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happens to agree with the calculated value of Clementi4 

to almost eight significant figures. However, no theo­
retical values were available for comparison with the 
results on the two-open-shell and three-open-shell ex­
cited states. 
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I. INTRODUCTION 

INVESTIGATIONS of the atomic photoelectric effect 
have been concerned primarily with the K shell. 

This is because about 80% of the total atomic effect 
is due to the K shell; and because the simplest picture 
possible, that of just a pure Coulomb potential due 
to a nucleus of charge Ze, is most nearly approximated 
by the K shell, away from threshold.1 The assumption 
of any more general type of potential necessitates a 
numerical solution of the Dirac equation for the initial 
and final electron states, and such a solution was 
essentially impossible before the development of 
modern fast computers. Thus the L and higher shells 
have usually been neglected on the basis that the effects 
of screening are appreciable, so that calculations based 
on a pure Coulomb potential would have questionable 
significance. 

In the original period of investigation the theoretical 
work was primarily nonrelativistic, except for the 
papers of Sauter,2 Hall,3 and Hulme et al.A Since the 
revival of interest, several years ago, all of the work 
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2 F. Sauter, Ann. Phvsik 11, 454 (1931). 
3 H. Hall, Rev. Mod. Phys. 8, 358 (1936). This article contains a 

comprehensive review of all of the work done up to 1936. 
4 H. R. Hulme, J. McDougall, R. A. Buckingham, and R. H. 

Fowler, Proc. Roy. Soc. (London) A149, 131 (1935). 
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has been relativistic. iT-shell differential and total cross 
sections have been obtained in the form of analytical 
expressions, approximate in aZ, where a is the fine-
structure constant and approximately 1/137. Some of 
these are valid for a general energy,5-8 and some have 
been obtained for the high- or low-energy limit.9-11 

Additionally, there have been numerical evaluations 
in the various energy limits.12-14 The most recent and 
most extensive numerical work is that of Prat t et al.,u 

giving differential and total K-shell cross sections for a 
number of Z'$ and for photon energies from 0.2 to 2 
MeV. 

6 In succeeding footnotes, the symbols (HE) and (GE) indicate 
high energy and general energy, respectively. 

6 D . Moroi and C. J. Mullin (to be published) (GE). It has 
been shown here that for any initial s state, characterized by 
principal quantum number n, the corresponding differential and 
total cross sections can be written as 1/n3 times that for the K 
shell, to the neglect of relative order a2Z2. This result was pre­
viously obtained by R. H. Pratt, Ref. 16. This affords an easy way 
of determining approximate differential and total cross sections 
for s states of higher shells. 

7 B. Nagel, Arkiv Fysik 18, 1 (1960) (GE). 
8 M. Gavrila, Phys. Rev. 113, 514 (1959) (GE). 
9 F. G. Negasaka, Ph. D. thesis, University of Notre Dame, 

1955 (unpublished) (HE). 
10 H. Banerjee, Nuovo Cimento 10, 863 (1958) (HE). 
11 T. A. Weber and C. J. Mullin, Phys. Rev. 126, 615 (1962) 

(HE). 
12 R. H. Pratt, Phys. Rev. 117, 1017 (1960) (HE). 
13 B. Nagel, Arkiv Fysik 24, 151 (1963) (HE). 
14 W. R. Ailing and C. J. Mullin (to be published) (HE). 
15 R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys. 

Rev. 134, A898 (1964). Another numerical calculation for inter­
mediate energies has been done by S. Hultberg, B. Nagel, and 
P. Olsson, Arkiv Fysik 20, 555 (1961). We shall use HNO to refer 
to this latter work. 
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The number of calculations for the L shell has been 
disproportionately smaller. In the recent period of 
interest, there have been four: a high-energy-limit 
numerical calculation by Pratt16 of the total cross 
sections for the various L subshells; approximate (in 
aZ) differential and total cross sections for the subshells 
for all energies by Gavrila17 and by Moroi and Mullin18; 
and a high-energy-limit calculation of the differential 
cross sections which are exact in the forward direction 
and valid to two orders in aZ for all angles by Ailing 
and Mullin.14 

The experimental work has been similarly focused 
on the K shell.19-23 There have been a few experi­
ments24,25 giving ratios such as VL/(TK or CFL/VA, where 
a- stands for the total cross section, and the subscripts 
L, K, and A indicate the L shell, the K shell, and the 
total atom, respectively. Two experimenters, Hultberg26 

and Sujkowski,27 have investigated angular distributions 
for the L shell for a uranium target at different energies. 
Their results are given in raw form, without corrections 
for scattering or geometry, as there are no accurate 
computations with which the results may be compared. 

Now the L-shell effect is a non-negligible percentage 
of the total atomic effect, being about 15% for uranium. 
Because of this, and because of the dearth of investi­
gation of the L shell, in this paper we shall calculate 
the exact L-shell angular distributions and total cross 
sections. This will be done for a pure Coulomb potential, 
for arbitrary Z, and for arbitrary photon energy. Even 
though screening may be appreciable, use of the pure 
Coulomb potential represents the first meaningful 
calculation which can be done for the L subshells. 
Subsequent computations which include screening will 
then allow an estimate of the effects of screening to be 
made. 

The general formalism is developed in Sec. I I . In 
Sec. I l l , general expressions for the cross sections for 
an arbitrary shell are determined in terms of the radial 
parts of the matrix element, and the radial matrix 
elements are evaluated analytically for the K and L 
shells. A program has been constructed for Notre 
Dame's Univac-1107 Computer to numerically evaluate 

16 R. H. Pratt, Phys. Rev. 119, 1619 (1960). 
17 M. Gavrila, Phys. Rev. 124, 1132 (1961). 
18 Reference 6. It has also been shown here that, to the neglect 

of relative order a2Z2, the differential and total cross sections for 
an nPi/2 and nPz/2 initial state are equal to 32(w2— l)/3w5 times 
the corresponding quantities for the 2Pi/2 and 2P3/2 states, 
respectively. (Previously obtained by Pratt, Ref. 16.) 

19 S. Colgate, Phys. Rev. 87, 592 (1952). 
20 A. Hedgran and S. Hultberg, Phys. Rev. 94, 498 (1954). 
21 S. Hultberg, Arkiv Fysik 9, 245 (1955). 
22 G. White Grodstein, Natl. Bur. Std. (U. S.), Circ. No. 583 

(1957); also R. T. McGinnies, Natl. Bur. Std. (U. S.), Suppl. to 
Circ. No. 583 (1959). 

23 S. Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959). 
24 G. D. Latyshev, Rev. Mod. Phys. 19, 132 (1947). 
25 E. P. Grigor'ev and A. V. Zolotavin, Zh. Eksperim. i Teor. 

Fiz. 36, 393 (1959) [English transl : Soviet Phys— JETP 9, 
272 (1959)]. 

26 S. Hultberg, Arkiv Fysik 15, 307 (1959). 
27 Z. Sujkowski, Arkiv Fysik 20, 269 (1961). 

ND L-SHELL P H O T O E F F E C T A 1051 

the analytical cross sections for the K and L shells, and 
for arbitrary Z and energy. Numerical results for a 
number of elements and energies are presented and 
discussed in Sec. IV, and compared with previous work. 

