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A two-parameter many-body correlated Gaussian wave function is used to calculate the expectation 
value of the Hamiltonian for N one-dimensional particles interacting through the one-dimensional analog 
of an atomic potential. Using a potential equal to four times the Slater-Kirkwood He-He potential, we cal
culate the optimum average interparticle separation, the ground-state energy, and the velocity of sound of 
the system as a function of particle mass. It is found that the correlated Gaussian always gives an improve
ment in energy compared with an uncorrelated Gaussian. 

I. INTRODUCTION 

UNCORRELATED Gaussian orbitals have been 
used by Bernardes and Primakoff1 for the con

struction of a Heitler-London type trial wave function 
in a calculation of the ground-state properties of solid 
He3, and recently by Nosanow2 and Mullin3 as factors 
in a Jastrow-type wave function for calculations on 
solid He3 and solid Ne, respectively. In this paper we 
wish to present a many-body calculation using a 
correlated Gaussian wave function. This calculation is 
intended to be a particularly straightforward application 
of a more general approach to the construction of trial 
wave functions appropriate to structured systems. 

The general approach consists of using a wave func
tion which is an appropriately symmetrized sum of all 
coordinate permutations of a function ^r(^i,x2,* • - ,xN) 
which has the property p W \ f r p ( ^ < ^ w n e r e P<*) and 
PU) denote different permutations. The specific calcu
lation will be that of the ground-state energy of a 
system of particles, confined to a ring, which interact 
with the one-dimensional analog of an atomic potential. 

In the analysis, a two-parameter, iV-particle wave 
function—the ground-state eigenfunction of the coupled-
harmonic-oscillator Hamiltonian—will be used. One 
parameter b determines the average interparticle 
spacing; the other a essentially determines how strongly 
the particles resist overlapping each other. The circum
ference of the ring will be L=Nb so that periodic 
boundary conditions can be applied and end effects 
eliminated. 

The expectation value E(b,a) of a Hamiltonian 

3=i:(pi2/2fn)+Z Vfa-Xj) 
i<j 

will be minimized with respect to b and a for various 
values of m. If the potential has a sufficiently strong 
attractive part, the minimum E0=E(bo,ao) will be 
negative and will occur at a finite value of b. This 

1 N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960) 
2 L . H. Nosanow, Phys. Rev. Letters 13, 270 (1964); the <p 

function used in this reference is not really a Gaussian, but can 
be analytically approximated by a Gaussian over a certain range 
of the variable. 

3 W. J. Mullin, Phys. Rev. 134, A1249 (1964). 

A 

corresponds, except for end effects, to the calculated 
equilibrium density of the solid into which the N 
particles would condense at absolute zero if placed on a 
ring whose circumference were greater than Nbo. 

A comparison will be made between the results of 
this calculation of a calculation using uncorrelated 
Gaussian orbitals. It will be shown that the correlated 
function always yields a lower energy. 

II. GENERAL CONSIDERATIONS 

Consider the wave function 

(2) 

where ]£ P means the appropriately symmetrized 
sum over all permutations of the variables. Suppose 
that ^ has the property that (P<*>*)(P <>>¥)/**«(), 
where the superscripts denote different permutations, 
and that ^(xni,xn2,xni,' • •) is only large when xni+1 

~xni-\-b. Then 

f * 
J £ 

N/2 t r 
X) f(%i—xi)dx/ /1 Wx, (3) 

where the most convenient ordering of coordinates has 
been chosen, and where cross terms between different 
permutations have been dropped.4 It has also been 
tacitly assumed that periodic boundary conditions will 
be applied so that XN+I—XI-\-L. 

Equation (3) is most easily justified when 

(1) NQr \P^i+1)^)/(^r | ^ ) « 1 , 
with 

(M>" I p(*-*+»)\£ W (\J/ I p(i.*-fl)-vj>\n . 

where the superscript on P denotes the cycles into which 
4Notational conveniences which will be followed in the re

mainder of the paper have been mtroduced: ^^>£(#i>#2,#3, • • • ,XN), 
i.e., all of the coordinates listed in order; >£(xmvxm2,• • -,xmn) will 
mean that the n variables given explicitly are in that order while 
all the rest are in the same order as in SF; and, dx^dx\dxi- • -dxN* 
Symmetrized wave functions will always be denoted by <£ and 
unsymmetrized wave functions by SP. 
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the permutation can be resolved.5 We shall discuss in 
Sec. V how well the wave function which will be given 
in Eq. (6) and used as a basis for numerical calculations 
in this paper meets the above criteria. Meanwhile we 
shall use Eq. (3). 

