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A simple procedure applicable to a digital computer is given for calculating matrix elements of F- and 
G-type operators between configurations that involve several partially filled I or j shells. The new procedure 
uses "partially coupled" basis functions, instead of traditional "uncoupled" (determinantal) or "coupled" 
basis functions, and may provide a simpler method for calculating configuration mixing in highly excited 
states of very complex atoms or for calculating nuclear shell-model energies. 

I. INTRODUCTION 

FOR a first approximation, one can obtain spectro
scopic properties of complex atoms,1 such as iron, 

from Z,,S-genealogy scheme2 wave functions (i.e., eigen-
functions labeled by LSJMj and genealogy or parent
age). However, the observed energy structures of com
plex atoms do not follow such simple predictions exactly. 
Furthermore, many bright spectral lines originate in 
transitions which are forbidden in this approximation 
(two-electron jumps and intersystem lines). Thus a 
useful spectroscopic description of complex atoms must 
allow mixing of terms and mixing of configurations. 

This mixing can be quite complicated. For example, 
in neutral iron one should consider (i) mixing terms 
with different parentage, such as 3dQ4:s(aAD)4:p and 
3d&4:s(ae'D)4:p; (ii) mixing nearly degenerate configura
tions such as 3d&4:S2, 3d74:S, and 3d8; (iii) mixing con
figurations within a complex,3 such as 3s23pQ3dHs2, 
3s23p43d84s2

J 3s23p53dHs4:p, etc.; (iv) mixing singlets 
and triplets, etc. 

The mixing of terms and configurations can be deter
mined once one knows the relevant off-diagonal matrix 
elements of Coulomb- and magnetic-interaction opera
tors, or, more generally, F- and G-type operators,2 

F^J^i ft, G= J2 i lLj<i gH ' 

Such matrix elements can be expressed in the form 
YL rkR

k in terms of radial integrals Rk and coefficients 
rk that depend only on spin and angle variables. In 
treating very complex atoms, one desires matrix elements 
between wave functions that have several partially 
filled / shells. Although the calculation of such matrix 
elements presents no fundamental difficulty in principle, 
the actual computations using traditional methods may 
be so cumbersome that they are not feasible. 

* This research has been sponsored in part by the U. S. Air 
Force Cambridge Research Laboratories, Office of Aerospace 
Research, under Contracts AF19(604)-4962 and AF19(628)-3322. 

1 By complex atom, I mean an atom whose excited configura
tions involve several partially filled / shells. 

2 E. U. Condon and G. H. Shortley, The Theory of Atomic Struc
ture (TAS) (Cambridge University Press, New York, 1935). 

3 Configurations with the same set of principal quantum 
numbers {n (i)} and same parity make up a complex [T>. Layzer, 
Ann. Phys. (N. Y.) 8, 271 (1959)]. 

II. TRADITIONAL APPROACHES 

Traditional calculations of F- and G-type matrix 
elements fall into two broad classes, according to the 
nature of the basis functions used. In the older approach, 
widely used for simple atoms, one expresses the L5-gene-
alogy function (or any other approximate wave func
tion) as a linear combination of uncoupled or m-scheme 
basis functions [so called because each such TV-electron 
function is labeled by the quantum numbers {mi(i)ms(i)} 
in addition to the configuration labels {n(i)l(i)}Ji. Fre
quently one uses antisymmetrized m-scheme functions, 
commonly called determinantal wave functions (dwf's). 
Various techniques are available for finding the expan
sion coefficients for L5-genealogy functions (or other 
angular-momentum functions) in terms of the dwf basis 
(Sec. I l l , below). Given these coefficients, one only 
needs to calculate matrix elements between dwf's, using 
well-known formulas.2 

Determinantal basis functions are well suited to 
machine computation, since all calculations can be 
reduced to repetitions of simple operations. The dwf's 
are particularly suited to atoms possessing only closed 
I shells or a single valence orbital. The basic practical 
disadvantage of the dwf basis, apart from possible 
awkwardness in finding expansion coefficients, arises 
from the large catalog of basis functions required for 
describing atoms with many open I shells. For example,4 

the complex with nine n = 3 orbitals (mixing 3s23pQ3d, 
3s3p63d2, etc.) requires as many as 436 dwfs. 