II. GENERAL FORMALISM 

The problem is the determination of the differential 
and total photoelectric cross sections for the K and L 
shells, for the case that both the initial and final 
electrons are considered to be moving in a pure Coulomb 
field. This implies that higher order radiative corrections 
will be neglected, and the interaction with the radiation 
field will be treated in lowest order perturbation theory. 
The momentum associated with the bound state can 
be appreciable for intermediate and large Z, so that 
the relativistic effects become important even for low 
energies. Consequently, the treatment will be a com­
pletely relativistic one. With these assumptions the 
differential cross section can be written28 

Ar/dfi= (a/2ir)(pW/k)$ E\M\\ (1) 

where (p,iW) = four momentum of the final electron, 
(k,ik) = four momentum of the incident photon, and M 
is the matrix element given by 

M= d^f^-eeik'riP%, (2) 

with a = ( * J, the <n being 2X2 Pauli matrices, e = unit 

vector specifying the polarization direction of the 
incident photon. We want to consider the incident-
photon beam to be unpolarized, and we also want to 
count all electrons coming out, regardless of their 
spins. We shall thus average over polarization directions 
and sum over final electron spins. Since we require the 
cross section for either the K shell or a certain L 
subshell, we shall sum over all electrons in the particular 
shell or subshell. In Eq. (1), \ £ represents the average 
over photon polarizations and the sum over initial 
and final electrons. 

\f/i is the wave function for the initial bound electron 
and the solution of the Dirac equation for energy 
WB<M" $/ is the Hermitian adjoint of the final state 
xf/f which is a continuum solution of Dirac's equation 
for energy W>m and which must have the well-known 
asymptotic form of a plane wave plus an incoming 
spherical wave. As such it cannot be written in closed 
form; instead it occurs as an infinite sum of partial 
waves. 

The nucleus is considered to be infinitely heavy so 
that it can absorb an arbitrary amount of momentum. 
However, energy is conserved among the photon and 
the initial and final electrons. This is expressed as 

_ _ _ _ _ _ _ k+WB = W. (3) 
28 We shall use natural units with h — c — l. A unit vector is 

denoted by a = a/1 a |. 
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III. EXACT CROSS SECTIONS FOR 
ARBITRARY ENERGY 

1. General Expressions for the Cross Sections 
for an Arbitrary Energy 

Using Eqs. (1) and (2), we want to determine the 
analytical expressions for the relativistic differential 
and total cross sections, for an arbitrary atomic shell. 
No restriction will be placed on the energy of the incident 
photon beam. However, when the resulting expressions 
are to be evaluated numerically, a practical limit must 
be imposed. This is owing to the fact that the relative 
contributions of successive partial waves decrease less 
rapidly for increasing energy, so that more partial 
waves must be included as the energy increases. The 
method, however, is practical for the beta-spectro-
scopically important region, and this is the very region 
where a more exact analysis is needed. The expressions 
will be given in terms of the radial parts of the matrix 
element, which can be evaluated upon specification of 
the atomic shell. Their evaluation will be carried out in 
the subsequent section for the K and L shells. 

The wave functions in the matrix elements, \pi and 
\f/f representing the initial and final electron states, may 
be written as 

and 

tf=±TT £ Pximi$,S) 
/ ig*i(i) (pr)Qximi(t)\ 

\fxl^{pr)^ximi(f)J 

where p is the linear momentum of the final electron, 
and S indicates its spin. 

^ « i t f , 5 ) = ( 0 x 1 « 1 t f ) , K j ) ) , 

where v(s) is the large component of the plane-wave 
spinor: 

/W+m\1/2/v\ or-p 
u—[ 1 ( I; vh=l, w = v. 

\ 2W ) \wJ W+m 

The flag's are two-component functions given by 

ft*m=L C{l\j\ m-u, u)Yhm-u{r)Xu (4) 
u 

and 
"— xm=*lxm\y * v ) , 

where C(lahlc] manib) is the Clebsch-Gordan coefficient 
(referred to hereafter as C coefficient), F j , m is the 
spherical harmonic of order /, and the Xu are two-
component Pauli spinors.29 The quantities j , I, and V 
are obtained from x by 

K=\x\, j=K-i, l=j-i x<0 

= j+i *>0, l'=2j-l. 

gx2, fx2 and gXl
(i), fxx

{i) are the radial parts of the bound 
and continuum functions, respectively; the normali­
zation of the latter being chosen to give the proper 
asymptotic form. 

Following Hulme,30 we expand the retardation factor 
as 

6 *"=4 i r E ilji(kr)Yl,m*(k)Yl,m(r), 
lm 

where the jiikr) are spherical Bessel functions of order /. 
Inserting this and the expressions for the wave functions 
into the matrix element (2), defining the radial parts of 
the matrix element as 

•F 
Jo 

r2drgxl^*(pr)fXi(r)ji(kr), 

(5) 

/« 1 i«=* ' / rUrf^ip^g^jdkr), 

and the angular parts by 

= dar\ tt±ximiKf)<*' e & F s 2 m 2 ( f ) F j , w ( / ) , 

we obtain 

4 E \M 
e,S,m2 

2 _ ( 4 T T ) 4 , - . * -
2L* 2L/ 2S * %imi\P i^ ) ̂  x\mi\ \P y^ ) * l,m \&) Y i,m\fc)£mi—m—m2 ^m\—m—m2 

2 ximi lm eS ( 6 ) 
!cimu~l m W2 

x\m\lm—X2™>2* %\lx2 A—ximilmx2m2^ x\lx2J \P~ x\m\lm— X2»»2-' x\lx2 -A—x\m\tmx2Tn2^ x\ix2 ) • 

e*mi_w_W2 represents the complex conjugate of the components of e in a spherical basis. The components are 

€1= ( - 1/VZ) (ex+iey) , €0= ez, €_! = (l/v5) (ex-iey) , 

and similarly, 

<?i = (— 1/V5) (<rx+tcry) , crQ = crz, <r„i = (1/vS) (ax— icry) . 

29 The angular-momentum coupling coefficients and the spherical harmonics used are those as denned in M. E. Rose, Elementary 
Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957). 

