have computed 
differential cross sections as well. Their expression for 
the differential scattering amplitude clearly displays 
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(1959). (b) G. J. Lockwood, H. F. Helbig and E. Everhart, Phys. 
Rev. 132, 2078 (1963). (c) E. Everhart, Phys. Rev. 132, 2083 
(1963). 

3 M. F. Mott, Proc. Roy. Soc. (London) A126, 259 (1930). 
4 H. S. W. Massey and R. A. Smith, Proc. Roy. Soc. (London) 

A142, 142 (1933). 
6 L . Pauling, J. Chem. Phys. I, 56 (1933). 

itself as a sum of independent terms whose interference 
would create just the sort of oscillating pattern Everhart 
found. 

Little theoretical work was done on atomic differential 
scattering cross sections between 1933 and 1959, but 
much was done on total cross sections. Among other 
developments, the impact-parameter approximation 
became popular for collisions at moderately high 
energies—in this, the nuclei are considered to move 
classically and undeflected along their initial trajectory, 
and the electronic motion is treated in the slowly 
varying potential due to the moving nuclei. This 
picture was applied immediately to the interpretation 
of Everhart's data on the oscillating-charge-transfer 
probability as a function of collision velocity in the 
small-angle scattering of He + by He.6 

In such a colliding system one of the electrons on the 
initially neutral He sees an equivalent unoccupied 
orbital (with the same spin) on the approaching He+ . 
In the symmetric potential due to the nuclei and the 
other 2 electrons, the mobile electron may be thought of 
as oscillating back and forth across the potential well 
while the two nuclei are close together, and tunnelling 
through the intervening barrier when they are somewhat 
further apart; the charge-transfer probability depends 
on the phase of the oscillation in which the electron is 
left when the nuclei separate so far that further tunnel
ling is negligible. This physical picture corresponds to 
a time-dependent wave function that can conveniently 
be written as a linear combination of symmetric and 
antisymmetric wave functions for states of the molec
ular system He2

+ . As long as the nuclei are not moving 
too fast, it seems reasonable to hope that the motion 
can be described fairly well by using just the two states, 
one gerade and one ungerade, that dissociate smoothly 
to the ground-state ion and atom. At the beginning of 

5 F. P. Ziemba and A. Russek, Phys. Rev. 115, 922 (1959). 
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the collision, when the atom and ion are far apart, the 
relative phase of the g and u functions must be chosen 
so that the third electron is localized on the proper 
atom; the relative phase at the end of the collision 
determines the probability of finding the electron on 
the same atom. According to this model, the charge-
transfer probability oscillates between 0 and 1. 

Everhart and his associates213 have measured the 
charge-transfer probability of He + in He at energies 
from about 400 eV to 2X105 eV and angles from 0.3° 
to 5°. The oscillations they observe are in reasonable 
agreement with the theoretical calculations for the 
model just described, except for the fact that the charge 
transfer probability is "damped" so that its oscillations 
do not extend all the way to 0 or 1. 

For such a 2-state theory, it is clear that the proper 
gerade potential to use at small R cannot be the lowest 
one,6 but is the one that goes smoothly from the lowest 
dissociation limit of H e + + H e to the \s{2p)2 state of 
Be+ in the united-atom limit.7 I t is to be expected, in 
view of the Landau-Zener theory, that the curve 
crossings will be relatively ineffective in producing 
transitions to other states as long as the nuclear 
velocity is large in the neighborhood of the crossing 
point of the potential curves. However, the probability 
of such transitions is not zero, and these events are 
certainly responsible for some of the observed "damp
ing" of the oscillations, as they are in the related case 
of H + + H collisions.8 

When Lorents and Aberth's ion-scattering data 
began to appear, showing the same nonzero minima in 
the interference pattern, one of us began to examine the 
theory with the initial aim of looking at the excitation 
process as the cause of the damping. However, it soon 
became clear that even a 2-state theory, when properly 
formulated, would show such damping as a result of 
the interference of 2 scattering amplitudes that might 
have different magnitudes at the scattering angle.9 

This observation came essentially simultaneously with 
the experimental demonstration of apparent damping 
even at energies below the first excitation potential of 
He. Independently and at the same time, F. J. Smith10 

showed that the same effect is important in the H + + H 
charge exchange at the lower end of the measured energy 
range. The effect is really not new, the relevant expres
sions being present in Massey and Smith's paper,4 and 
the same idea has been recognized in connection with 
spin-exchange scattering and elsewhere. In the energy 
range of interest here, the scattering amplitudes that 
interfere can be computed purely classically provided 
they are each given a classical phase (a standard action 
integral) as well as the usual magnitude. 

' W. L. Lichten, Phys. Rev. 131, 229 (1963). 
8 D. R. Bates and D. A. Williams, Proc. Phys. Soc. (London) 

83,425 (1964). 
9 F. T. Smith, Bull. Am. Phys. Soc. 9, 411 (1963). 
10 F. J. Smith, Phys. Letters 10, 290 (1964); Proc. Phys. 

Soc. (London), 84, 889 (1964). 

We have therefore limited our attention for the 
present to the 2-state theory, which we apply here to 
calculations that can be compared with Lorents and 
Aberth's experiments. We have used existing potential 
energy curves, that of Reagan, Browne, and Matsen11 

for the u curve and that of Phillipson12 and Lichten7 

for the g curve. We first calculated the direct ion-atom 
scattering, ignoring the symmetry in the nuclei, and 
found very satisfactory agreement with the experiments 
at low and intermediate angles. When the nuclear 
symmetry was introduced in addition, an additional 
oscillation appeared in the large-angle region that could 
immediately be identified with the subsidiary structure 
seen in this region of the experimental curves. 

II. GENERAL THEORY 

A. Separation of Electronic and Nuclear Motion 

If the nuclear motion is described by the relative 
coordinate vector R, and the electrons by the coor
dinates r» or simply r = (ri,r2,r3), we can write the total 
potential energy as the sum of an electronic part and a 
purely nuclear repulsion 

ff(R,r)=ff"(#;r)+(4«yi?), (1) 

where the direction of R does not enter as long as the 
vectors r* are measured in a relative coordinate system 
rotating with R. The total wave function is expanded 
in terms of molecular electronic wave functions depend
ing on R as a parameter13 

^(R,r)=Ey^-""(R¥/,(R;r). (2) 

Because of the complete symmetry of the potential (1) 
upon inversion in the center of mass, the functions \f/jel 

fall into two orthogonal families labelled g and w, we 
shall use only one of each, so j will take only two values, 
j= (gjU). By integrating over the electronic coordinates, 
the electronic energy is defined for each of these states 
as a function of R: 

E9,u
el(R) = ffo.u'l*(R,r)tT«+U«(R; r ) ] 

X ^ ^ ( r , r ) ^ r . (3) 

As R—> oo, Eg
el and Eu

el both approach Ej>\ the 
(negative) sum of the binding energies of the electron 
in the ground state atom and ion. By combining each 
Eel(R) with the nuclear repulsive energy and E^el we 
obtain the adiabatic potentials for the nuclear motion in 
the g and u states: 

Vg>u(R) = Eg,u°\R)-E^+(W/R). (4) 

In the limit as R—> oo, the states \f/g
el and \pu

el are 

11 P. N. Reagan, J. C. Browne and F. A. Matsen, Phys. Rev. 
132, 304 (1963). 

12 P. E. Phillipson, Phys. Rev. 125, 1981 (1962). 
13 E. C. G. Stueckelberg, Helv. Phys. Acta 5, 370 (1932). 
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linear combinations of the states \pAel, representing the 
initial ion-atom pair, and \pBel, representing the charge-
transferred pair: 

^ ( r ) = l i m ( l / v 2 ) ( ^ u + ^ ) , (5a) 

^ ( r ) = l i m ( l / ^ ) ( ^ u - ^ ) ; (5b) 

at the beginning of the collision ypu and \f/g are in phase 
as in (5 a), but there is no reason for them to be so at 
the end since the g and u phases develop differently 
during the collision. 