The conventional alternative to such uncoupled basis 
functions is a basis of coupled functions—eigenfunctions 
of various collective angular-momentum operators. The 
familiar j-j coupling functions and Z5-genealogy func
tions fall into this class. The usefulness of coupled basis 
functions is largely a result of papers by Racah,5 who 
showed how to express matrix elements of F- and G-type 
tensor operators between simple coupled functions in 
terms of Racah coefficients and coefficients of fractional 
parentage (cfp). Racah's approach has since been ex-

4 E. A. Godfredson, thesis, Harvard University, 1963 (un
published). 

5 G. Racah, (a) Phys. Rev. 62, 438 (1942); (b) 63, 367 (1943); 
(c) 76, 1352 (1949). 
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tended by numerous authors6 to include most of the 
commonly occurring matrix elements. In particular, 
Innes and Ufford7 have shown how to calculate matrix 
elements of very general F- and G-type operators be
tween configurations having an arbitrary number of 
open I shells. Their method involves sequential re-
couplings of groups of equivalent particles, to bring 
selected groups to the end of a chain.8 Any Coulomb- or 
magnetic-interaction matrix element can be obtained, 
by use of their prescription, as a sum over products of 
Racah coefficients and (up to four) cfp. 

Coupled basis functions are particularly suited to use 
in a semiempirical approach to atomic and nuclear 
structure, since a single such basis function often gives 
a reasonable approximation to the actual wave function 
of a complex atom. (That is, the quantum number labels 
used in the familiar compilations of energy levels are 
"approximately good" quantum numbers.) In some 
cases, it is possible to investigate analytically the effects 
of configuration mixing.9 The algorithm described by 
Innes and Ufford7 is somewhat awkward to program in 
full generality for a computer. The general form involves 
summation over various dummy angular momenta, a 
source of inaccuracy for numerical work. Using various 
identities,7 one can often simplify specific matrix ele
ments to expressions that involve no dummy indices. 
The major practical difficulty, apart from possible 
awkwardness in simplifying the prescription of Innes 
and Ufford,7 then arises from the variety of expressions 
for matrix elements, involving different numbers of 
Racah coefficients and cfp, which can occur as one in
vestigates a very complex atom. 

I t is possible to overcome partially these practical 
limitations of the traditional approaches by using a 
compromise "partially coupled" scheme of basis func
tions. In the next section, I shall review the notion of 
coupling schemes, to make clear the difference between 
the proposed scheme and traditional schemes. Later 
sections provide the necessary simple formulas for 
computing F- or G-type matrix elements. 

III. "FORMAL" COUPLING SCHEMES 

In conventional studies of complex ^-electron atoms, 
the basic building blocks are TV-electron product func
tions 4>N which are products of N single-electron 

6 Cf. A. Arima, H. Horie, and Y. Tanabe, Progr. Theoret. 
Phys. (Kyoto) 11,143 (1954) and texts by U. Fano and G. Racah, 
Irreducible Tensorial Sets (Academic Press Inc., New York, 
1959); B. R. Judd, Operator Techniques in Atomic Spectroscopy 
(McGraw-Hill Book Company Inc., New York, 1963); and A. 
de Shalit and I. Talmi, Nuclear Shell Theory (Academic Press 
Inc., New York, 1963). 

7 F. R. Innes and C. W. Ufford, Phys. Rev. I l l , 194 (1958). 
8 An equivalent method was presented by S. F. Boys in a series 

of papers in Proc. Roy. Soc. (London) A200, 542 (1950); A201,125 
(1950); A206, 489 (1951); A207, 181 (1951); A207, 197 (1951); 
A217, 235 (1953). 

9 K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 (1963). 

orbitals u: 

<f>N(ab' • -k\ 12- • -N) = u(a\ l)u(b\2)- • -u(k\N). (3.1) 

The label a stands for four quantum numbers: n(a), 1(a), 
m(a), and /x(a), while the number 1 denotes position 
and spin coordinates of the first electron: 

« ( a | l ) = r i -1P(a|f i )F I w(^i^i)xO*|Ji) . (3.2) 

The product function in Eq. (3.1) is an uncoupled or 
w-scheme function; it contains electron coordinates in 
the definite ordering 1, 2, • • •, N. A dwf is the linear 
combination of product functions that is antisymmetric 
with respect to interchange of any two-electron co
ordinates. Using the electron-permutation operator (Pp 

or the antisymmetrizing operator ($, we can write a 
determinantal basis function 

Sdwf 'V ' ^ ) - ( ^ ! ) - 1 / 2 E P ( - 1 ) ^ 0 ^ ' ' 'k\ 1- • -N) 

^a(f>N(a--k\l'-N). (33) 

(In the following, a tilde will denote a function that is 
antisymmetric in all coordinates; the symbol <£ will 
denote a basis function; when necessary, a subscript on 
$ will distinguish various coupling schemes.) 