30 H. R. Hulme, Proc. Roy. Soc. (London) A133, 381 (1931). 
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Integrating over the solid angle dQ,r and using the Wigner-Eckart theorem31 gives 

Aximiim-x2m2= (3[/2
/][/]/47r[/i])1/2C(/2

///i)Z C ( i l | ; «2, m1—m-m2)C(li^ji;m+m2~U2, W i - w - w 2 + w 2 ) 
U2 

XC{l2\]2\m2—u2, u2)C(l2lh;m2—u2y m), 

•ii-—ximilmx2m2== **• x\m\lm—x2m^\}'\ ^ v\ , ^2 ^ ^2/ j 

where [ V ] = 2 a + 1 and C (lalbh)=zC (lalblc; 00). The sum over final electron spins gives 

E Px1fn1(p,S)PximiUPyS)=Q,1rn1Hp)^x1rn1(p)^ 0) 

S 

For the sum over polarizations we use 

E ex*6x = 6xx-(47r/3)F1>x*(^)F1)x(^) = 5 x x - ( - ) x E (4x/[L]) 1 / 2C(l lL)C(l lL; -X\)FL ,I_x(fc), 

employing the coupling rule for spherical harmonics.32 We wish to carry out the sums over the projection numbers 

m2, nil, mi, m, m. This task is simplified considerably if we choose k—Z. Then 

Yi,m*{k)=(tr\/4T)v%no YiMk)=(Ul/^y^o, 

where 5# is the Kronecker symbol, and two of the sums are eliminated. With m and m both zero, a third sum is 
eliminated by virtue of the sum over polarizations, 

* ̂rriA—n 2 = Z emi-m a *€« 1 - w a =5 w l « 1 {l - ( - ) w l - m 2 E C(UL)C(UL; m2-mhm1-m2)} , (8) £^1 Zmi—m—m2 c m i - m — mi 
6 6 L 

leaving only sums over m2 and m\. This still appears to be a sizeable problem since, for example, A 
contains four C coefficients which depend on tn2, so that a total of eight are implied in the square of the matrix 
element. This number can be reduced by using the relations between C and Racah coefficients,33 and the symmetry 
relations for C coefficients.34 For ra=0, AXimii-X2m2 has the form 

Aximii-X2m2= (3p][/2 /]/47rpi])1/2C(/2
///i)E C ( i l J ; «2, wi—m2)C(hlji; m2-u2, m1-m2+u2) 

XC(l2lj2;m2—u2, u2)C{l2lh) m2—u2y 0) . 

The relations between Racah and C coefficients allow us to write 

C(h'Ui;m2-U2, 0)C(Zii/i; f»2-«2, w i - w 2 + ^ 2 ) = Z ( P i ] [ / ] ) 1 / W W 2 , i i i 5 *i/) 

XCQfji'jOmjCih'if; m2—u2, mi—m2-\-u2), 

where W (abed; ef) is the Racah coefficient. The resultant sum over u2 involves a product of three C coefficients and 
can be done. Applying the symmetry relation 

C(hl2h; W1W2) = (-)h+h-hC(l2hh; m2m1) 

to all three, the product can be summed directly to give 

Aximil„X2m2= { ( s ^ p x y x y * ] } 1 ^ ^ 

X C (lfj\; OwOC (y 2 l / ; w2, Wi— w 2 ) . (9) 

If we define 

% (*i, /, - **) = (Lh'iyvc WhWWhh; hf)w (lift*'; i/2) 
% (— *i, /, x2) = af (xh I, — x2) | l£^}} 

31 Reference 29, p. 85. 
32 Reference 29, p. 61. 
33 Reference 29, p. 110. 
34 Reference 29, pp. 38-39. 
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and use (7), (8), and (9), then 

i £ | i f |2 = 48TT2 E E Cy2]p]P]([ /][ / ])1 / 212,1 ? n i t (^)l]x l w l^){a /(^ J /, -* 2 )a / (S i , I, - * 2 ) / W * i i * . * 
e>s>m2 xixi ff 

VI m\ 

+af(—xh /, x2)a}(—xh I, x2)Jx1ix2J'xi'ix2*—2af(xh /, — x2)a}(—xh I, x2) Re/^z^/^z^*} 

X E { 1 - ( - )« i -«2 E C(11L)C(1LL; w 2 - w i , W i - w 2 ) } C ( i 2 l / ; w2, W i - w 2 ) 
m2 1/ 

X C ( j 2 l / ; w2, m1—m2)C(lfji;0mi)C(lfj1;0m1). 

The sum over ra2 therefore gives rise to sums over products of two and three C coefficients. The former yields just 
the orthogonality relation for C coefficients,35 and the latter can be carried out in a manner similar to that for u2. 

To carry out the sum over mi, the product (7) must be expanded using (4). Employing the orthogonality of the 
Pauli spinors and the coupling rule spherical harmonics, the sums in (7) can be performed to give 

ihimiKmximi(P)=L(-)mi+im^LjrXhViXlil)m £ cihlMWijM-.WPAcosOMjijiK; -mm,), 
X 

where P\(cos6) is the Legendre polynomial of order A. The sum over mi will involve products of three and four 
C coefficients and can be performed in a manner similar to the previous sums. If we then sum over L, we obtain the 
differential cross section for the atomic photoeffect for any shell, 

d<r/dti= (l/47r)E AXPx(cos0), 
x=o 

where 

Ax=a(pw/k)24* Z_EJiJCiiXiJracri(Dx]OJ)1/*cWiX)^(iiii'Ji;xi){«/(*1, h -x*)af(zi, I, -*») 
#151 / / 
11 

XlxiixJ&iiz2*+a/(—%i, h %2)af(—xh I, x2)JxliX2Jxlix*—2af(xh /, — x2) 

Xaf(—xh I, x2) ReIx1ix2Jx1ix2*}TxrxiiiK
J2f7', 

and 

TXMI^'7= (-)w-'imzfAichWUdJl; x/)+(-)i+xc(H2)[/]TF(/./22i; if)z [/] W i i u x/) 
t 

XW{lh2f\ft)CmC(Ul)}. 
The total cross section is obtained by integrating over dtt, with the result 

2. Radial Matrix Elements: K and L Shells 

The radial parts, IxliX2 and JXliX2, of the matrix element are written in terms of unspecified radial functions for 
the bound and continuum states. The large and small components of the latter may be given as 

(») 
W+rn^'2 \T(yK-iv) 

531 

/W+m\ 

\ 2W J 
e-i8Xl+vTr/2 {2prYK~l{ }+ 

r(27*+i) 

where 

/ T ^ - w \ 1 / 2 \V{yK-iv)\ 
fx^^ii ) e - ^ ^ (2pr)y^{ }._, 

\ 2W J r ( 2 7 K + l ) 

{ }±= (yK+ip)e-ipr+i^F(yK+l+ip, 2 7 x + l , 2ipr)±c.c. 

5xl = v-7K7r/2+argT(yK-iv), yK= (K*-a*Z*r\ K=\x1\, 

yK~\-iv x\-\-ivf aZW mv 

— x\-\riv' yK—iv p W 

35 Reference 29, p. 34. 
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Y(a) is the gamma function, and F(a,b,Z) is the confluent hypergeometric function.36 The photoeffect for any 
atomic shell can then be studied, by merely specifying the appropriate gX2 and fX2 and carrying out the evaluation 
of the radial integrals. We want to consider the K and L shells, and therefore we shall give the appropriate bound-
state radial functions. 