B. Classical Nuclear Motion 

Later in this paper we shall discuss the quantal 
nuclear motion in the framework of time-independent 
scattering theory, but here we follow the earlier treat
ments of the He+-He problem6,7 in assuming classical 
nuclear motion and looking at the time-dependent 
theory of the electronic motion. The time-dependent 
electronic wave functions can then be written approx
imately in the form 

4,*{R\ T,t)=ffl(R; t)e*iW (j==gjU) ? (6) 

where, since R is varying slowly, 

7; (H-80 = 7," ( 0 + £ / ! (R) Wh) • (7) 
I t is convenient to factor out the phase factor, common 
to the g and u functions, describing the evolution of 
the system when R is large, 

eiEo0
elmt 

The wave functions after the collision is over then 
become 

$jel(R', xyt)-*+fl{R\ i)eiE~9ltl*eW, (8) 
where 

/•OO 

Vi^h-1 {Ei>llR(t)l-E„«}dt 

= 2h~l \_E}°
l(R)-Ejl~]R-ldR. (9) 

The final phase difference between the g and u functions 
is then 

Vu—Vg- (10) 

The initial wave function \pA (r) evolves into 

( l / V 2 ) ( i / v ^ + ^ ^ ) 
= %\l/A(eiVu+eir>0)+%\l/B(eiVu—ei1}(>). (11) 

The probabilities of elastic scattering PAA and of charge 
transfer PAB are then 

PAA = £ [ l+cos (T / t t - i ? J ] , 

PiiB = i [ l ~ c o s ( r y t t - ^ ) ] . 

The phases ra are functions both of the relative 

kinetic energy 

E=W2)&J=(ji/2W (13) 

and of the relative angular momentum L or impact 
parameter b, 

L2 = 2^Eb2. (14) 

Since the scattering angle 8 is determined by L and E, 
the phases can also be taken as functions of E and 0, 
rji(E,6). To compute these functions by (9) one needs 
the functional form R(t) or its equivalent, the radial 
velocity 

&(R) = v(R) = v(E,L;R), (15) 

and also the turning point 

ro=r0(E,L) (16) 

for the lower limit of integration. These quantities v 
and r0 can be chosen with various degrees of refinement. 
Case (i): 

v^{R) = v^{2E/nyt\ (16a) 

ro(i) = 0. (16b) 

This approximation seems justified at high enough 
energies and large enough angles (small enough L), 
where the electronic energies Ejel(R) near the turning 
point rQ are already close to the united-atom value 
Ejel(0). This assumption is confirmed by the observa
tion25 of a region (£ -0>2XlO 2 deg eV) where the 
charge transfer probability depends only on E and not 
on0. 
Case (ii): 

^ ^ ( ^ ^ ^ ( l - J V ^ 2 ) 1 7 2 , (17a) 

r0
(ii) = b. (17b) 

This is the standard impact-parameter approximation, 
and is valid at energies and angles somewhat smaller 
than (i). 
Case (hi): 

*<"i>(l0 = i a ; i - (6V*2)- {VUR)/E)Ji\ (18a) 

[ro(iii>]2{ 1 + F a v[>o ( i i i )] /£} = 62, (18b) 
where 

VM = KVu(R)+V9(R)l. (18c) 

This assumes that the classical nuclear motion occurs 
under the influence of the average potential (18c), 
and has been frequently employed. Its range of validity 
extends to still smaller energies and angles than (i) and 
(ii); we shall show later that the particular average 
(18c) is justified by the more exact theory. Closely 
related to case (iii) is one of the approximations used 
by Bates and Boyd,14 in which F a v is replaced by a 
pure coulomb potential Vc-

14 D. R. Bates and A. H. Boyd, Proc. Phys. Soc. (London) 
80, 1301 (1962). 
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Case (iv): 

vj(R) = v ^ - ( J 2 /* 2 ) - (Vj(R)/E)l11*, (19a) 

[r0.
 (iv)]2{ 1+V£r0. ( i v )]/£} = V. (19b) 

Here we take note of the fact that the nuclear trajec
tories may be different in the g and u states, so that 
different velocities and turning points must be used in 
the integrals (9) for rju and rjg. The phase difference 
Vu—Vg obtained in this way was used by Bates and 
Boyd14 as the basis for an expansion which they applied 
to the calculation of total cross sections. As we shall 
see, the final result for the theory of differential cross 
sections is somewhat different, but (19) emphasizes the 
essential point that at low energies the nuclear trajec
tories in the 2 states are different. 

The phases t\u and r\g obtained from (9) by using (16) 
through (19) are expressed in terms of E and L, not 
directly as functions of E and 6. A relation between 6 
and L follows from the classical dynamics of the 
collision provided a nonzero potential V(r) governs 
the nuclear motion. This relation has usually been 
obtained by using the assumptions of case (hi). When 
the angle involved is not too large, Everhart20 has made 
use of a high-energy approximation in which the 
product Ed has especially simple properties; this can 
be shown15 to represent the first term in the expansion 
of 6(E,L) in powers of Er1. If case (iv) is followed, one 
finds two different scattering angles 6j(L) associated 
with a single value of L, or two different angular 
momenta Lj(6) associated with the same angle. That 
this conclusion is correct will be shown when we 
consider the quantal nature of the nuclear motion. 

C. Quantal and Semiclassical Nuclear Motion 

Instead of assuming classical nuclear motion, we 
return to the quantal representation of Eq. (2) and 
consider the nuclear part of the scattering represented 
by the functions ^n w(R). After the Born-Oppenheimer 
separation of coordinates, these functions each satisfy 
a nuclear Schrodinger equation with the appropriate 
potential Vj(R) from Eq. (4). The radial symmetry 
permits the usual partial wave separation of the 
^•nw(R). The complete wave function for the scattered 
wave after the collision then has the form 

* - • *-WR-1e**{M0fE)fu«(R9T)+fg(6,E)+/l(R,*)} 
= (2R)-W*{ (fu+fg)i<Ael+ (fg-fu)+Bel}. (20) 

The differential cross sections for direct scattering, aAA, 
and for charge exchange scattering, <rAB, are then4 

<TAA(E,6) = l\ME,6)+f0(E,e)\\ 

<rAB(E,6) = l\ME,0)-fo(Efi)\*, 
(21) 

and the corresponding probabilities are 

PAA(E,6)=(<TAA/(crAA+<TAB)), 

PAB (E,0) = O W (<rAA+aAB)) • ( 2 2 ) 

These probabilities can attain the limits 1 and 0 only 
if IMH/, • 

In Eqs. (20) and (21) the entire phase factor (both 
nuclear and electronic) is embodied in the scattering 
amplitudes fj(d,E), which are constructed in the usual 
way : 
fj(d,E) = (l/2ik)Ei(2l+1) (<^?<*>-1) 

XP*(cos0), (j=g,u). (23) 

The phases 8i°(E) and diu(E) can be found from the 
asymptotic behavior of the appropriate nuclear radial 
wave functions. For accurate evaluation, these functions 
should be obtained by solving the radial wave equations 
with the potentials Vg(R), VU(R). At the energies of 
interest here, however, a semiclassical treatment is 
appropriate,16'17 and the classical phases Ag(L,E), 
AU(L,E) can be used along with the correspondence 
relations: 

( /+£)*->£, 2hh(E)-> A(L,E). (24) 

The classical phase15 is an action integral over the 
effective classical radial motion (since electronic coor
dinates are no longer necessary, r will now refer to 
the nuclear coordinate): 

/•OO 

Aya,£) = 2 / {2tx[_E- VsW-ISMyitdr 
J rai 

/•OO 

- 2 / [2M£-L2/r2]1/2dr (25) 
Jb 

r0j 

{2»[E-V3(r)-]-Lyr*} 1/2 

n>/ 
X [ £ - Vi(ryyWdVs/dr)dr. (25a) 