The conventional "coupled" basis functions (possibly 
antisymmetrized) are eigenfunctions of various inter
mediate angular momenta, such as L and S or j \ and 72, 
as well as total angular momentum / ; eigenvalues of 
these operators provide the labels that distinguish 
different basis functions. For example, an antisymmetric 
j-j coupling basis function for N nonequivalent orbitals 
might be 

$nN(Jajb(Jab),jc(Jabc)>- ",jkJM) 

= ( M > y / ( - - - / M | l - - - A 0 . (3.4) 

These functions are linear combinations of product 
functions; the coefficients of the linear combination are 
independent of one's choice of radial functions P. 

I t will be convenient to speak of a formal coupling 
scheme as any prescription for selecting linear combina
tions of product functions that depends only on the 
properties of spherical harmonics and spin functions 
X(M|S). In this sense, the familiar LS-genealogy and 
j-j coupling wave functions, as well as the dwf's, are 
formal coupling schemes. The so-called "intermediate-
coupling" functions, as well as mixed-configuration 
functions, are not formal coupling schemes; although 
they are useful for theoretical analyses, they do not 
provide a practical set of basis functions, since in 
practice one must reduce such functions to some formal 
coupling scheme in order to evaluate matrix elements 
explicitly. 

The angular-momentum coupling operation is defined 
by the Clebsch-Gordan (CG) coefficient: 

$"(• -(J')JJM\V • •N-lN) = j:(J/M/Jm\JM) 
x ^ - i ( . . ,j>M'\ 1- • 'N-\)^(J7n\N) (3.5) 
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(sum on barred quantities). Here the Nth. particle, in 
the single-particle function 3?1, has been coupled to the 
remaining N— 1 particles. Sequential applications of 
Eq. (3.5) to a function of N nonequivalent orbitals will 
eventually give $N as a linear combination of simple 
product functions.10-11 Such a function is readily 
antisymmetrized. 

For wave functions that involve equivalent electrons, 
one conventionally uses functions for which successive 
groups of equivalent orbitals (I shells or subconfigura-
tions) are coupled together. One can uncouple successive 
orbitals from an antisymmetrized function of equivalent 
orbitals by supplementing the CG coefficient of Eq. (3.5) 
with a coefficient of fractional parentage (cfp)12: 

§N(jNaJM) = E (JMJm | JM) (j^aJlJ^aJ) 

X^-^-WM^iJmlN) (3.6) 

(sum over barred quantities). Here the last (Nth) 
electron has been uncoupled, leaving a function that is 
antisymmetric in N— 1 electrons. (The label a denotes 
additional quantum numbers, such as seniority, needed 
to specify the wave function completely.) 

Wave functions that are coupled according to the 
prescription (3.5)-(3.6) may be recoupled5a in a different 
ordering, by use of a Racah coefficient: 

H-'<J')jaj>Jal>(J"),--) 
=Z(2JaJ>+i)ll2(2J+i)lf2w(jabjajbj,r

,r) 
x^'-ii'MMM'*),'--)- (3.7) 

IV. PARTIALLY COUPLED FUNCTIONS 

The preceding formulas make it a simple matter to 
transform from one angular-momentum formal coupling 
scheme to another. Using tables of cfp12 and routines 
for CG coefficients and Racah coefficients, one can easily 
program a computer to perform such transformations.11 

This suggested a formal coupling scheme in which the 
basis functions are characterized by the quantum 
numbers of groups (I shells) of q equivalent orbitals: 
the labels 

{ln(i)j(i)y^a(i)J(i)M(i)} 

in "partial j-j coupling" or the labels 

{Zn(i)l(i)^M^U^ML(i)S(i)Ms(t)} 

in "partial LS coupling." I shall refer to such formal 
coupling schemes as Group-Af (GM) schemes, to empha
size the use of labels Mj or ML and Ms for each group 
of equivalent orbitals. In common with dwf's, partially 

10 The coefficients of this linear combination can be written as 
CG coefficients by inspection. 

11 These coefficients can also be obtained quite generally using 
projection operators; cf. P. O. Lowdin, Rev. Mod. Phys. 36, 966 
(1964). 

12 cfp's for LS coupling have been given by G. Racah £Refs. 
5(b), 5(c)]; N. Rosenzweig, Phys. Rev. 88, 580 (1952); F. 
Rohrlich, Astrophys. J. 129,^441 (1959); and B. Judd (Ref. 6). 
For j-j coupling they are given in de Shalit and Talmi, Ref. 6 
and B. F. Bayman and A. Lande, Ann. Phys. (to be published). 

coupled basis functions generally have no direct con
nection with actual wave functions of complex atoms. 
Their only purpose is to act as intermediaries for calcu
lating matrix elements. 