We also note that, to the extent to which Eq. (3) 
is valid, expectation values of two-body operators are 
the same whether the particles considered are bosons 
or f ermions. This is not surprising in view of Girardeau's6 

result that the energy spectrum of one-dimensional 
Bose and Fermi systems are identical when the two-
body potential has a rigid core. 

III. GROUND-STATE ANALYSIS 

A possible choice for ^ is the well-known ground-state 
eigenfunction of the coupled-harmonic-oscillator Hamil-
tonian 

# ( 1 ) = E (P?/2m)+W £ (xi+1- xr W 
Under the substitutions xn+i—xn—b=qn+i—qn, and the 
canonical transformation qn= ( 1 / V ^ O S * einsQs, pn 
— ̂ 2s e~insPs1 H(l) assumes the form of the Hamiltonian 
for a sum of uncoupled harmonic oscillators. The corre
sponding unnormalized ground-state wave function7 is 

¥ « = e x p { - (m/2h)E <*JQ.*Q.), (5) 

where us
2=Q2(2 sins/2)2/m and S=2TI/N, ~N/2<1 

<N/2. Unnormalized wave functions will be used 
throughout this paper. The summation sign without 
explicit limits will be used to denote a sum over the 
entire range of the indicated index. 

At this point, a departure from the conventional8 

treatment will be made and the wave function will be 
re-expressed in terms of the qn. The result is 

^ i = e x p { - -a2 E g(* 
nn' 

-n)qnqn 

where a2=2titn1/2/irh and 

g(m) = 
sin7r/iV 

2N cos(2irm/N)-cos(T/N) 

(6) 

(7) 

For N large and (n—n')/N small, g(m) may be approxi
mated by the larger of 

g
f{m)={l-^m2)-1 (8a) 

or 
Y W = [ l - 4 ( j f » | - i V ) a ] - 1 . (8b) 

5 See, e.g., E. P. Wigner, Group Theory (Academic Press Inc., 
New York, 1959), p. 124. 

6 M. Girardeau, J. Math. Phys. 1, 516 (1960). 
7 See, e.g., E. M. Henley and W. Thirring, Elementary Quantum 

Field Theory (McGraw-Hill Book Company, Inc., New York, 
1962), pp. 1-21. 

8 The author has been unable to find a development in the 
literature exactly paralleling that occurring between Eqs. (6) 
and (9) here. However, R. M. Fowler and T. E. Sterne [Rev. 
Mod. Phys. 4, 635 (1932)] have discussed the form of the wave 
function in coordinate space for three particles coupled by a 
harmonic potential. 
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INTERPARTICLE SEPARATION (A) 

FIG. 1. Optimum energy per particle for various particle masses 
as a function of average interparticle separation and two-body 
interaction V{x) as a function of particle separation x. Energies 
for correlated and uncorrelated Gaussian wave functions are 
given by the solid and dashed curves, respectively. 

Since X g(n—nf) = 0, the function ^i is translation-
ally invariant, and the permutation (xhx2, • • • ,XN) 
leaves the value of M̂ i unchanged. Thus such permu
tations should be excluded from the sum over all 
permutations. 

If all of the coordinates except for qm are considered 
fixed, the dependence of the wave function upon qm 

can be written 

^ i=exp{— a2 X) [_g(n—m) — g(n—m)g(ri—in)~]qnqn>} 

X e x p { - a 2 [ ^ m + Z g{n—m)qn~]2} . (9) 

The second factor makes ^ i a maximum for qm 

= ~Z)n^m g(n—m)qnqm and, since the g(k) drop off 
rapidly as the argument increases, the mth. particle 
will be constrained primarily to lie between q^i and 
qm-i. Thus, the function "^i is equal to unity when all 
of the qi are equal to zero or a constant, but, by adjust
ing a, it can be made to become very small as two 
particles approach each other. 