The scattering amplitudes fj can be evaluated by 
direct numerical summation of the partial wave series 
(23) using the correspondence (24) and the classical 
approximation (25) for the phases; this common 
procedure has no simple appellation, and we recommend 
calling it the semiquantal summation, because the I's 
are taken quantally even though classical phases are 
used. Proceeding a step further, the usual semiclassical 
arguments allow us to approximate /y(0) by its classical 
limit which can be derived entirely from the classical 
phase function Aj(L,E): 

sinBafHE. 
d 2 Ay| -^ 

2ME^ 2fiE\ \ dL2\ J L=Lj(E,d) 

(26) 

(26a) 

15 F. T. Smith, J. Chem. Phys. 42, 2419 (1965). 

16 N. F. Mott and H. S. W. Massey, The Theory of Atom 
Collisions (Clarendon Press, Oxford, 1933). 

17 K. W. Ford and J. A. Wheeler, Ann. Phys. (N. Y.) 7, 259 
(1959). 
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hyj(E,d)^AJ(E}6)==\:Aj(EyL)--dL(&j/\&j\)^LjiE,e) 

+hajy (26b) 

ST IT/ ®J \ 7T/ A/' \ 

a.=_+J )+_( ) (26c) 
4 2 \ | © y | / 4 \ | A / ' | / 

®j(E,L) = dAj/dL= A / , 0 = | © | , (26d) 

L i(E,^) = L i(E, |©y | ) , (26e) 
where (26e) represents the inverse of (26d). 

In the energy range of interest, above 15 eV, the 
classical scattering amplitudes fjcl are very satisfactory 
approximations to the true / / s . When these classical 
scattering amplitudes are combined we get the resultant 
amplitudes for direct and charge-exchange scattering, 

fAA = %(fu+fg) , fAB=:h(Jg—fu), (27) 

in the semiclassical approximation. The first non-
classical result to appear is an interference between two 
scattering amplitudes that may each validly be 
computed strictly classically. I t is striking and signif
icant that the classical scattering amplitudes, combined 
in the simplest way using the principle of superposition, 
suffice to give an excellent representation of the quantal 
results. 

The success of the classical amplitudes fjcl (0) suggests 
a physical picture. If two particles are thought of as 
colliding with a definite impact parameter b or angular 
momentum L, the incoming wave packet can be 
analyzed into two coherent parts, one in the gerade 
and the other in the ungerade electronic state. Each of 
them follows essentially the classical trajectory corre
sponding to its potential V0 or Vu, and is ultimately 
scattered predominantly through its own classical angle 
6g(L) or 6n(L). If the observation is made at the angle 
6=6U(L), the gerade part of the packet will not be 
observed, since it is scattered mainly to some other 
angle. However, there is some different angular momen
tum, L'=Lg(6), such that dg(L') = e=du(L), and the 
true scattering observed at the angle 6 is the interference 
between two coherent parts of a plane wave, the g 
part with angular momentum L and the u part with 
angular momentum L'. We must, in fact, relinquish a 
localized wave-packet picture of the scattering because 
we do not actually observe the impact parameter. 
Instead, we know the direction of motion of the 
initial and of the observed scattered beam, and therefore 
the angle of scattering 0. If we could measure the 
impact parameter, we would know less about the 
directional character of the motion, and the observa
tions would be different. Indeed, the coherent inter
ference between two widely separated regions of L is 
very similar to the interference between two parts of 
an optical wave front (or an electron beam) passing 
through a spatially separated pair of slits. 

I t is striking that the purely wave picture of the 
scattering which we are obliged to use is entirely 

compatible with a strictly classical approximation for 
the two scattering amplitudes that are interfering. In 
fact, a classical quantity (such as an action integral) may 
be an excellent approximation to the corresponding 
quantal one (such as the phase of a wave function or of 
a scattering amplitude) even when a classical model 
(such as a point-particle trajectory) must be relin
quished in favor of a complementary nonclassical one 
(such as a wave picture). 

One reason for the "damping" in the charge transfer 
probability is now clear. The two amplitudes fu{Efi) 
and fQ(Efi) will generally be different in magnitude, 
because of differences in both of the factors in CTJ(E70) : 
Lg(d)^Lu(d) and dLg/dd5*dLu/dd (except by accident 
at isolated points). 

The cross sections of Eq. (21) will include an oscillat
ing part containing the factor 

cas£yu(Eft)--yg(E90)l. (28) 

I t is not hard to see that the phase difference rju~rjg 

of Eq. (12) as computed using the formulas (16) to 
(19) represents a set of varying japproximations to the 
correct phase difference yu—yg- Since the latter is not 
hard to compute directly, the previous approximations 
will not be used in this work. However, the relation 
between the exact expression and the approximations 
will be given in the next section. 

A note on terminology is in order: We advocate 
using the term "classical scattering amplitude" for 
the quantity calculated as in Eqs. (26) from a classical 
phase A(E,L). The term "semiclassical" can be applied 
to any nonclassical amplitude that is computed from 
the classical phase by replacing the sum over I by an 
integral over L and using a modification of the method 
of stationary phase. This would include as "semi-
classical" the rainbow and glory approximations of 
Ford and Wheeler,17 and the interference of two or 
more classical amplitudes such as fg and fu. Finally, a 
"semiquantal amplitude" is one evaluated by using the 
exact partial wave summation over /, but using classical 
or semiclassical phases to approximate the quantal 5j. 

2. Connection Between Semiclassical and 
Classical Treatments 

The connection between the semiclassical 2-state 
treatment and the classical results of Eqs. (16) to (19) 
will be established if we find out how the scattering 
parameters (especially the phases) change under a 
variation in the potential. In order to look into this, it 
is convenient to express the quantities of Eqs. (25) 
and (26) with the help of a reduced distance p related to 
the turning point R and of a reduced potential U: 

P = r/R, U(Rp)=V(r)/E. (29) 

The angular momentum L is related to R by 

L 2= 2 / z £ # 2 [ l - U(R)2. (30) 
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The functions whose variations we are interested in 
can be written as 

(2iiE)~1i^ = irR{\- U(R)Jl*-2R 

/

oo 

- [ l - f f ( W * - l ) < f p , (31) 

@ = 
dA 

dL 
-=*-2ll-U(R)l 1/2 

X 
/

oo 

P-HQ-tf(#p)]p2 

-ll-U(R)3}-ll2dp, (31a) 

A = A-W+ha (31b) 

(where ha is a constant), and 

(nE/2yi?r 

= (1uit/2)1'2(a2A/az2) 

= {2[ l - [7 ( i? ) ] - i ?C/ ' ( i ? )} - 1 

' { f / ' ( i? ) [ l - U(Rp)3-pU'(Sp)ll- U(R)-]}dP 

X 
{ [ l - * 7 ( i ? p ) ] p 2 - [ l - : / ( * ) ] } 3/2 

(31c) 

These are all functional of the potential and functions 
of R—and, by Eq. (30), so is L. 