The antisymmetric GM scheme function for K groups 
of equivalent orbitals is simply the antisymmetrical 
product of K functions: 

$GMp+«+-iAB'-) 

= <3&*(A 11- • -p)$*(B\p+V • -p+q)- • , (4.1) 

where 

A^Zn(A)l(A)¥a(A)S(A)Ms(A)L(A)ML(A), 

B^[_n(B)l(B)ya(B)S(B)Ms(B)L(B)ML(B) 

stand for the quantum numbers of the various groups 
or subconfigurations. 

I t is a simple matter to express antisymmetric coupled 
functions, such as LSJ functions, in terms of GM -scheme 
functions; the expansion coefficients for a function with 
K groups of orbitals are simply the products of 2K—\ 
CG coefficients: 

$ L * * ( - -(L,S2M^smL''S,')r-iLSJM) 

= E • - {LfML
fMi)ML(t) I L"ML") __ 

X(S'Ms'£®MsV)\S"Mjy • • (LML,SMS\JM) 

X $ G / ( • • • L(i)ML(i)S(i)Ms(i) • • • ) . (4.2) 

When all groups are either closed / shells or single 
orbitals, the Gifcf-scheme functions are just dwf's; when 
only a single group contains more than one orbital 
(except for closed / shells), the GM -scheme is identical 
to the familiar LMLSMS scheme. 

The action of the antisymmetrizer Q, in Eq. (4.1) is 
easily found if we note that this is a combination of anti-
symmetrization within a group and antisymmetrization 
between groups.13 The number of ways of selecting q 
electrons, in any ordering, out of a population of N 
electrons is the binomial coefficient 

/N\ Nl 

r—,—r- (4-3) 

\q/ q\(N-q)\ 
After selecting qi electrons, one can select q2 from the 
remaining N—qi, then select q$ from the remaining 
N—qi—q^ and so on. The total number 91 of such 
partitions of N electrons into K groups is 

/N\/N-q!\ /N-qx-qr ' 'qx-i\ 

\qj\ 02 / \ qK J 

N\ 
= . (4.4) 

(qi)Kq2)l'"(qK)l 

Let the standard selection of q electrons out of N be 
defined as the selection of the first q electrons, 1 • • • q. 

13 Chapter 37 of de Shalit and Talmi, Ref. 6. 
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Any other selection can be obtained from this standard 
selection by interchanging electrons between the selected 
group and the remaining N—q electrons. If the 
number of such interchanges is even (odd) the selection 
will be called even (odd). We can now write Eq. (4.1) as 

$GMp+Q+--'r(AB--K) 

= 9 r 1 ' 2 E Qv • 'Q&p&(A)$*(B)>--fr(K), (4.5) 

where the operator Qt selects t electrons out of 
N—p—q r unselected electrons and introduces the 
sign + 1 or — 1 as the selection is even or odd. The sum
mation runs over all possible selections, including the 
standard selection shown in Eq. (4.1). The factor 9l~1/2 

preserves normalization if the single-particle orbitals 
are normalized. 

The formula for the matrix element of an F- or G-type 
operator U between GM functions is 

(*A---rK\U\*,A'--r'Kf) 
^($GMp+'-r(A-- -K)\ U\$QM*'+~-r'(A'- • -K')) 

= (90/)-1/2<$p(4)- • •$'(#) IE <?Pf- * 'Qrf 

XUZQP>- -QA&'iA')- • •$''(*')>, (4.6) 

where ()+ acts to the left (sinistrally) and Q acts to the 
right (dextrally). Because of the equivalence of electrons 
and the summation over electrons in the operator F or G, 
one need only examine one particular sinistral partition, 
say the standard partition, and multiply this result by 
the number of sinistral partitions 91. Noting the value 
of (9l/9l')1/2 from Eq. (4.4) we obtain14 

(*A*B> • -rK\U\*'A'*'B'> - -r'K') 

/(#')!• "('OV72 „ 
W)I"-(r)l/ 

XUT,Qr- ' 'QA^p\Af)-'^'(Kf)). (4.7) 

Here <&P(A) contains electrons 1 • • -p (antisymmetrized), 
<&q(B) contains electrons p+1 through p+q (antisym
metrized), etc. Equation (4.7) can now be specialized 
to F and G operators. 