K shell: 

C* = [ (2X) 3 / r (2 7 i+ l ) ] 1 / 2 , X = waZ, 7 l = ( l -a 2 Z 2 ) 1 / 2 . 
Li shell: 

f 2X2r } f 2X2r } 
gX2=(l+N2/2yi*CLle-^(2\2r)yi-l\N2 , / „ = {\-N2/2)^CLle-^{2\2r)^ \N2+2 , 

A ^ 2 = ( 2 + 2 T I ) 1 / 2 , CLl=[2X2"(N2-l)/N2T(2y1+l)Ji2, X2 = X/# 2 . 
Lu shell : 

f 2X2r l f 2X2r 
g*2= ( l+AV2) 1 / 2CL / /^^(2X 2 r )Ti- i A^2-2 , fX2= (l-N2/2yi2CLlIe~^(2X2r)y^\N2 

I N2+l\ { N2+l 

CLlI=l(N2+\)/{N2-\mCLl. 
Lin shell: 

fe= (l+72/2)^CLllJe-^(Xr)y^, fX2= (l-y2/2)^CLlIIe-^(Xr)y^ 

72= ( 4 - c W , C L m = C X 3 / 2 r ( 2 7 2 + l ) ] i / 2 . 

These discrete radial functions have the same r structure, i.e., r8e~cr (<5, c arbitrary), so that the resulting radial 
integrals may be written in terms of one general integral. If we set 

NT= l(W+m)/2Wj^e~i^-l+iv^l2T(yK-iv)/T(2yK+l), 

(W-tn)~ 

(W+m). L(W+m)J 
we have 

J*iz*2 W = - C ( l - Y i ) / 2 ] 1 / 2 C ^ ^ ^ 

( N2\112 f 
IxllX2(Li) = -ll J CL2:V7 ( i V 2 + 2 ) [ ( - * 1 + * ^ ^ 

N2-l 
N2\

1'2 

1 
-[(— x1+iv')K(X2,ahyh0)+ (yK—ii>)K(X2,a2,yh0)~l 

/«1ix,(Li)= f 1 + — J CtoNANili-Xi+iv^KQiiMul)-- (yK-iv)K(\2,a2,yhl)l 

1 
-[(—x1+iv /)K(X2 yahyh0)~ (yK—iv)K(X2,a2,yh0)^ 

N2-l 
( N2\w f 

IxllX2(Lu) = - l l J CLlINT\AhZ(-x1+ivOK(X2yalyy1A)+(yK-ip)K(X2,a2jy1A)'] 

l(—x1+ipf)K(X2,ahyh0)+(yK—ip)K(X2yahy1fi)~] 

N2+l 

JxllX2(Ln)=ll+—) C L / i t f j j ( # 2 - 2 ) [ ( - * 1 + ^ 

1 
Z(-x1+iv')K(X2yahyh0)-(yK-iv)K(X2,a2,yh0)~] 

N2+l 36 See, for example, Higher Transcendental Functions, Bateman Manuscript Project, edited by A. Erdelyi (McGraw-Hill Book 
Company, Inc., New York, 1953), Vol. 1, Chaps. I and VI. 
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/ T2\ 1 / 2 

IXiiXi{Liu) = - M J CLJUN^ (-xl+iv')K(\/2,a1,yi,\)+ {yK-iv)K{\/2,ai,yi,\)} 

/ T2\ 1 / 2 

JxllX2(Lm) = ( 1 + - J CL„,NJ{ (-xx+iv')K{\/2,ai,y2,l)- {yK-iv)K{\/2,ahy,,\)}. 

The general integral, in terms of which these are written, is 

/•CO 

K(£,a,y,ri) = / r2dr ji{kr)e~^+i^r{2prYK~1{2^-^F{a1bJ2ipr), 

where b=2yK+l- To integrate this, we use the exact asymptotic representation for ji(kr)s7 

i (—/, tn)(l+l, m) im 

ji(kr) = il+1e-ikr £ +c.c, 
m=o ( l j W ) {2kr)m+1 

where (8,m) = 5(5+1)- • • (8+m—l), and (5,0)^1. In addition, we replace the confluent hypergeometric function 
with the integral representation38 

T(b) f1 

F(a,b,2ipr) = / ua~l(l-u)h-a~le2ip 

T(a)T(b-a)Jo 

If we substitute this and the expression for ji {kr) into K, we have 

T(b) i ( - / , m ) ( l + Z , m ) f /•« 

T(a)T(b-a) m=o (l,w) I J0 

T(b) i ( - / , m ) ( l + Z , m ) f /•« 
jg= : £ ; im\il+l / f 2^r(2^)^^- 1(2^) 'v-^2^r)-w- 1^^+^+^)^ 

-«A;)r 

/»1 /»00 

X / ua~1(l-u)b-ar-1eii*rudu--i-1-1 / r ^ r ( 2 ^ f ) ^ - 1 ( 2 ^ ) ^ - " ( - 2 ^ f ) - w - 1 e - ( ^ ^ -
•/o Jo 

x / W^HI—«)^"flr~1«2*prM^[. 

The f integrand goes to zero at the upper limit if Im.u> — ^/2p. At the lower limit, the integral is obviously con­
vergent for all but one of the values which it assumes for each shell. For this one value, a term can be added and 
subtracted from the integrand to give rise to two valid representations of the gamma function. Therefore, we can 
interchange orders of integration and obtain, by transforming the r integrals, 

T(b) i (-l,m)(l+l,m) rl f il+1(2p)y^~1(2^y-^(2k)-m~1 

K= £ im / duua~1(l — u)h-a~l 

T(a)T(b-a)m~Q (l,m) J0 [(£+ip+ik-2ipu)yK+y+1-1>-m 

i*1-1 (2/0 y*-1 (2 J) r-* ( - 2k)-m~1 

(%-\-ip—ik—2ipu) "*•'"- •> -" ) j 0 

1 / dttyK+T~1t~mert. 

The t integral gives just the gamma function, and after some reworking we can write 

r(6)r(7+7*+i-??) l (-i,m)(i+i,m) l r1 

K= eiir(l+v-7-7K) ]T / dUUa-1(l — U)b~a~1 

T(a)T(b—a) ™=o (lym)(rj—7—yK, m) 8pk2 J0 

X{x y K z y ~ 7 , y 1 ~ m ( l — xu)~(ThyK~rr'm)~1—%i)fKy^'~mz1y~rie~iir{l+m)(l — x1u)~('Y+'YK~1t~m)~1} , 

where 

x=2p/(p+k-i£), y=kx/p, z=£x/p, * i=«(—*) , yi*=y(-k), 2i«=s(—A). 

37 P. M. Moorse and H. Feshback, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), Part I I , 
p. 1465. 

38 W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics (Chelsea Publishing Company, 
New York, 1954), p. 88. 



C A L C U L A T I O N O F # - S H E L L A N D L - S H E L L P H O T O E F F E C T A1057 

The integrals over du are just integral representations for the hypergeometric function.39 Therefore K becomes 

T(y+yK+l-v) l (-l,ni)(l+l,m) 
K= e*(x/2)(H-*-7-7x> X) {xvxzr-vy^Fiy+yK+l—ri—m, a, b, x) 

&pk2 w=o (1,m) (17—7—yx, m) 

— x^KzJ-*y^-me-™v+m)F(y+yK+l--'n—m, a, b, xi)}. 