Consider any functional F(U;R) depending on the 
parameter R and the function U(Rp). Under arbitrary 
small variations of R with the potential U unvaried 
the variation of F is (8F)u= (dF/dR)udR, while the 
variation of F under a small change dU(Rp) in U but 
with fixed R can be written (8F)R. The total variation 
in F is then, to first order, 

DF=(SF)R+(dF/dR)uZR. (32) 

This relation can be applied to all of the functional 
L, A, ©, T, and A. When applied to A and A, some 
simplification arises from the identity 

(dA/dR)u=®(dL/dR)u (M) 

so that 

DA+LD® = DA-@DL=(5A)R-®(5L)R. (34) 

Thus the variation of A at fixed © is identical with the 
variation of A at fixed L; evaluating the right-hand side 
of (33) by varying U in (30) and (31) we find 

(<L4)e=(5A)L = 

/>0O 

• (2nEy'2R 

PSU(Rp)dp 

{ [ l - f / M > 2 - [ ! - £ / ( # ) ] } 1/2 
(35) 

We can now specialize the potentials, writing 

U=i(Utt+Uu), 5U0 = UUg-Uu)=-8Uu. (36) 

U is then the average potential, and 28 Ug is the differ
ence potential. To first order in the potential difference, 
then 

( A , - A U ) L = (Ag-Au)@= - (2fxE)l^R 

p[Ug{Rp)-Uu{Rp)-]dp /•OO xi, { [ l - E / ( i ? P ) V - [ l - t / ( i ? ) ] } 1/2 
(37) 

This is exactly the result of the classical approximation 
employing the average potential to describe the nuclear 
motion, Eqs. (18). That result is thus correct to first 
order in the potential difference. The remaining error 
in the phase difference is second order in the dimension-
less function ZVg(r)—Vu(r)2/E, which usually attains 
its maximum value at r=0. In the case of H e + + H e , 
this suggests that phase differences computed by Eq. 
(37) should become reliable at energies above about 1 
keV. At lower energies we may expect deviations from 
Eq. (37), including deviations from its left-hand 
equality which is only true to first order. In the low-
energy limit, then, the phase difference of A's at fixed 
L7 which enters into the total cross section,14 may differ 
from the phase difference of A's at fixed 6, which 
controls the interference pattern in the differential 
cross section. 

Another important quantity that could be examined 
as an expansion in dU is the classical cross section a. 
The leading term is of zero order in 8U and determines 
the general trend, the upper envelope of the cross 
section curve. The nonzero lower envelope (the "damp
ing" of the oscillations) appears first with the first-order 
variation, that is, the term 

(5o-)0 = 7r(2/xE sind)-l5(L/Y)®. (38) 

We have not evaluated this, as it seemed better to 
compute (Tg and au directly. However, it is interesting 
to see how da enters into the upper and lower envelopes 
<r+ and cr_:' 

<r+Hi(*+8<01/2+K*-&0 1/2 2 = -5a-2/4(7-

|Ko-+^)1/2-|(^-^)1/2l2==^2/4o-" 

3. Nuclear Symmetry 

(38a) 

(38b) 

The expressions just given are appropriate for ion-
atom scattering in which the electrons find themselves 
in a symmetric potential but where nuclear symmetry is 
ignored. The theory in that form is applicable to scatter
ing of different isotopes of the same element. When 
identical atoms are involved an additional symmetry 
enters the problem. Because of the indistinguishability 
of the atoms, it is impossible to distinguish between 
direct scattering at 6 and charge-exchange scattering at 
7T—8; since these events are coherent, there is inter-
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ference between them. This interference appears in the 
wave function or the scattering amplitude. When the 
nuclei are bosons the total wave function must be 
even under a nuclear interchange; when they are 
fermions it must be odd. For 4He, this means that the 
gerade electronic state is associated with a nuclear 
function that is symmetric on reflection about 7r/2, 
and the ungerade state has an antisymmetric nuclear 
wave function. The symmetrization is then accom
plished by the substitutions4 

fo(fi)-+M0)+fg(ir-e), 
A(^/.(H«H). 

In place of Eq. (27), the scattering amplitudes for 
observing the ion, fAA, and the neutral, JAB, are 

fAA=KU0)+f9(e)~fu(7r-d)+fg(7r-dn, (40) 
fAB=Kfo(e)-fu(d)+fu(7r-d)+fg(Tr-d)-]. (40a) 

A simple alternative derivation can be given of the 
same result. Consider a plane wave ^A representing the 
collimated approach of A+ to A, where the nuclei are 
bosons. If \(/A is analyzed in partial waves and the 
nuclear symmetry is considered, all the partial waves 
with I even must be associated with the g electronic 
state, and the l-odd waves with the u state.18 The 
scattering amplitude is then 

fAA(E,e) = Fu(E,d)+Fg(E,d), (41) 
where 

Fu(E,0)=(l/2ik) £ (2 /+ l ) (e 2 * ' - - l )P , (cos^ ) , 
i odd (42) 

Fg(E,8)^(\/2ik) £ (2l+l)(e2i^g-l)Pl(cos8). 
I even 

To reduce these to the classical approximation we must 
convert the sum to an integral, allowing / to take 
continuous values. However, we must preserve sym
metry in doing so, which we can do by using the identity 

P*(cos0)= ( -yPz[cos(7r-60] 
= H ^ K c o s 0 ) + ( - ) i P £ c o s ( 7 r - 0 ) ] } . (43) 

We then can write 

FJE,0)= Y,hJl,6) 
l odd 

=aE[A»«,0)-M/, *•-«)] 
a l l I 

r— /»oo /»oo — I 

~ J / hu(ly8)dl~ hu(l,7r-e)dl\ 
LJo Jo J 

S j [ / « e l (») - /»« ' (*-<?)] , (44) 
18 Cf. T. Y. Wu and T. Ohmura, Quantum Theory of Scattering 

(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), pp. 
235-237. Also, J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, 
Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., 
New York, 1954), p. 74. 

and similarly 

F0(Efi)^[Jgoi(fi)+f^(ir-e)2. (44a) 

Substituting in (41) we get just the result of (40). 
Let us write the classical scattering amplitudes in 

(40) in the form 

BxiEfleW^MEft), 

B2(Eyd)e^E>V = ifg(E,d), 

Bz(E}d)e^>v=-±fu(7r-d), ( } 

BiiEfleWM^fgfr-e). 

The oscillating part of the cross section depends on the 
six difference frequencies &—-&, of which 3 are in
dependent ; let us take these to be 

e12OE,0) = i ( £ i - f t ) , 

€84(£,0) = !O38-04), (46) 

^1234(^) = | ( ^ l + f t - / 5 3 - ^ 4 ) = e i 2 + € 2 4 . 

With these, it is natural to express the complete cross 
section at small angles 6 as a sum of a direct scattering 
cross section ad(E,8), an exchange cross section <re(Efi), 
and an interference term Sde(Efi) : 

<rAA = <rd(E,6)+<re(Eft)+Sde(E,d), (47) 

ad(E,8) = B1
2+B2*+2B1B2 cos2ei2, 

ae(Et8) = Bz
2+B^+2B,B, cos2e34, (48) 

Sde= (Bi+B2)(Bz+B±)cosen cose34 cos?7i234 
+ (Bx+B2) (Bz—BA)cosen sine34 shtyi234 
— (B1—B2)(B^+Busmen cose34 sinr?i234 
+ (Bx—B2) (Bz—BA)$mei2 sine34 cos^i234. (49) 

Another way of writing the interference term is 

sde=2<T/i*(E,e)ae
1i*(E,T-e) 

Xcos(i/1234+fi2-f34), (49a) 

where 

(Bi+Bj) t an?#= (B—Bj) tan€# (49b) 

which shows how the amplitude of the oscillations of 
Sde is modulated both by the direct scattering at 8 and 
the exchange scattering at 7r—0. 

At small and moderate angles 8 we may expect the 
exchange cross section ae to be negligible by comparison 
with the direct cross section adj and the interference 
term Sde to be intermediate in magnitude. Furthermore, 
we may hope to find the magnitudes of the B's such 
that Sde is dominated by its first term. 

When 8 is close to 7r/2, the symmetry relations (45) 
suggest combining the terms in aAA in a different way, 
writing 

<Tu-l\fu(E,6)-fu{E,ir-e)\>, 

^=i\fe(E,e)+fe(E,ir-9)\\ { } 

together with an interference term Sus(E,d). The 
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oscillations are then best described in terms of the 
phases €13, €24 and 771234= €12+634, and an equation such 
as (49) can be rewritten to give Sug by permuting the 
indices in the manner (1234)—» (1324). Close to x/2, 
<T0 dominates and <xu —» 0. 