V. F-TYPE OPERATORS 
Let 

f(a,b)=(u(a\i)\fi\u(]b\i)) (5.1) 

be the matrix element of a single-particle operator taken 
between two single-particle orbitals. For simplicity, 
assume that the radial wave functions P are ortho-
normal, as are the angle and spin functions Y\m and 
X(M|S). (The generalization to nonorthogonal functions 
will be indicated.) Then, since Eq. (4.7) is just a linear 
combination of integrals over all electron coordinates, 
one need consider only two types of matrix elements 
( r | F | r ' ) : those in which the configuration of T is the 

14 Equation (4.7), the generalization of formulas in Ref. 14, 
has been given by D. Layzer, Z. Horak, M. N. Lewis, and D. P. 
Thompson, Ann. Phys. (N. Y.) 29, 101 (1964). 

same as the configuration T', and those in which the 
configurations differ in the occupation numbers qi of 
two groups.3 

A. No Odd Groups 

If the configurations are the same, then only for the 
standard dextral partition will identical orbitals pair off 
during integration. The factor (91/91')1/2 is unity, the 
summation over Qi drops out, and Eq. (4.7) becomes 

^A'"rK\F\^A'"'TKf) 

= d(A)(^(A)\£fi\^(A/))+'-

+ 5(K)(HK)\ £ fi\&(K')), (5-2) 

where the symbol l(A) is unity if all quantum numbers 
for all groups except A are equal in T and T', and is zero 
otherwise. (8 is proportional to the products of radial 
orthogonality integrals fPaPbdr so it will be zero only 
if the radial functions are orthogonal.) 

The summation over p electrons in Eq. (5.2) merely 
gives p equal contributions. We can use Eq. (3.6) to find 
the contribution of the last electron of the group. For 
convenience, let the symbol (A{A,a) denote the com
bination of a cfp and two CG coefficients, so that 
Eq. (3.6) reads: 

$%4) = 7V-i/2£ (A{A,a)§N-l(A)u(a/N). (5.3) 

In the partial LS scheme, this coefficient is 

(A {A,a)= (l"aLMi£Ms{lN-^Mi£Ms,ltnhfi) 
= NUKFaLSlF-iaLS) (LML,lm \ LML) 

X(SMs,ia\SMs). (5.4) 

For two electrons, the cfp is unity (if L+S=even), so 

(l2LM LSM s{lnth»Mry) 

=-J2(lmM ILML) X (*M,iM/1SMS). 

The cfp is also unity for closed shells, so 

(/^+20000{Z4i+1/mJ/x, / -*»£- /*>=(- l)l-m+^. 
For consistency, it proves convenient to define the 
(A{A,a) symbol for a single electron as unity: 

(IHmM^Mh)^ 1 • 

The factor N112 is included in the definition of (A {A,a) 
for subsequent convenience, since it always occurs with 
the cfp. Using this uncoupling procedure on the last 
orbital of a group, we find that the contribution of the 
last electron to the matrix element of Eq. (6.2) is 

= p-1 Y.{A{A,a){A'{A,a')f{a,a') (5.5) 

(sum over barred quantities). If we sum over equivalent 
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electrons Eq. (5.2) becomes 

(PA>--*K\F\*A'---*K') 

= 8(A)Z(A{A,a)(A'{AJay(d,d')+ • • • 
+ KK)Z(K{KMK/{K,kV(k^). (5.6) 

B. Two Odd Groups 

The second type of (nonzero) F-type matrix element 
occurs when the configurations V and V have the form 

(r\F\T,)={--vA--(t-1B--\ 

X F | . . . p - M ' - • • * £ ' • • • } . (5.7) 

One "odd" electron occurs in the group PA on the left, 
and in the group qB on the right; all other groups possess 
identical quantum numbers on left and right. The factor 
(91/9101/2 becomes (ql/pl)1'2. To apply Eq. (4.7) we note 
that the "odd" electron in T can be any of p in the group 
PA. Each contributes an equal matrix element; one can 
consider the matrix element of the last electron of the 
group and multiply by p. Whichever electron one chooses 
to consider, the dextral ordering of Eq. (4.7) must place 
this electron into the group qB. The resulting matrix 
element is 

( . . .PA • •. *- i£ . •. \F\ • ..p-iA'- • • qBf- • •) 

= 5(A+B)(-iy^(A{A',a)(B'{B,b')f(a,b>)., (5.8) 

where (— l)ffAB represents a phase factor. This phase 
depends on the number of interchanges that are required 
to pair off the standard ordering in T with the standard 
ordering in Tf. This number is the total number of 
electrons in all the groups between PA and q~xB (as 
given in the label r ) , plus the number of groups be
tween pA and q~1B. If the occupation numbers are 
denoted by q^ the phase is 

<?ij= (qt+i+qi+2-\ \-qj)+(j—i) (5.9) 

for a matrix element involving groups i and j . 
Equations (5.6) and (5.8) for GM-scheme wave func

tions correspond to Eqs. (668) and (669) of Ref. 2 
for dwf's. 