We can analytically continue the second hypergeometric function40 to obtain finally 
T(y+yK+l-v) * (-l,m)(l+l,m) 1 f 

K(£,a,y,ri) = xvxyzn — ; ei(*l2)U+n-y-yK) £ __—__ :—\F(y+yK+i-.r}-.m) Gj b^ x ) 

-±-eiTr(y+yK—l—ri) 

IV. RESULTS AND DISCUSSION 

1. Presentation and Comparison 

A program was written for Notre Dame's UNIVAC-
1107 computer, to evaluate da/dQ for an arbitrary target 
and photon energy, for the K and L shells. Explicit 
numerical evaluation was done for uranium and lead 
targets and for incident-photon energies of 0.081, 0.103, 
0.279, 0.354, 0.412, 0.662, and 1.332 MeV. At the first 
two energies, the cross sections could only be evaluated 
for the L subshells, as these energies are below the 
Z-shell threshold. The energies were chosen primarily 
to coincide with the experimental values of Hultberg26 

and of Sujkowski27 for which raw angular distributions 
were obtained for the L shell. Some of the correspond­
ing Z-shell angular distributions could also be checked 
against the numerical work of P ra t t et al.15 

The number of partial waves (xi values) included was 
determined by the relative size of the radial matrix 
elements. The partial-wave sum was usually terminated 
when this relative size was down by four orders of 
magnitude. Thus, for example, 11 partial waves were 
used for 0.412 MeV, 16 for 0.612 MeV, and 22 for 
1.332 MeV. Once the xi values were chosen, all the other 
sums were determined by the triangular relations. The 
radial matrix elements were evaluated with double 
precision. Any error in this evaluation was found to be 
in the second word, for all cases. The first word of the 

TABLE I. iC-shell total cross sections in barns for uranium: 
(1) present work, (2) HNO (Ref. 15), (3) Pratt et al (Ref. 15), 
(4) Colgate's absorption measurements (Ref. 19). 

m=o (l,w)(r?—7—yK, w) y' 

'p-\-k—i£Y+yK+l~r>~m 
/p+k-t£\ 
\p+k+iy 

F(y+yK+l—r}—in, b—a, b, x*) 

K (MeV) 

0.279 
0.412 
0.662 
1.332 

39 Reference 
40 Ref erenc< 

(1) 

154.3 
59.47 
20.21 
4.928 

; 38, p. 8. 
i 36, p. 105 

Theoretical 
(2) 

154 
59.5 
20.2 

(3) 

155 
59.9 
20.4 
4.93 

Experimental 
(4) 

58.6±0.2 
19.9±0.1 
4.7±0.1 

radial integrals was used for combining with the vector-
addition coefficients, and this was always exact. The 
programs for determining Racah and C coefficients were 
checked against tables41 and found to be good in the 
first word. Therefore, the main source of error is 
truncation and rounding, incurred in the combina­
tion of radial matrix elements with vector-coupling 
coefficients. 

The total cross sections obtained for the K shell can 
be compared with experimental and previous theoretical 
results, as a rough verification of the present calcu­
lation. This comparison is given in Table I for a number 
of photon energies and a uranium target. The present 
results are seen to be in good agreement with the others. 
Additionally for a lead target and a photon energy of 
0.354 MeV, the total cross section obtained was 
ak~54.95 b, which compares well with the value of 
54.4 taken from the curve of Hulme et al* We shall give 
a discussion of the accuracy of the calculations and the 
checks which have been applied, following presentation 
and comparison of results. 

Exact total cross sections for the L shell, or the L 
subshells, have not been calculated or measured directly. 
Thus the cross sections for the L subshells, given in 
Table I I , cannot be compared explicitly with other 
values. Hultberg,26 however, has measured the ratio 

TABLE II. Total 

Z k (MeV) 

cross sections for the L subshells in 

Li Lu 

barns. 

Lni 

82 

92 

0.081 
0.103 
0.279 
0.354 
0.081 
0.103 
0.279 
0.354 
0.412 
0.662 
1.332 

275.2 
153.9 

12.75 
7.086 

382.4 
219.0 

19.86 
11.26 
7.891 
2.727 
0.6649 

166.2 
81.23 
4.367 
2.250 

322.6 
162.6 

9.710 
5.102 
3.422 
1.055 
0,2365 

170.0 
78.29 
3.294 
1.614 

297.6 
139.4 

6.213 
3.070 
1.98 
0.555 
0.111 

41 A. Simon, J. H. Vandersluis, L. C. Biedenharn, Oak Ridge 
National Laboratory Report No. 1679, 1954 (unpublished). 
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TABLE III. da/dQ in b/sr for (1) present work, and 
(2) Pratt et al., for a uranium target. 

e(°) 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 

£ = 0.662 MeV 
(1) 

1.559 
3.421 
7.339 

10.34 
11.07 
10.08 
8.340 
6.533 
4.969 
3.732 
2.793 
2.093 
1.578 
1.202 
0.925 
0.716 
0.560 
0.445 
0.359 
0.291 
0.239 
0.199 
0.170 
0.146 
0.127 
0.112 

(2) 

1.55 
3.40 
7.29 

10.3 
11.0 
10.0 
8.60 
6.51 
4.95 
3.72 
2.79 
2.09 
1.58 
1.2 
0.92 
0.72 
0.57 
0.45 
0.36 
0.29 
0.24 
0.20 
0.17 
0.15 
0.13 
0.11 

£ = 1.332 MeV 
(1) 

2.734 
4.784 
6.715 
5.675 
3.857 
2.474 
1.569 
1.025 
0.688 
0.477 
0.346 
0.256 
0.192 
0.150 
0.119 
0.094 
0.077 
0.064 
0.052 
0.043 
0.037 
0.031 

(2) 

2.50 
4.32 
6.58 
5.86 
3.86 
2.43 
1.56 
1.01 
0.685 
0.492 
0.344 
0.247 
0.192 
0.155 
0.119 
0.091 
0.076 
0.066 
0.052 

o'k/o'L for uranium, and he finds it to be essentially 
independent of energy and equal to 5.3±0.2. Using the 
results calculated here, we have 

£ (MeV): 0.279 0.354 0.412 0.662 1.332 
<rk/<rL: 4.31 4.41 4.47 4.66 4.87 

for uranium. This ratio changes with energy, but 
slowly. I t is also interesting to note the results, for 

TABLE IV. Differential cross sections in b/sr for the Li, Lu, 
Lm subshells at £ = 0.662 MeV and Z = 92. 