A feature of the experimental data that is readily 
examined is the movement of the interference maxima 
and minima with energy and angle. To predict this 
movement, let us consider combinations of the phases 
At- in a general form, using A* as defined in Eq. (26b), 

*=2>*4<[£, £<(*)], (51) 
of which Eq. (46) gives some specific examples. We may 
then examine the loci of constant <j> in the {Efi) plane. 
The slopes of these loci are given by (dE/dd)^ to get 
which we use 

(d4>/dE)$=T,i ai(dAi/dE)Liie), (52) 

(d<t>/d6)E= ~Hi dibiLiid), (52a) 

and 

(dE/dd)*= - {d<t>/dd)E/(d<j>/dE)e, (52b) 

where b{ is defined by 

Kd=(dAi/dL), b4=±l. (52c) 

When 0= 6i2 or 771234, a knowledge of the loci of constant 
<j> combined with Eqs. (47) to (49) will provide informa
tion on the movement of the maxima and minima in 
question. 

D. Coupling of States 

We have employed an exclusively 2-state formulation 
in these calculations, and furthermore we have assumed 
that the symmetry of the potential excludes any mixing 
of the g and u states. The symmetry of the potential 
does indeed provide a very strong separation of g and u 
states, as long as the nuclei are identical; when the 
nuclei differ in mass, some coupling between g and u 
arises from terms in the kinetic energy describing the 
fact that the center of mass is no longer at the center 
of charge. At low nuclear velocities this coupling will 
be small. 

More serious, and more common, are couplings with 
excited states of the same symmetry. These introduce 
coupling terms in the Schrodinger equation for the 
nuclear motion. Instead of simple phase shifts, the 
solution is then described19 by a scattering matrix S 
that separates into two parts, Su and S .̂ The coupling 
terms responsible for the transitions between states are 
electronic matrix elements depending on the inter-
nuclear distance R, and they can represent various 
types of interaction. Besides a simple classification 
based on the magnitude of the interaction, we can 
classify them as to their dependence on the nuclear 

19 D. R. Bates, H. S. W. Massey and A. L. Stewart, Proc. 
Roy. Soc, (London) A216, 437 (1953). 

motion. Many of the electronic states interact with each 
other to a greater or lesser extent even if the nuclei are 
considered fixed. In addition, a coupling between the 
electronic and nuclear motion may permit a transition 
that would otherwise be forbidden, or may change the 
magnitude of a weak interaction. Such cases usually 
involve a coupling between the nuclear and electronic 
angular momenta that breaks a symmetry of the 
electronic state in a fixed nuclear frame.20 

Coupling between states is most important where 
they approach in energy—or where they cross in some 
primitive approximation. The effect of the interaction 
in collisions often depends largely on the Landau-Zener 
parameter 

w (R) = 2TH^1 (R) I {to J — 1 

XLHi^(R)-Hj-HR)l\ , (53) 

where the electronic matrix elements Hi/1 are con
structed by analogy with Eq. (3), and VR is an average 
nuclear radial velocity near the crossing point Rx. If 
the nuclei are moving fast and w (R) is small and close 
to the constant w = w(Rx), the Landau-Zener result is 
obtained. In that case the probability of transition is 
large when the nuclear velocity near Rx is small, i.e., 
when the initial nuclear kinetic energy E is close to the 
energy Ex+L2/2/j,Rx

2 of the crossing point. The simple 
Landau-Zener formula is then inapplicable, and we no 
longer have even a single nuclear velocity VR) for
tunately other treatments suitable for these conditions 
are now being investigated.21 Qualitatively it is clear 
that for each transition i <-> j there will be a character
istic range for the quantity 

e^E-E^-LWplRs.is)*, (54) 

in which transitions will have a high probability; this 
range will depend among other things on the magnitude 
of Hlj

el(Rx). By setting e=0 in Eq. (54) we get a relation 
between E and L such that the classical turning point 
coincides with the crossing point Rx; the domain of 
high transition probability lies in a band about this 
locus in the (E,L) plane. Since each (E,L) pair is 
associated primarily with an angle <d3(E,L) in the 
incoming state, the effect of the inelastic transition is 
to remove some of the elastic flux from the angle 
6=\®i(E,L)\ and deposit it at a different energy, 
E'^E-Ef+E/*, and some new angle ©<,(£,!,). 

20 W. R. Thorson, J. Chem. Phys. 39, 1431 (1963); W. R. 
Thorson, in Atomic Collision Processes, edited by M. C. R. 
McDowell (North-Holland Publishing Company, Amsterdam, 
1964) p. 964; and W. R. Thorson and A. D. Bandrank, J. Chem. 
Phys. 41, 2503 (1964). 

21 Sec, for instance, V. K. Bykhovsky, E. E. Nikitin, and 
M. Ya. Ovchinnikova, Zh. Eksperim. i Teor. Fiz. 47, 750 (1964) 
[English transl.: Soviet Phys—JETP 20, 500 (1965)] as an 
example of much recent Russian work. Bates and the Belfast 
group are also active in this problem [e.g., Ref. 8] . 
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Curve crossings may be expected to have a further 
effect on the purely elastic scattering because the 
interaction may even alter the elastic phase Ai(E,L) 
when e is small. This should happen especially when the 
crossing is of such a nature that the transition is to a 
bound state in an attractive well—a second crossing 
will leave the system back in the initial state on an 
outgoing course, but with a phase strikingly different 
from the phase associated with simple elastic scattering 
from the pure incoming potential. As a result we must 
expect some of the elastic flux to be shifted from its 
unperturbed position | ®i(E,L) |, but to appear elastic-
ally at other angles where it will interfere coherently 
with the simple scattering. 

In the case of interest here, the collision of ground 
state He and He+, the prominent curve crossings with 
interaction involve g potentials only. Their effect on 
the final scattering appears therefore through fg(d). 
We have not attempted to calculate those effects here, 
but it is clear that they will make an important contri
bution to the damping of the oscillations as observed, 
just as they do in the case of H++H.8 

The major qualitative difference between the cases of 
He2

+ and H2
+ is that the helium ion shows curve 

crossings at finite (and even large) internuclear dis
tances, while the hydrogen ion possesses no such 
crossings. Instead, in H2

+ certain of the curves approach 
each other tangentially as R —> 0, the electronic energies 
of two different states each approaching the same 
united atom limited as R2. The helium system also 
possesses tangential pseudocrossings of this type as 
j£—>0, since two or more curves may approach the 
same united atom level of Be+, and the approach will 
generally occur quadratically as R. As Bates and 
others have pointed out, these tangential pseudocross
ings are particularly efficacious in generating inelastic 
transitions because the interaction is strong over an 
extended region in R. Since they occur at small R, 
transitions of this kind are associated mainly with 
small L and large angles of scattering, at least at low 
energies. 

Unlike H2
+ then, He2

+ possesses two types of pseudo-
crossings : linear ones at large R, and quadratic ones at 
R=0. The latter type, which does exist in H2

+, is 
likely to be especially important in He2

+ as well. Both 
deserve to be studied. 

III. CALCULATIONS 

A. Potentials 

The interaction potentials used in our calculations 
are illustrated in Fig. 1(a). The attractive (ungerade) 
potential was obtained from the work of Reagen, 
Browne and Matsen,11 whose calculations cover the 
region from 0.8 to 5.0 A. At R— <*> this curve dissociates 
to He(U)2 and He+(ls). At R=0 it is related to Be+ in 
a (ls)22p configuration. Following the example of 
Lichten,7 the repulsive or gerade potential was obtained 

He - He 
POTENTIALS' 

_J I I I L_ 
0.4 0.8 1.2 1.6 2.0 2.4 

(a) 

-100 

-200 h-

-300 

-400 

F e i 

fco 

0.4 0.8 

(b) 

FIG. 1. (a) Theoretical gerade and ungerade potentials, (b) 
Gerade and ungerade electronic energies used in this paper. 

from the calculations of Phillipson12 by use of Koop-
man's rule. These calculations cover the region from 
0.5 to 2.0 A. Phillipson's tables give the electronic 
energy which is related to the potential by Eq. (4). 
The value -130.58 eV was used for E^K For R=0 
this potential is related to Be+(ls) (2p)2. Justification of 
the states to be used in the description of He+ on He 
scattering has been given by Lichten.7 Since the 
potentials were required for values of R down to 0.1^4, 
the theoretical curves were extended to small values of 
R by assigning them a screened Coulomb form with 
arbitrary parameters. For large R they were allowed 
to decay exponentially. 