VI. G-TYPE OPERATORS 

Let 

g(ab,cd) =(u(a\ i)u(b \ j) | g4j \ u(c \ i)u(d \j)) (6.1) 

denote the matrix element of a two-particle operator gy 
between two single-particle orbitals. For the familiar 
Coulomb expansion, 

k 

(6.2) ?.-/=-= E-^-C<*>(t)-C<*>(i), 
r> 

this has the form 

g(abicd) = S(m8(a),ma(c))b(ma(b),m8(d)) 

X(-l)*i<e>-mK«> £ & chQ(a)mi(a),l(c)mi(c)) 

XcKKb)m(b)Xd)mi(d))Rk(ab,cd), (6.3) 

where 

Rk(ab,cd) = drj dn P(a \ n)P(c \ n) 

X P(b\r2)P(d\r2) (6.4) 

(6.5) 

r>k+i 

ch(lm,lfmf) = (lm\Cq
{h)\Vmf) (q^m—m') 

= ( - l)*(l'm',kq\ Im)(l0,k0\ 10). 

In the Gil<f-scheme, G-type matrix elements (T\G\ V) 
fall into five classes, depending on the number of un
paired or "odd" electrons in the groups of T and r". 
The possible arrangements are: 

(...PA-..*B--\G\--*A'->*B'--), (6.6) 

( . . . PA • . . Q-iB- • • |G\ • • • p-lA'- • • qBr- • • >, (6.7) 

( . . . PA • • • *- i£ . • • | G| • • • *~2A'- • • qB!- • • ) , (6.8) 

( . . . P , 4 . . . s - r 8 . . . r - i C . . . | 

XG\'-p-2A''-qBf'-rC--), (6.9) 

( . . . ^ . . . ^ . . . r - l C . . . S - l ^ . . . | 

XG\ • • -p~lA'- • • q~lBf- -TC- • • •£ ' • • • ) . (6.10) 

The following results for these matrix elements gener
alize Eq. (769) of Ref. 2. 

A. No Odd Groups 

When the configurations of T and Tf are identical, the 
matrix element is the sum of inter group interactions, 
proportional to g(aa,aa), and iniragroup interactions, 
proportional to the direct part g(ab,ab) and the exchange 
part g(ab,ba). 

The intergroup interaction is the sum of matrix 
elements of the type 

( . . . $ ^ ) . . . | i : . < i e ^ . i | . . . $ , ( y 4 Q . . . ) ( 6 . i i ) 

for each group, since only the standard dextral ordering 
of Eq. (4.7) gives a nonzero result. Equation (6.11) is 

the sum of ( ̂  \ = p(p—1)/2 identical matrix elements; 

we use Eq. (5.3) to uncouple the last and the next-to-
the-last electron and obtain the result 

KA)Y.{A{AMMA"£"){Af{Affif) 
X(A\A"A'")\g(M'\a'a'") (6.12a) 

(note that the numbers p and p—1 are included in the 
(•••{•••) factors). 

The intragroup contributions arise from qp possible 
even dextral orderings giving the direct interaction and 
an equal number of odd dextral orderings giving ex
change interactions. These give the matrix element 

'KA + B)T.{A{A,a){A'{A,a'){B{Bjb)(B'{B,b') 

XLg(ab,a'b')-g(ab,b'd')2. (6.12b) 

Here l(A-{-B) is zero unless all groups except A and B 
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are identical in T and V. The total matrix element of 
type (6.6) is the sum over all groups of Eqs. (6.12a) 
and (6.12b). 

B. Two Odd Groups 

When the configurations T and T' differ by the place
ment of a single electron, as in Eq. (6.7), the factor 
(91/9101/2 becomes (q/p)112. The matrix element sums 
over all possible locations of a second electron. This 
electron may either be located in groups A or B, or it 
may be in any third group C: 
( . . . P ^ . . . ( T - l J 5 . . . r C . . . | 

X G | . . . p - M ' . . . * £ ' . . . > - C ' - - - > . (6.13) 

Taking the second electron from group A, we obtain 

( %y J equal contributions proportional to g(aa,ab). Equa

tion (5.9) gives the phase aAB of these elements, with 

the result 

l{A+B){-\y^Y^{A{A,a){A{Af\aff){Af{A,f,af) 