*(°) 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 

Li 

0.219 
0.430 
0.894 
1.290 
1.430 
1.338 
1.128 
0.895 
0.686 
0.518 
0.388 
0.292 
0.220 
0.168 
0.129 
0.100 
0.078 
0.062 
0.050 
0.041 
0.033 
0.028 
0.024 
0.020 
0.018 
0.016 

i n 

1.742 
1.704 
1.543 
1.233 
0.868 
0.562 
0.351 
0.219 
0.138 
0.088 
0.057 
0.037 
0.026 
0.019 
0.014 
0.010 
0.008 
0.007 
0.006 
0.005 
0.004 
0.004 
0.003 
0.003 

Liu 

0.226 
0.339 
0.531 
0.583 
0.476 
0.325 
0.206 
0.131 
0.085 
0.057 
0.039 
0.028 
0.021 
0.016 
0.013 
0.011 
0.009 
0.008 

TABLE V. Differential cross sections in b/sr for the Li, Lu, Lui 
subshells at £ = 1.332 MeV and Z=92. 

on 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 

Li 

0.406 
0.610 
0.824 
0.731 
0.518 
0.340 
0.219 
0.144 
0.098 
0.068 
0.049 
0.036 
0.028 
0.022 
0.017 
0.014 
0.011 
0.0091 
0.0075 
0.0062 
0.0053 
0.0045 

Ln 

1.289 
1.126 
0.712 
0.329 
0.136 
0.060 
0.030 
0.015 
0.0076 
0.0048 
0.0033 
0.0019 
0.0014 
0.0012 
0.0008 
0.0006 

Lm 

0.097 
0.199 
0.264 
0.173 
0.085 
0.043 
0.024 
0.014 
0.0087 
0.0059 
0.0042 
0.0031 
0.0024 
0.0019 
0.0015 
0.0012 

uranium, 

£(MeV): 0.279 0.354 0.412 0.682 1.332 
<rk/<ri.: 7.77 7.61 7.54 7.41 7.41. 

These ratios are surprisingly close to the value of 8 

TABLE VI. da/dti in b/sr for the L subshells, for 
0.081-MeV photons on uranium. 

en 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

Li 

0.969 
1.634 
3.559 
6.552 

10.35 
14.69 
19.33 
24.05 
28.70 
33.12 
37.14 
40.62 
43.42 
45.43 
46.58 
46.88 
46.35 
45.09 
43.18 
40.76 
37.94 
34.83 
31.56 
28.21 
24.88 
21.64 
18.55 
15.66 
13.01 
10.62 
8.512 
6.709 
5.221 
4.056 
3.222 
2.719 
2.552 

An 
27.02 
27.83 
30.13 
33.59 
37.72 
41.96 
45.76 
48.69 
50.45 
50.92 
50.13 
48.24 
45.45 
42.05 
38.27 
34.36 
30.47 
27.77 
23.33 
20.23 
17.47 
15.08 
13.03 
11.30 
9.858 
8.675 
7.714 
6.941 
6.328 
5.848 
5.479 
5.200 
4.994 
4.847 
4.750 
4.694 
4.676 

Lm 

15.84 
17.22 
21.12 
26.89 
33.58 
40.20 
45.86 
49.94 
52.11 
52.37 
50.91 
48.11 
44.38 
40.10 
35.63 
31.24 
27.09 
23.31 
19.94 
17.00 
14.47 
12.33 
10.52 
9.019 
7.774 
6.750 
5.912 
5.229 
4.674 
4.226 
3.866 
3.580 
3.359 
3.194 
3.080 
3.014 
2.992 
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TABLE VII. da/dil in b/sr for the L subshells, for 
0.103-MeV photons on uranium. 

TABLE VIII. d<r/dQ, in b/sr for the L subshells, 
for 0.081-MeV photons on lead. 

e{°) 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

I* 

0.421 
0.908 
2.318 
4.520 
7.324 

10.52 
13.90 
17.26 
20.43 
23.24 
25.55 
27.26 
28.32 
28.71 
28.48 
27.71 
26.50 
24.94 
23.15 
21.22 
19.21 
17.19 
15.22 
13.33 
11.56 
9.915 
8.414 
7.063 
5.862 
4.810 
3.906 
3.148 
2.533 
2.059 
1.723 
1.522 
1.456 

£ n 

18.24 
18.78 
20.29 
22.48 
24.91 
27.16 
28.86 
29.77 
29.78 
28.95 
27.40 
25.34 
22.96 
20.45 
17.96 
15.58 
13.40 
11.45 
9.739 
8.272 
7.034 
6.004 
5.159 
4.474 
3.924 
3.488 
3.145 
2.878 
2.672 
2.516 
2.399 
2.314 
2.253 
2.211 
2.185 
2.170 
2.166 

Liu 

9JS2 
10.44 
13.02 
16.68 
20.68 
24.29 
26.94 
28.32 
28.40 
27.36 
25.46 
23.03 
20.36 
17.67 
15.12 
12.82 
10.79 
9.061 
7.602 
6.392 
5.398 
4.590 
3.935 
3.407 
2.982 
2.640 
2.366 
2.147 
1.972 
1.832 
1.720 
1.631 
1.560 
1.505 
1.467 
1.443 
1.435 

en 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

U 

0.387 
0.994 
2.764 
5.553 
9.145 

13.28 
17.66 
22.03 
26.11 
29.69 
32.59 
34.70 
35.97 
36.41 
36.08 
35.08 
33.51 
31.52 
29.23 
26.75 
24.17 
21.58 
19.03 
16.59 
14.29 
12.14 
10.18 
8.416 
6.839 
5.458 
4.269 
3.271 
2.461 
1.836 
1.391 
1.126 
1.038 

Ln 

17.24 
17.75 
19.20 
21.30 
23.70 
25.97 
27.77 
28.86 
29.12 
28.57 
27.31 
25.50 
23.33 
20.98 
18.59 
16.27 
14.11 
12.16 
10.43 
8.931 
7.659 
6.594 
5.716 
5.000 
4.424 
3.966 
3.605 
3.324 
3.108 
2.943 
2.820 
2.730 
2.666 
2.622 
2.593 
2.577 
2.572 

Liu 

1L93 
12.81 
15.27 
18.83 
22.83 
26.59 
29.55 
31.36 
31.91 
31.28 
29.68 
27.41 
24.73 
21.90 
19.10 
16.48 
14.10 
12.00 
10.20 
8.671 
7.394 
6.340 
5.476 
4.774 
4.206 
3.748 
3.379 
3.084 
2.850 
2.664 
2.519 
2.405 
2.316 
2.248 
2.199 
2.169 
2.159 

predicted by Moroi and Mullin,6 who have neglected 
relative order a2Z2, which is not small for uranium. 

Stobbe42 has calculated nonrelativistic total cross 
sections for the K and L shells, and he gives the ratio 

Rs{dLn+aLlu)/aLl=IB (3+SIB/k)/(k+3IB), 

where IB is the mean ionization energy of the L shell. 

FIG. 1. Relative K-
shell differential cross 
sections for 0.412-MeV 
photons on uranium. 
The present results are 
compared with Hult-
berg's experimental val­
ues, and both are nor­
malized to a maximum 
value of one. 

z = 92 
k - .412 MeV 
Huitberg 
Present Calc. 

If we compare Rs for the energies we have considered 
with the values (R) we have calculated here, for 
uranium, we have 

k (MeV) 0.081 0.103 0.279 0.354 0.412 0.662 1.332 
R8 1.005 0.794 0.302 0.239 0.206 0.129 0.064 
R 1.622 1.38 0.802 0.726 0.685 0.590 0.523. 

The discrepancy is quite large and increases with 
increasing energy, as would be expected. The large 
difference at energies less than the electron rest energy 

FIG. 2. K-shell 
angular distributions 
in b/sr for 0.412-
MeV photons on ura­
nium. Present re­
sults are compared 
with those of Pratt 
et al. The total L-
shell angular distri­
bution is also given. 