Since derivatives of the potentials were also required, 
it was convenient to represent the potentials with 
analytical functions rather than use numerical values. 
The ungerade functions were fit to the data of Reagen, 
Browne, and Matsen11 and extended inward by a 
screened Coulomb function adjusted to yield the 
correct electronic energy at R=0. The gerade potential 
was obtained from the ungerade potential by making 
use of the difference function obtained by Everhart.2 

The following expressions fit the ungerade potential to 1 
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or 2% and the gerade potential to about 5%. 

Fw=57.587{exp(-4.3322J?)/i?-0.02156 

Xexp(1.0508i?)}, i?<0.794 

Fw=2.300{exp[4.62116(l~-i?/1.091)] 
- 2 exp[2.3106(l- i?/1.091)]}, 0.794<J?< 1.091 

Fw=2.300{exp[4.700(l-i?/1.091)] 
- 2 [ 0 . 6 exp(2.25[ l - i? /1 .091)]+0.4 

Xexp(2 .500 [ l . - ^ /1 .091 ] ]} , 1.09KR 

V°= Vu+130.00 exp[-2 .3696i?] . 

Distances are in angstroms and energies in eV. Difficul
ties were encountered at junction points of these 
functions. Since the integrals involved in the calcula
tions have singularities at R0, any slight irregularities in 
the potential caused distortions in @4- when R0 was near 
a junction point. These distortions were especially 
noticeable in the cross section curves near minima, since 
the minima are essentially small differences between 
large numbers. This difficulty was minimized by the 
use of smoothing routines in the offending regions. 

The long range behavior of the potentials used in 
these calculations is not correct; however, for the 
range of energies and angles considered, it is irrelevant. 
The repulsive curve used in this work becomes negative 
around 4.5 A. While it is known that it must eventually 
become negative, i.e., attractive, it is not known where. 

For H 2
+ the repulsive curve becomes attractive 

beyond 25 A.22 Since helium is less polarizable than 
hydrogen, the repulsive curve can only become attrac
tive for R> 25 A. The potentials used here also do not 
behave as R~4 at large R. Examination of the H 2

+ 

potentials and comparison of the work of Moiseiwitsch23 

and Dalgarno and Kingston24 indicates that beyond 5 A 
the polarization energy makes a significant contribution 
to the interaction potential. Undoubtedly at large R, 
the potentials used here are diminishing too rapidly. 
However, since we are dealing with relatively large 
incident energies (15 eV or greater) the long-range 
forces essentially contribute only to very small scatter
ing angles (less than 1°) and thus need not be con
sidered. In fact, terminating the potential beyond 5.2 A 
changed the phase shifts by less than one part in a 
thousand. On the other hand, changes in the g potential 
in the region between 2.0 and 5.0 A had a considerable 
effect on the cross sections even though the turning 
point fell in the unaltered region, R<2.0 A. 

The short-range behavior (<0.5 A) of the potentials 
used is also suspect. Figure 1 (b) shows that the poten
tials do yield the correct electronic energy at R—0] 
however, the behavior of Eel between R=0 and 0.5 A 

22 A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London) 
A67, $7 (1956). 

23 B. L. Moiseiwitsch, Proc. Phys. Soc. (London) A69, 653 
(1956). 

24 A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London) 
73, 455 (1959). 

is unknown and thus the potentials in this region are 
somewhat arbitrary. Since the high-energy (300-eV) 
experiments and the secondary oscillations are governed 
by this region, it is important that the interaction 
energies be computed to smaller values of R. 

B. Calculational Procedures 

All calculations were performed on an IBM 7090. 
In general, integrals were evaluated by means of 
Gauss-Mehler25 quadratures. The machine programs 
were checked by the use of a Coulomb potential and by 
comparison with tabulated values of the 6-12 potential26 

Values obtained by Gauss-Mehler quadratures were 
also verified by evaluating the integrals by Weddle's 
Rule.27 

The quantities necessary for the calculation of the 
classical scattering amplitudes whose interference 
gives the differentia] cross section in the semiclassical 
approximation are the phases, A*, the deflection func
tions, ©t, and the derivative of 0* with respect to Z, 
I \ . The phase is given by Eq. (25a). The other quantities 
are given by 

dA 
@ = — = n -

dL 

d2A 

r = — = A 

•1L 
dR 

R 

Ro £
2 { 2 M [ £ - V(R)-]-U/R*Ji* 

V'(R)R E- •V(R)-\ 
- \dR 

LV'(Ro)Ro E-V(RQ)J 

RQ •E-V(R) 

.E- V(R0) 

(55) 

(56) 

•R2 

where the prime denotes differentiation with respect 
to R and 

1 2R0W(R0) 
A = . (56a) 

LLWo2-RoV'(Ro) 

The calculational program used was the following. 
A, 0 , and V were evaluated for various values of L at 
each energy E. An adequate variation in L was used so 
that the desired range in © was covered. Sufficient 
values were computed to permit accurate interpolation 
of L, A, and T at successive values of ©. The cross 
sections were then evaluated by means of Eqs. (26), 
(21), and (40). 

To test the validity of the semiclassical approximation 
a program was developed to calculate the cross sections 
by the semiquantal summation procedure. Converting 
the classical phase, A(Z), into a quantum phase shift 
51 by means of Eq. (24) we obtain an expression for di 
which is a valid approximation in this case since the 
reduced energy (E/e) is greater than 5 and the quantum 

25 F. J. Smith, Physica 30, 497 (1964); Z. Kopal, Numerical 
Analysis (John Wiley & Sons, Inc., New York, 1961). 

26 R. B. Bernstein, J. Chem. Phys., 33, 795 (1960). 
27 J. B. Scarborough, Numerical Mathematical Analysis (Johns 

Hopkins Press, Baltimore, 1955), 3rd ed. 
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parameter A+ is less than 0.2.28 For small and moderate 
/ values the phase shifts were evaluated by Weddle's 
Rule. For large I (more precisely, large R0) the expres
sion for the phase shift reduces to 

and to an excellent approximation 

Since the potentials were written in an exponential 
form, the phase shifts are given by 

H-c r Re~yR 

8t=— / dR, (58) 

mJRolR"-Ro2J12 

where c and 7 are potential parameters. This integral 
may be evaluated to yield29 

d^QjL-c/WQ-Ro-KiiyRo), (59) 

where Kx is the first order modified Bessel function of 
the second kind. For large values of JRQ, which is the 
case here, K\ may be expanded as a rapidly converging 
series.30 For £ = 1 5 eV and the He++He system the 
above equation was valid for />325 (criterion: the 
difference between the semiclassical phase shift and 
Eq. (59) is less than 0.005 rad). 500 phase shifts were 
found to be sufficient for the cross section to be accurate 
to at least 3 significant figures. The cross sections were 
evaluated by means of Eqs. (23), (21), and (40). 

Calculations were also performed in the vicinity of 
the rainbow angle using a modified semiclassical approx
imation. In this region ®U(L) may be expanded as a 
quadratic about the classical rainbow angle, Bg

cl. The 
resulting expressions contain Airy integrals for which 
extensive tables31 are available. A lucid discussion and 
the relevant equations for this procedure have been 
given by Ford and Wheeler.17 On the dark (large angle) 
side of the rainbow angle this approximation blends in 
smoothly with the usual semiclassical approximation. 
On the bright side, however, it does not, since a 
quadratic expansion of the deflection function is a 
poor representation for &u at large L (small angles). 
The rainbow-angle cross sections were computed 
ignoring the effect of nuclear symmetry; Fig. 4 shows 
that this effect is negligible at small angles. 