X(B'{B,b')ig(aa",a'b'). (6.14a) 

(The numerical factor (p— l)ll2(q)112 goes into the 
( • ••{••• ) coefficients.) A similar equation holds when 
group B contains the second electron: 

KA+B)(-iy^Z(A{A\a)(B{B,b)(B'{B,bf) 

X{B{B\b")hg(ab,bfb"). (6.14b) 

Finally, when the second electron comes from one of 
the other groups, say C, we obtain pr equal direct 
interactions and pr equal exchange interactions 

5(A+B+C)(-iy*sT.(A{A>,a)(B'{B,b')(C{C,c) 
X {C'{C,c%g{ac,b'c')-g{ac,c'b')1. (6.14c) 

The matrix element (6.13) is the sum of Eq. (6.14a), 
(6.14b), and all possible groups C with Eq. (6.14c). 

When the configurations T and r ' contain two 
"odd" electrons as in Eq. (6.8), the factor (9l/9l ;)1/2 is 
(q(q— l)p(p—1))1/2 and the number of identical matrix 

elements is ( ? 1. All these matrix elements have positive 

phase; the result is 

(•..pA-.*-2B--\G\'-'p-2A'--*B'-') 

^l{A+B)Y.{A{Afi){A{Af,af){B'{Bf>f) 

X(B{B9b)$g(aa',W). (6.15) 

C. Three Odd Groups 

When T and T; have the form of Eq. (6.9), the number 

of equal contributions f 5> ) again balances the denomi

nator of (91/31') 1/2> and the phase depends on the 

number of electrons and groups between groups B and 

C. The result is 

( . . .VA- • .<r-i£- • -r-lC- • • \G\ • • -* - 2 4 ' - • •«£'• • -rCf- • •> 

= ~5(A+B+C)(-iyseZ(A{A,d)(A{A',a) 

X(B'{B,b')(C'{C,c')$g(aa,b'cf). (6.16) 

D. Four Odd Groups 

At most, F and I" can differ in four pairs of occupa
tion numbers. For this case, preceding arguments give 
the result 
( . . . P y 4 . . . ^ . . . r - l C . . . s - l Z ) . . . | 

XG\ • • -^-M'- • • ^lBr- -rC' • • •# ' • • •) 

^8(A+B+C+D)(-1YAC+^D 

X(A{Af,a){B{B',b){C {€/){& {D,df) 

X[_g(ab/d')-g(ab,d'c')l. (6.17) 

VII. SUMMARY 

The formulas of the last two sections permit one to 
compute matrix elements between any two configura
tions. In a typical calculation, one may start with a 
collection of L5-genealogy functions and expand these 
in terms of GM-scheme functions, using either the 
explicit formulas (3.5) and (3.6) or else projection 
operators to obtain the expansion coefficients. Then one 
applies the GM -scheme formulas of the form 

(T\F\T') = UMA",a)(B'{B",b')f(a,b'), (7.1) 

(T\G\T') = Z(A{A",a)(B'{B",b')(C{C",c) 

X(D'{D",d')g(ab',cd'), (7.2) 

given in the preceding sections.15 A digital computer can 
easily carry out the entire process, using only a table of 
cfp's and a subroutine for CG coefficients. 

A specific example may clarify the preceding abstract 
discussion. Consider the lowest lying odd-parity term of 
neutral titanium,16 nominally the z 5G° term of the 
configuration 

lis2 2s2 2pQ 3s2^}3p« 3d2 4s 4p. 

The wave function for an ML=0, MS = 0 state of 
this term is partly the LSM-scheme wave function 
&LSM22(yi), labeled by the quantum numbers 

7l^[}Sj3p« i5), (3d2 *FYF, (45 2S)*F, (Ap 2P)5G0o 

and is partly a mixture of wave functions belonging to 
other configurations, such as 

y^[}SJ3p* 2P), (3d' *J))*F, (4p2 3P)5G00. 

The interelectron Coulomb interaction mixes these two 
wave functions through the matrix element 

<Ti I E 1 A\-y 172) = ri(yiy<L)Rl(3p4s,3d4p) 
-rz(yiy,)R

2(3p±s£p3d), (7.3) 

where R1 and R2 are generalized "direct" and "ex
change" integrals. To calculate the coefficients r\ and r^ 
one has basically three options, depending on which of 
three schemes of basis functions one uses. 

15 The present paper emphasizes the similar form of all matrix 
elements. In particular instances, these simplify considerably; 
sums over dummy magnetic quantum numbers can be written in 
terms of Racah coefficients. 