The definition we have chosen for the qn, namely 
#n+i— qn=xn+i— xn—b, applies only to^fi(xhx2,' • -,xN) 
and implies that qn=xn—nb+ constant. In the custom
ary definition, the constant is equal to zero and for con
venience we shall also choose this value. Thus the argu
ment of the exponential in Eq. (6) is —a2 £ n n ' g(n—n/) 
X (xn—nb)(xn'—n'b); however, it should be noted that 
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in constructing <£ out of tyly the coordinate indices are 
permuted, but the numbers which are coefficients of /; 
and arguments of g are not. Since Eq. (3) allows us to 
work with one particular permutation, we have merely 
chosen the most convenient one in the expression just 
given. 

Further development is straightforward. Using H 
as denned in Eq, (1), and noting that 

Pi2 ( im O2 \ 
E — ^ 2 = ( E f e + i - ^ - ^ ) 2 1 ^ 2 

~ n \-K\/m 2 / 2m 

we obtain 

E(b,a) = N 
2M2 

w\/m 
[7(y)-if f(y-6)8 ] 

xny)dy/ hPHy)dy\ , (10) 

where E(b,a)^($\H\$)/($\$), the transformation 
7}(x2+xi) = X, %2~x±=y has been made, 

^2 (y) = / ^i2(y,X9Xz} • • • ,xN)dXdxz, • • •, dxN, (11) 

and it has been assumed that V(2b)<£V(b) .9 From the 
form of Eq. (10) it is clear that if all the coordinates 
but two are integrated out, the argument of the ex
ponent will be a quadratic form in the remaining two 
coordinates. Furthermore, the center-of-mass depend
ence on these two coordinates should vanish because 
the two particles are no longer constrained to be at any 
particular point on the ring. Thus we can take 

^2(3/) = exp[ -2co : 2 (3 ' -^ 2 ] - (12) 

I t can be found that c=w2/16 by noting that 
(^2\^JL(qi+i—qi)2\^2) is well known from the 
problem of the coupled harmonic oscillators so that the 
value of the second integral in Eq. (10), which depends 
on c, is known and c can be determined. Equation (10) 
then becomes 

E(b,a) h2a2 a/7r\1/2 

N 2m 2\2> 

X V(y)exp\ \dy. (13) 

9 The neglect of all but nearest-neighbor interactions is not 
really necessary and is primarily made to simplify the form of 
Eq. (10). The most distant interactions may be included by 
adding to Eq. (10) the terms 

where 

and 

2 jW(yn)V(yn)dyn/ j+rKyn)dyn 

X » = J ( ^ l + * n + 2 ) yn = Xn+2—Xl 

W - / 
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FIG. 2. Values of optimum kinetic energy, potential energy, 
total energy, particle separation and xao/v 8 as a function of 
particle mass. 

Since the kinetic-energy term is proportional to a2 and 
the width of the Gaussian to (1/ce) it is clear that there 
must be an optimum value of a for which \p2 does not 
overlap the hard core very strongly and the kinetic 
energy is not too large. 

IV. NUMERICAL RESULTS 

A. Results with Correlated Wave Function 

The numerical work involved in minimizing E with 
respect first to a and then to b has been accomplished 
by means of an IBM-7094 computer program. I t was 
found that, for particles of atomic weight 4, a bound 
system would not result if a one-dimensional analog 
of the Slater-Kirkwood10 He-He potential were used; 
an interaction equal to four times this potential was 
arbitrarily chosen and this gave binding. The exact 
potential used was 

F(y) = 1925 e x p ( - 4 . 6 y ) - 3 . 7 2 5 / / , (14) 

^HXndXi' ' •dXn+ldXn+.S' ' 'dXN> 

where the units are eV and A. 
The singularity in the potential at ;y=0 was avoided 

by simply starting the numerical integration at 1 A. 
The ratio of the value of I'TOO^Hy)]' a^ this point to 
the value at the potential minimum was typically 10~4. 
Thus the value of the integral would be unaffected by 
any assumed nonsingular behavior for y< 1 A. 