The reliability of the semiclassical calculation is 
shown at 15 eV by its comparison with the quantal 

28 R. J. Munn, E. A. Mason, and F. J. Smith, Institute of 
Molecular Physics, University of Maryland. IMP-NASA-38, 
1964 (unpublished). 

29 Tables of Integral Transforms, Bateman Manuscript Project 
(McGraw-Hill Book Company, Inc., New York, 1954), Vol. I, 
p. 136. 

30 E. T. Whittaker and G. N. Watson, Modern Analysis (The 
Macmillian Company, New York, 1947), p. 374. 

31 J. C. P. Miller, The Airy Integral (Cambridge University 
Press, London, 1946), Mathematics Tables, Part B. 

0 12 2 4 - 3 6 48 60 
e—degrees 

FIG. 2. Comparison of differential cross sections (center-of-mass 
coordinate system) at 15 eV. The insert compares the two theoret
ical methods of calculation in the vicinity of the rainbow angle. 
The quantal curve was obtained by means of Eq. (23). 

one in Fig. 2. Outside the rainbow angle the two methods 
give practically identical results. On the low angle side 
of the rainbow region deviations appear; they are due to 
known deficiencies of the rainbow approximation. This 
discrepancy is not of great significance in the comparison 
of theory with experiment because the oscillations 
appear only at much finer angular resolution than the 
experiments allow. For these reasons, we used only the 
semiclassical method at higher energies, where it should 
be still more reliable. 

IV. RESULTS AND DISCUSSION 

A. Elastic Effects 

Figures 2, 3, and 4 show our calculated differential 
scattering cross sections at 15, 50, and 300 eV and the 
corresponding experimental results. We have used 
center mass energies and angles throughout, which 
means that our energies are half the laboratory energies 
and angles twice the laboratory angles. 

Two features of our calculations provide qualitatively 
new explanations for phenomena seen in the experi
mental data. First, the correct treatment of the inter
ference between gerade and ungerade scattering (as also 
observed by F. J. Smith10) gives a second mechanism 
for the "damping" of the interference oscillations which 
may, at low energies, be more important than the effect 
of inelastic processes. Second, the additional interference 
due to nuclear symmetry explains the subsidiary 
structure seen on the main interference peaks in the 
experiments at large angles, expecially at energies above 
100 eV. 

The effect of nuclear symmetry is shown in the curve 
at 300 eV, Fig. 4, where the full theoretical curve is 
compared with the contributions from direct scattering 
and pure charge exchange scattering. Out to about 25° 
the full curve coincides well with the pure direct 
scattering contribution. The pure exchange contribution 
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FIG. 3. Theoretical and experimental differential cross sections 
versus scattering angle at 50 eV. 

is insignificant out to at least 40°, but the interference 
between the two has an intermediate magnitude and 
becomes important in the region from 25° out. An 
analysis of the phases following Eqs. (46) to (49) shows 
that this susidiary structure oscillates about 3 times 
faster than the main peaks near 25° and about 6-7 
times faster near 50°. This behavior is shown in Fig. 4, 
and just these periods can be seen in the fine structure 
of the experimental curve. Similar structure can be 
identified with varying degrees of resolution in all the 
experimental curves except those at the lowest energies 
(10 and 15 eV),1 where the resolution is insufficient. 

We believe that the identification of the experimental 
fine structure as an effect of nuclear symmetry is firmly 
grounded in the identity of the theoretical and experi
mental periodicities. Further tests can be made to 
confirm this conclusion. First, we can predict the 
direction and rate of movement of the peaks with 
energy. Second, this interference effect should not 
appear in the unsymmetric scattering events 4 He + + 3 He 
and 3He++4He. 

The movement of the subsidiary peaks with energy 
can be examined experimentally with the aid of a plot 
of the loci of the maxima and minima in the (Efi) 
plane, as employed by Everhart.20 Such a diagram is 
given for the main peaks by Lorents and Aberth,1 and 
a similar one could be constructed for the subsidiary 
peaks. A theoretical prediction of the movement of 
these features can be made by using Eqs. (52) combined 
with (47) to (49); note that the first term in Eq. (49) 
suggests that maxima tend to turn into minima when 
the sign of cosei2 changes. A preliminary estimate 
suggests that at energies near 300 eV and in the angular 
region 20 to 60° the secondary peaks will move in the 
opposite direction to the main peaks and up to 5 times 
faster. In order to follow this motion and identify the 
peaks properly, experiments may be needed at energies 
considerably closer than the 50-eV intervals thus far 
measured. 

In a quantitative comparison between theory and 

experiment, the sources of disagreement are of three 
main types. First, the experimental limitations on 
resolution and sensitivity discussed in Ref. 1, especially: 
(a) the geometric limitation on angular resolution (slit 
sizes, shapes and locations), (b) the effect of the thermal 
motion of the target atoms on angular resolution, and 
(c) the background noise limit on sensitivity. Second, 
the intrinsic limitations of a 2-state theory, which 
does not take into account inelastic collisions or the 
effect of other molecular states on the elastic collision. 
Third, inaccuracy of the potential functions used in 
our 2-state calculations. These factors of disagreement 
work in varying ways on the different features of the 
curves that are available for the comparison of theory 
and experiment. 

The principal features of the curves that can be 
examined are (1) the principal maxima and minima, 
especially (a) their periodicity, (b) their movement 
with energy, and (c) their precise location; (2) the 
subsidiary extrema, in the same ways; (3) the rainbow 
scattering region, (a) its location and (b) its general 
behavior; and (4) the absolute magnitude of the cross 
section curve, with regard to which we may consider 
several degrees of resolution, (a) the upper envelope, 
(b) the lower envelope of the principal peaks, (c) the 
amplitudes of the secondary peaks, and (d) the curve 
in complete detail. We see immediately from the figures 
that the principal peaks are well explained in their 
periodicity and their movement with energy, but their 
location is less precisely given, especially at low energy 
and at the largest angles. The periodicity of the sub
sidiary peaks seems will accounted for, but their 
movement has not yet been explored experimentally, 
and their exact locations cannot be predicted as yet 
because they depend sensitively on the potential in 
the small R region where it is not really known. The 
rainbow angle is in complete agreement with prediction, 

12 24 36 
8—degrees 

FIG. 4. Comparison of differential cross sections at 300 eV. 
The dashed curve is VAA of Eq. (21) and the dotted curve is <?AB 
of Eq. (21) but evaluated at 7r—0. The solid curve is the sum of 
(JAA(0) and <TAB(Tr—d) plus cross terms [see Eq. (40)JJj 
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confirming the ungerade potential near its minimum; 
the detailed rainbow behavior is masked by lack of 
angular resolution, but its average behavior is satis
factory, as shown by Fig. (4) of Ref. (1) where the 
experimental angular distribution is taken into account. 
The magnitudes of the cross section curves show quite 
satisfactory agreement, the upper envelopes matching 
well within experimental error except in the high energy 
large angle region. Although this discrepancy in 
magnitude may be due in part to inaccuracies in the 
potential, we believe it is most likely due to losses into 
inelastic channels. The calculated lower envelope lies 
consistently below the experimental one, an expected 
result of limited angular resolution and background 
noise. Similarities exist between the experimental and 
theoretical secondary oscillations. Precise agreement, 
however, is difficult due to the sensitivity of the 
secondary oscillations to the potential functions. It 
should be noted that the apparent discrepancy between 
the experimental and theoretical magnitudes of the 
secondary oscillation around 50° in Fig. (4) results in 
part from the use of a logarithmic scale. In addition, 
as Eq. (49a) shows, the amplitude of the secondary 
oscillation is modulated by the factor o-e

1/2(7r—0), and 
the precise locations of the maxima and minima of this 
function are sensitive to modifications of the potentials 
at small r\ we have observed striking changes in the 
amplitude of the secondary oscillations over a restricted 
range of 6 in calculations with altered potentials. The 
principal uncertainties thus affect the amplitudes and 
precise locations of the secondary peaks, but not their 
periodicity, and the agreement between experiment and 
theory as to this periodicity is gratifying. 