16 C. E. Moore, Natl. Bur. Std. (U. S.), Circ. 467, Vol. 2. 
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Using coupled LSM-scheme functions and the algo
rithms of Racah,5,6 one can write the "direct interac
tion' ' coefficient as 

n(7i72)=-yniDp23^) 

fl 2 1] [3 1 31 fl \ fl 
X (2X3X5X7)* (7.4) 

13 3 2) ll 4 lJ \\ 2 lJ 

= -1/(60)1/2= -0.1290994. 

The "exchange interaction" coefficient r2 between these 
two configurations can be written as a similar product 
of three 6-j symbols and a cfp, but the specific coefficient 
2̂(7172) is zero because of an intermediate-spin selection 

rule [only quartet terms of d* will mix with <JZ„SM22(YI)]. 
Alternatively, one could express the functions 

$LSM22(yi) and <&LSM22(Y2) in terms of dwf 's, such as the 
functions labeled by 

iy= [ }S j3p- r 3^_i+ 3p0~ spo+ spr 3pS 
3&_r 3d<r 4<*0

+ 4^i+) 
and 

iY= [^](3#_i- 3̂ _x+ 3p0~ 3p0+ 3pr 
Zd-r 3d0~ 3dx+ 4=p0

+ 4^0
+). 

The Coulomb matrix element between these particular 
two functions is 

OVIEiAtfliV) 
= c1(H,21)c1(00,10)iJ1(3#45,3^) (7.5) 

+c2(ll ,10)c2(00,21)^2(3^,3^) 
= [l/(15)1/2]i^1- l^/(125y^R2 

and the desired matrix element is the sum of such ele
ments, each multiplied by the appropriate expansion 
coefficients. 

The third approach, outlined in the present paper, 
would use partially coupled basis functions, such as 
those labeled by 

T1^[15](3^6 Woo), (3^2 3^_i-i), (4* 2S0§), {±p 2PiO 

and 
T*=pST\(3p* 2P_x_x), (3d" \Do-0, (±P2 3Pn). 

The expansion coefficients into this GM scheme are 
simply the products of CG coefficients. For example 

(7i|ri) = (3 —1,00|3 - 1 )X(3 - 1 , 11|40) 
X ( l — 1 , 2 2 I 2 27 X ( ^ — 23 2 21 20) 

= l/(28)1/2 

(72|r2) = (l - 1 , 20|3 -1 )X(3 - 1 , 11140) 
X ( i - * , i - i l l - D X ( 1 -1,11)20) 

= l/(70)1/2. 

The matrix element between these particular basis 
states has the form of Eq. (7.2) [specifically, it is 
Eq. (6.17)]: 

< r i | £ i / r* | r*> 
= (PQ 'Sooip5 2P-i-h p 2Pii)X(s 250,{0, s 250x) 
X(d*\DQ_h{d**F^hd*Dlh) 
X(p2*Pn{p2Pihp

2Poh) 
X[c1(H,21)c1(00,10)^1(3^,3^) 

+c2(ll ,10)c2(00,10)i?2(3^,4^)], (7.6) 

where for example, 

{d*\D,_h{d2*F-i-hd2D^ 

^(d*\D{d**F)X(3 -1,21\20)X(1 ~-l,U\h ~h) 

Thus 

<ri|Ei/*y,-|r*> 
=\/6[(l/(15)1/2)^1-(W(125)1/2)^2]. (7.7) 

Again, as with the dwf basis, the desired matrix element 
(711 X) Vr*y 172) is the sum of such GM-scheme elements. 

As this example shows, coupled functions (in this case 
LSM functions) provide the most convenient basis 
functions for hand calculations once one has obtained a 
formula such as Eq. (7.4). The GM-scheme functions 
(and a fortiori the w-scheme functions) require time-
consuming summations over basis states. However, this 
summation is not a serious handicap if one relies on a 
digital computer for the numerical results. 

For simple configurations, or for analytical investiga
tions, the GM" scheme is clearly at a disadvantage com
pared with the conventional m scheme or LS scheme. 
But as interest develops in more complicated configura
tions with five or six open I shells, and as machine 
computation becomes necessary, the GM scheme offers 
a potentially useful approach. The GM scheme is not 
suggested as a "physical" coupling scheme, but merely 
as a device to simplify computations; it offers some of 
the simplicity of the m scheme without requiring as 
many basis functions, yet retains some of the selection 
rules of coupled schemes. 

Although I have used the terminology of LS coupling, 
the algorithms can obviously be applied to nuclear wave 
functions characterized by j and isospin t. 
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