A graph of this potential and of the minimum value 
of E/N for various values of b are given by the solid-
line curves of Fig. 1 for particles of various atomic 
weights. The graph has not been extended to values of 
b much greater than the optimum value b0; in this 
region the wave function $ forces an unstable configura
tion upon the system and becomes a poorer trial wave 

10 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931). 
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FIG. 3. Classical and calculated quantum-mechanical 
velocity of sound as a function of particle mass. 

function since, as b increases, the average potential 
which a particle sees looks less and less like a harmonic 
potential. This latter point is illustrated by the fact 
that E became positive for sufficiently large values of 
b in all systems for which binding was obtained. I t 
should be noted that for 6 > 3.26 A the second derivative 
of the potential is negative so that the particles will 
on the average reside on a local potential maximum. 

In order to show the effect of particle mass, a plot 
of 7rao/\/8, bo, Eo, and the kinetic- and potential-energy 
contributions to Eo for various values of particle mass 
is given in Fig. 2. Thus the fact is demonstrated that a 
particle can be more sharply localized for the same 
expenditure of kinetic energy as its mass increases. 

I t is a straightforward matter to obtain the compressi
bility and from this the long-wavelength limit of the 
velocity of sound as a function of particle mass from 
the numerical results presented in Fig. 1. The results 
of such a calculation are shown in Fig. 3 together with 
the velocity of sound c=yo[_V"'(yo)/m]l/2 of the corre
sponding classical system in which the equilibrium 
separation of the particles is y0 and the potential 
minimum is V(yo). 

B. Comparison with Uncorrelated Gaussian 

I t is a straightforward calculation to show that if, 
instead of S î, 

^ 2 = e x p { - ( 7 r a / 8 ) 2 i : ^ 2 } 

had been chosen originally, Eq. (13) would have been 

E'(b,a)/N= (ir*/8)(EK(b,a)/N)+Ev(b,a)/N, 

where EKib^+Evib^aj^Eib.a) and EK and Ev have 
their most obvious meaning. Thus, for any value of b, 
the optimum ^ i will always give a lower energy than 

the optimum ^ 2 . This improvement will be greatest in 
loosely bound systems where the kinetic and potential 
energies are almost equal. 

The minimum values of E'/N for various values of b 
are shown by the dashed curves of Fig. 1. 

V. DISCUSSION 

An inspection of ^ i shows that 

^ i P ( w ) * i « e x p [ - (7rab)2/S2^i2 

so that ^ i satisfies the first of the criteria given in 
Sec. I I only when i\r<3Cexp[(7ra&)2/8]. Using a typical 
value of a from Fig. 2, one obtains N<£1013. For the 
purposes of this paper, it will simply be assumed that 
a large but finite system is being treated, i.e., 1<C/V 
<<C1013, and that, since it would be very odd if a calcu
lation diverged at A^IO 1 3 , the results are probably 
valid in the limit N—» oo. 

We intend to treat the permutation problem in 
greater detail in a subsequent publication and to give 
a systematic method by which contributions from 
permutation terms can be assessed. The resolution of 
this problem is necessary if one wishes to explore a 
more interesting system—one in which the particles 
are penetrable—using this one-dimensional model. As 
pointed out by Lieb and Liniger,11 a system of one-
dimensional penetrable particles is the closest one-
dimensional analogy to a three-dimensional, inter
mediate density system. In addition, the effects of 
statistics will be apparent only when ^ P ^ terms are 
retained. 

The numerical results obtained in this paper are 
probably not very accurate—at least for the lower 
mass systems. The reason for this is that the Gaussian 
does not cutoff rapidly enough when the hard cores 
of the particles begin to overlap; the width of the 
optimum Gaussian is then too narrow and the kinetic 
energy is too high. The main purpose of this paper is to 
show that the right correlated Gaussian function can 
be easily handled in a many-body calculation, and that 
such a function leads to an improvement in the energy 
over a calculation using an uncorrelated function. Thus 
it is possible that an improved Jastrow-type trial wave 
function could be constructed using a three-dimensional 
correlated Gaussian as a factor. We intend to investi
gate this possibility in the future. 
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11 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 