Z =92 
k = .412 MeV 
Pratt et a I 

•Present Work 

; M. Stobbe, Ann. Physik 7, 661 (1930). 
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FIG. 3. Angular 
distributions for the 
three L subshells for 
0.412- MeV photons 
on uranium. 

points up the necessity for a relativistic treatment for 
large Z. I t also illustrates the inaccuracy concomitant 
with using Stobbe's formulas for determining ratios of 
cross sections from various shells, as was done by 
White22 for example, when they were essentially all that 
were available. Hultberg26 gives relative differential 
cross sections for the K shell for 0.412, 0.662, and 1.332 
MeV and for Z = 9 2 . We can make a comparison with 

his results by normalizing both his and our angular 
distributions to maximimum values of unity. Figure 1 
has this comparison for £ = 0.412 MeV, for which it 
should be remembered that we have neglected every­
thing but the pure Coulomb interaction. We can also 
compare the i£-shell angular distributions with the 
numerical results obtained by Prat t et al.u In Fig. 2 
we have plotted the differential cross sections obtained 
here and by Prat t for 0.412-MeV photons on uranium. 
The curves can be seen to be essentially on top of one 
another. The numerical results for the other energies 
of Hultberg's experiment, for uranium, are compared 
with those of Prat t et aL in Table I I I . For all three 
energies, the two sets of values are in agreement, within 
the accuracy of the present work and that stated by 
Prat t et at. 

Figure 2 also contains a plot of the differential cross 
section for the entire L shell. The area under this curve 
is seen to be a non-negligible fraction of that under the 
Z~-shell curve. The shapes of the two curves differ a 
little. This is due to the fact that the differential cross 
section for the Lu subshell is large, relative to those for 
the other L subshells, in the forward direction. This 
is shown in Fig. 3, which illustrates the separate contri-

TABLE IX. da/dQ in b/sr for the L subshells, for 
0.103-MeV photons on lead. 

TABLE X. da/dQ in b/sr for the K and L shells, 
for 0.279-MeV photons on uranium. 

en 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

Xi 

0.161 
0.632 
2.000 
4.131 
6.822 
9.828 

12.88 
15.75 
18.21 
20.13 
21.42 
22.07 
22.12 
21.63 
20.71 
19.47 
18.01 
16.43 
14.80 
13.18 
11.62 
10.14 
8.764 
7.503 
6.363 
5.344 
4.442 
3.652 
2.967 
2.380 
1.885 
1.477 
1.151 
0.902 
0.727 
0.624 
0.589 

Lu 

11.12 
11.45 
12.34 
13.58 
14.88 
15.94 
16.58 
16.67 
16.22 
15.32 
14.08 
12.64 
11.14 
9.654 
8.226 
7.014 
5.915 
4.973 
4.182 
3.528 
2.995 
2.567 
2.227 
1.960 
1.752 
1.592 
1.470 
1.378 
1.309 
1.258 
1.221 
1.195 
1.177 
1.166 
1.159 
1.156 
1.155 

Liu 

6.998 
7.559 
9.101 

11.25 
13.51 
15.42 
16.65 
17.06 
16.69 
15.69 
14.26 
12.62 
10.94 
9.332 
7.871 
6.592 
5.502 
4.593 
3.847 
3.244 
2.760 
2.376 
2.073 
1.832 
1.640 
1.488 
1.366 
1.271 
1.196 
1.137 
1.091 
1.054 
1.024 
1.000 
0.981 
0.969 
0.965 

en 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

K 

0.220 
2.091 
7.180 

14.13 
21.32 
27.34 
31.41 
33.30 
33.26 
31.74 
29.24 
26.24 
23.06 
19.96 
17.07 
14.46 
12.18 
10.20 
8.529 
7.120 
5.942 
4.964 
4.154 
3.489 
2.945 
2.502 
2.141 
1.848 
1.612 
1.422 
1.272 
1.155 
1.066 
1.000 
0.955 
0.928 
0.920 

Li 

0.023 
0.273 
0.961 
1.920 
2.934 
3.799 
4.380 
4.633 
4.590 
4.325 
3.923 
3.456 
2.979 
2.526 
2.117 
1.760 
1.455 
1.199 
0.986 
0.810 
0.667 
0.552 
0.459 
0.384 
0.324 
0.275 
0.237 
0.207 
0.183 
0.165 
0.151 
0.139 
0.131 
0.125 
0.121 
0.119 
0.118 

Lu 

4.081 
4.166 
4.347 
4.463 
4.376 
4.049 
3.543 
2.958 
2.382 
1.871 
1.445 
1.106 
0.844 
0.643 
0.491 
0.378 
0.294 
0.233 
0.189 
0.156 
0.132 
0.113 
0.100 
0.090 
0.083 
0.078 
0.074 
0.071 
0.069 
0.068 
0.066 
0.065 
0.064 

Lui 

U 3 0 
1.347 
1.876 
2.433 
2.758 
2.749 
2.467 
2.045 
1.606 
1.222 
0.916 
0.686 
0.516 
0.392 
0.302 
0.236 
0.189 
0.156 
0.133 
0.116 
0.102 
0.090 
0.081 
0.074 
0.069 
0.060 
0.056 
0.053 
0.050 
0.048 
0.047 
0.046 
0.044 
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butions from the L subshells. The L-subshell angular 
distributions for 0.662- and 1.332-MeV photons on 
uranium are given in Tables IV and V. 

A number of additional differential cross sections, for 
the K and L shells, are presented in Tables VI -XI I I . 
These are given for lead and uranium targets, and for a 
number of photon energies. The values of 0.081, 0.103, 
and 0.279 MeV correspond to Sujkowski's27 experi­
mental energies for Z = 9 2 . He has measured the ratio 
(o-Li+cTLii)/o"Lni for 0.103 MeV. If we compare his 
value with ours we have 

(O-LI+O"LII)/O-XIII= 2.74 present work 

= 3.03±0.15 Sujkowski 

in fair agreement. This would seem to indicate that 
the effects of screening are not the same for all three 
subshells, at this energy. We can also compare the 
ratio (TLu/vLni for 0.081 MeV and Z = 9 2 . We have 

<rLii/<rLm = 1 -08 present work 
= 0.92±0.15 Sujkowski. 

This result is almost within the experimental error. 
In general, poorer agreement should be expected as the 

TABLE XI. dar/dD, in b/sr for the K and L shells, 
for 0.354-MeV photons on uranium. 