It has been our aim here to show how well the existing 
potentials explain the experimental results. However, 
the data are of such quality that they can also be used 
to improve our knowledge of the potentials, and we 
intend to pursue this inverse problem later. This seems 
especially worth while because the 3-electron diatomic 
system He2

+ is an ideal test case for comparing theory 
and experiment. We hope that the experiments and our 
calculations will prompt further work on the electronic 
states of this system. Better estimates of the potentials 
are needed, especially for R<0.& A for the u curve and 
for #<0 .5A as well as 2 .0A<£<5.0A for the g. 
An examination of the classical turning points shows 
that the experiments at large angles probe into regions 
of small R where the potentials are ill known; this is 
especially important in that the integrals involved in 
computing f(6) weight the region of the classical 
turning point strongly. Conversely, this makes it 
possible to see what region of the potential should be 
adjusted in order to fit the data better. Born32 has called 
attention to the importance of including in the effective 
potential of Eq. (4) a term that arises from the opera-

32 M. Born, Nachr. Akad. Wiss. Goettingen, I I Math.-Physik. 
Kl. 1 (1951); M. Born and K. Huang, Dynamical Theory of Crystal 
Lattices (Clarendon Press, Oxford, 1954). 

tion of the nuclear kinetic-energy operator on the inter-
nuclear coordinates in the electronic part of the wave 
function: 

G a ,^(R)= /"^,^*(R,r)r»^.-aI(R,r)d»r. (60) 

This term was actually mentioned much earlier by 
Massey and Smith,4 but not evaluated at that time. 
A calculation of Dalgarno and McCarroll33 shows that 
this contribution may be significant in the interactions 
of H2 and H2+ at small internuclear distances. It does 
not seem to have been investigated yet in the case of 
He2+, and it is not impossible that its omission is partly 
responsible for the divergence between the experimental 
and theoretical upper envelopes at large energies and 
angles. 

In connection with the inverse problem, it is worth 
noting that the sum of the upper and lower envelopes 
of the cross section curve depends mainly on the average 
potential, by Eqs. (38a and b): 

o-(E,o-)^o-++cr_. 

The lower envelope 

<7_^(Sa2/4c7) 

gives us a function da that depends on the difference 
potential as well as the average. The difference potential 
appears also in the phase difference 8A (E,6) = (A g—A u)e 
which is responsible for the location of the maxima and 
minima of the inteference pattern. Since dA (E,d) is 
given very well experimentally, the difference potential 
can be deduced by inverting Eq. (37). A computation 
of the lower envelope o-_ can then be used as a check on 
the potentials deduced in this way. 

B. Inelastic Effects 

Inelastic collisions probably do not affect the elastic-
cross-section curves much at these energies except in 
the high-energy-angle region. The ungerade state in 
particular can hardly participate at all in inelastic 
events at moderate energies and angles since no other 
states of the same symmetry approach it—a similar 
case is seen in the collision H++He, where the ground 
state collision involves an isolated curve and the 
inelastic charge exchange process exceeds 5% of the 
total only at energies above 5 keV where nuclear and 
electronic velocities begin to be comparable.34 Inelastic 
processes can occur more easily in the gerade state, 
where there are many curve crossings, but each inelastic 
transition probably is confined to a rather narrow band 
in (E,L) space, in which case its chief effect on the 
elastic cross section is to make f0 {Efi) somewhat smaller 
in a certain range of 6. Without inelastic transitions we 
have \fg(E,6)\>\fu(E,6)\ for all 6 larger than the 

33 A. Dalgarno and R. McCarroll, Proc. Roy. Soc. (London) 
A237, 383 (1956). 

34 H. F. Helbig and E. Everhart, Phys. Rev. 136, A674 (1964). 
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rainbow angle at the energies we have investigated. 
Since the envelopes are the upper and lower limits of 
the inequality 

ll/«IHMI<l/«+M<l/.l + IM, 
a decrease in \fg\ will lower the maxima, but it will 
lower the minima still more. This shows strikingly that 
the first effect of inelastic transitions among g states is 
to decrease the damping of the oscillations predicted in 
Figs. 2-4. Only if inelastic effects become so pronounced 
as to make | fg \ < | fu | will they begin to dominate over 
the 2-state interference effect in the samping—the 
smaller | fg \ — \ fu | in the 2-state theory, the sooner 
this will occur. 

Inelastic effects can never contribute to the inter
ferences seen in the elastic cross section except by 
reducing the magnitude of some /*(0). However, a 
related elastic effect may also arise from the curve 
crossings that produce the low energy inelastic transi
tions: In the neighborhood of a curve crossing the 
phase of the elastic partial waves may be altered by the 
interaction, producing an anomalous contribution to 
f(6). If, as is likely, this spreads its effect widely in 0, 
its magnitude will be smaller everywhere and it will 
only be noticeable (if at all) by its diminution of the 
unperturbed /»(0) near the crossing angle. However, 
a strong interaction of 2 or more electronic states may 
result in a shift of the phase of one of the elastic f/s 
which will then show itself in the elastic interference 
pattern. Such an effect was detected by Bates and 
Williams8 in the case of H + + H at relatively high 
energies due to the tangential pseudocrossing of 2 
states at small R. In H e + + H e such effects are probably 
confined to still higher energies, because of the greater 
coulomb repulsion. 

A quantitative discussion of inelastic scattering and 
of the elastic effect of curve crossings and approaches 
can only be carried out in the framework of a general 
theory of curve crossing. Fortunately, that theory is 
under gong rapid development now.21 I ts application to 
this problem, including the inelastic cross sections now 
being observed by Lorents and Aberth,1 must be left 
to later work. 

C. Conclusions 

A 2-state theory, using the diabatic potential curves 
advocated by Lichten,7 appears adequate to describe 
quantitatively all the major features seen experimen
tally in the elastic scattering of He + on He in the energy 
range up to 300 eV, including the nonzero minima of the 

interference pattern and the secondary oscillations. 
These secondary oscillations are probably due to 
nuclear symmetry, and an experiment has been proposed. 
to confirm this by scattering 4He+ on 3He.35 In the region 
in which they have been carefully computed, the u 
potential of Reagan, Browne and Matsen11 and the g 
potential of Phillipson12 and Lichten7 are satisfactory, 
but the experiments at large angle and energy probe to 
regions of small R, and the experiments at low energy 
depend on regions of large R, where the potentials 
have not been adequately computed as yet. We 
advocate extension of the potential calculations into 
those regions. 

The system studied here, H e + + H e , is one of a 
relatively small number of diatomic combinations that 
can be thoroughly studied at present both experi
mentally and theoretically. The agreement between 
theory and experiment in the elastic scattering is a 
gratifying test of the adequacy of our theoretical 
understanding and of the approximations used in the 
computations. I t is even more important to extend this 
test to the inelastic collisions that are a greater theore
tical challenge. An extension of the elastic calculations 
into the regions where the potentials are presently 
defective is an essential prelude to a thorough study of 
the inelastic scattering. 

The symmetry of the Coulomb field in He2
+ allows 

strict separation of the wave functions into two parts, 
one g and one u. A 2-state theory of this collision is 
really just a superposition of two 1-state solutions, and 
in that sense the theory we have been using is a very 
restricted 2-state theory. The real problems of a 2-state 
theory come in when it deals with states that do interact 
with each other, as they must in any theory of inelastic 
processes. Such interactions can influence even the 
elastic scattering (by the interactions of two or more g 
states, for example). The possibility of detecting such 
a perturbation in the elastic scattering is one of the 
reasons for pursuing further the theoretical and exper
imental study of the elastic collisions as well as the 
inelastic ones. 
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