<K°) 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

K 

0.546 
2.403 
7.243 

13.29 
18.70 
22.27 
23.69 
23.26 
21.55 
19.16 
16.53 
13.95 
11.60 
9.544 
7.796 
6.343 
5.152 
4.184 
3.403 
2.775 
2.274 
1.879 
1.560 
1.310 
1.111 
0.954 
0.832 
0.736 
0.661 
0.603 
0.558 
0.525 
0.500 
0.482 
0.470 
0.462 
0.460 

Xi 

0.068 
0.299 
0.916 
1.715 
2.463 
2.983 
3.205 
3.159 
2.924 
2.585 
2.212 
1.849 
1.521 
1.238 
1.002 
0.806 
0.648 
0.522 
0.421 
0.341 
0.278 
0.228 
0.189 
0.159 
0.135 
0.117 
0.102 
0.091 
0.082 
0.076 
0.071 
0.068 
0.065 
0.063 
0.062 
0.061 
0.061 

Ln 

3.081 
3.122 
3.181 
3.124 
2.877 
2.474 
2.005 
1.555 
1.171 
0.866 
0.635 
0.464 
0.340 
0.250 
0.187 
0.142 
0.110 
0.087 
0.070 
0.058 
0.050 
0.044 
0.039 
0.035 
0.033 
0.031 
0.029 
0.028 
0.027 
0.027 
0.027 
0.026 
0.026 

Liu 

0.702 
0.876 
1.270 
1.615 
1.722 
1.581 
1.301 
0.996 
0.733 
0.530 
0.382 
0.277 
0.203 
0.152 
0.117 
0.094 
0.077 
0.064 
0.055 
0.048 
0.042 
0.038 
0.034 
0.031 
0.028 
0.026 
0.025 

TABLE XII. dv/dQ, in b/sr for the K and L shells, 
for 0.279-MeV photons on lead. 

en 
0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

K 

0.158 
1.918 
6.604 

12.73 
18.61 
23.00 
25.34 
25.73 
24.60 
22.49 
19.88 
17.15 
14.52 
12.13 
10.04 
8.246 
6.742 
5.498 
4.478 
3.649 
2.975 
2.430 
1.989 
1.635 
1.352 
1.126 
0.945 
0.800 
0.684 
0.592 
0.521 
0.466 
0.425 
0.394 
0.373 
0.360 
0.356 

Li 

0.018 
0.249 
0.867 
1.683 
2.475 
3.067 
3.377 
3.413 
3.237 
2.928 
2.557 
2.176 
1.818 
1.498 
1.223 
0.992 
0.802 
0.646 
0.521 
0.420 
0.340 
0.276 
0.225 
0.185 
0.153 
0.128 
0.108 
0.092 
0.080 
0.070 
0.063 
0.057 
0.053 
0.050 
0.048 
0.047 
0.046 

LU 

2.130 
2.172 
2.255 
2.288 
2.199 
1.979 
1.675 
1.350 
1.050 
0.797 
0.598 
0.445 
0.331 
0.246 
0.185 
0.141 
0.110 
0.088 
0.072 
0.060 
0.052 
0.046 
0.041 
0.038 
0.036 
0.034 
0.033 
0.032 
0.031 
0.031 

Liu 

0.742 
0.860 
1.141 
1.424 
1.566 
1.521 
1.330 
1.076 
0.826 
0.617 
0.457 
0.340 
0.255 
0.194 
1.149 
0.117 
0.095 
0.079 
0.068 
0.060 
0.053 
0.047 
0.042 
0.039 
0.036 
0.034 

energy decreases, since the effects of screening on the 
final electron become more important.1 

2. Checks and Accuracy 

Two types of checks were made on the calculation. 
The first of these was to take a low Z value (Z= 5), and 
to compare the resulting angular distributions and total 
cross sections with those obtained from the approximate 
calculations of Gavrila.8'17 Qualitative agreement was 
obtained for all four shells, but the quantitative dis­
parity was as large as 10% in some places. 

A more stringent check was needed, and this was 
obtained by replacing the final-state wave function 
with the first term of the Sommerfeld-Maue wave 
function.43 We shall briefly indicate the procedure. For 
the conjugate of this replacement we have 

\f//=Nfe-^'TF(iv, 1, # r + i p T ) « t ( p ) y 

where iV/=r(l—iv)ev i r !2 . For the numerical program, 
this can be incorporated by changing the radial matrix 
elements. The position-dependent part of ^ / can be 

43 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935). 
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TABLE XIII. da/dil in b/sr for the K and L shells, 
for 0.354-MeV photons on lead. 

0(°) K Li Lu Liu 

expanded in a series of Legendre polynomials as 

e-w-'Fiiv, 1, ipr+ivr) = y£ ai(pr)Pi(p-f), 
i 

and the coefficients ai(pr) can be determined in the 
usual way. Following Gordon44 we obtain 

i 

where 
T(l+l-ip) 

£i(pr)^evr^iW (2pr)1 

r ( 2 / + 2 ) 

XF(l+l-iv, 21+2, ~2ipr). 
44 W. Gordon, Z. Physik 48, 187 (1928). 

Expressing Pi(p-f) in terms of spherical harmonics this 
becomes 

l,m 

= 4x E Cxim;(-igx*VximiHr),fx*n^imi(r)). 

Using the orthogonality of the Qxm's and the relation45 

<T • ptixm (p) = — Q-xm (P) 

we get 

^ x\m\ ~ v^ximi \P)-p) 

/W+m\V2 

/W-m\12 

By inserting gXl* and fx* into the radial matrix elements 
the replacement is accomplished. In addition, to 
simplify the corresponding analytical calculation, we 
set r'yi~1= 1 for the K, Li, and Lu bound-state functions 
and r'y2~1 = r for the L m bound state. The radial matrix 
elements can be evaluated in a manner similar to the 
previous ones, and the analytical cross sections could 
be evaluated in a straightforward way. Both were 
evaluated for Z = 5 and & = 0.200 MeV. Twelve partial 
waves were required in the numerical part. The agree­
ment obtained was better than 1% for the K, Li, and 
Zn shells, and about 1% for the Z m subshell. 
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0.332 
1.968 
6.127 

11.07 
15.09 
17.30 
17.66 
16.63 
14.80 
12.65 
10.52 
8.578 
6.909 
5.519 
4.387 
3.481 
2.762 
2.195 
1.748 
1.398 
1.123 
0.910 
0.742 
0.611 
0.508 
0.428 
0.366 
0.318 
0.280 
0.250 
0.228 
0.211 
0.198 
0.189 
0.183 
0.179 
0.178 

0.042 
0.250 
0.783 
1.428 
1.968 
2.273 
2.328 
2.191 
1.943 
1.652 
1.364 
1.105 
0.883 
0.700 
0.553 
0.435 
0.343 
0.271 
0.215 
0.171 
0.137 
0.111 
0.090 
0.074 
0.062 
0.052 
0.045 
0.040 
0.035 
0.032 
0.029 
0.027 
0.026 
0.025 
0.024 

1.566 
1.585 
1.604 
1.551 
1.393 
1.159 
0.905 
0.676 
0.491 
0.351 
0.249 
0.177 
0.126 
0.091 
0.068 
0.051 
0.040 
0.032 
0.026 
0.022 
0.020 
0.018 
0.016 
0.015 
0.014 
0.013 
0.013 
0.012 

0.453 
0.546 
0.752 
0.922 
0.954 
0.852 
0.684 
0.512 
0.370 
0.265 
0.189 
0.137 
0.100 
0.075 
0.058 
0.047 
0.039 
0.033 
0.028 
0.024 
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0.020 
0.018 
0.016 
0.014 
0.013 


