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Recently, Lebowitz and Rubin, and Resibois and Davis, showed that the Fokker-Planck equation for 
the distribution function of a Brownian particle (B particle) of mass M, in a fluid of particles of mass m, 
may be derived directly from the Liouville equation for the joint distribution of fluid and B particle. It is 
the lowest order term in a (m/M)1/2 expansion of the effect of the fluid on the distribution of the B particle. 
These authors studied in particular the steady-state distribution function of B particles acted on by a small 
constant external field E, which results from a balance between the effects of the driving force and those of the 
fluid. In this paper we extend these studies to the case where the B particle is acted on by a time-dependent 
field E eiat. We find that the effect of the fluid on the distribution function of the B particle is again given, to 
lowest order in (m/M)1/2, by a Fokker-Planck term, albeit one with a frequency-dependent friction constant, 
M£(co^yY0(^(0) -^(O) eiutdt. Here JF is the microscopic, 2V-body force acting on a stationary B particle and 
the average is over the equilibrium distribution function of the fluid in the presence of this fixed B particle. 
We further show that — M£(u>)Yo eiat is equal to the force acting on a B particle moving through the fluid 
with a prescribed small velocity VQ eiat. Under appropriate circumstances this latter force may be computed 
from kinetic theory or from hydrodynamics. We thus have complete agreement between our microscopic 
theory and that obtained from stochastic considerations. We also clarify the relation between the different 
formalisms used by Lebowitz and Rubin and by Resibois and Davis. 

I. INTRODUCTION 

THE theory of Brownian motion was developed 
initially by Einstein and Smoluchowsky and later 

elaborated by Langevin and others.1 Describing the 
effect of the fluid particles of mass m on a Brownian 
particle (B particle) of mass M, M^>m> in a schematic 
stochastic fashion, their results are summarized in the 
Fokker-Planck equation for the distribution function of 
the B particle in its position and velocity space /(R,V,0, 

df(R,V,t)/dt+ V df/dR+M^Y- df/dW 
=fa/aV-[V+(/3if)-1a/aV]/. (l.i) 

Here Y is the total external nondissipative force acting 
on the B particle, f is the friction constant of the B 
particles in the fluid, and $={kT)~l is the reciprocal 
temperature of the fluid. The right side of (1.1) repre
sents the effect of the fluid on the B particles, and will 
be called the Fokker-Planck term. 

Recently Lebowitz and Rubin,2 and Resibois and 
Davis3 have developed a "microscopic" theory of 
Brownian motion.4 They start with the Liouville equa
tion for the distribution function /* of the whole system 
consisting of the host fluid and B particle. A transport 

* Work supported by the U. S. Air Force Office of Scientific 
Research, Grant No. 508-64. 

1 For details and references see S. Chandrasekhar, Rev. Mod. 
Phys. 15, 1 (1943); M. C. Wang and G. E. Uhlenbeck, ibid. 17, 
323 (1945). 

2 J. Lebowitz and E. Rubin, Phys. Rev. 131, 2381 (1963). 
3 P. Resibois and R. Davis, Physica 30, 1077 (1964). 
4 For a "kinetic" derivation see also M. S. Green, J. Chem. Phys. 

19, 1936 (1951); J. Lebowitz, Phys. Rev. 114, 1192 (1959); 
R. M. Mazo, J. Chem. Phys. 35, 831 (1961). 

equation for / then results after integration over the 
variables of the fluid particles, in certain limits involving 
the size of the fluid and the time scale. The equation 
they arrive at is of the same form as (1.1), to the lowest 
order in the mass ratio of fluid and B particle, with an 
explicit, if unevaluated, molecular expression for f, 

iff=i/3 lim 
tQ~*0O f 

Jo 

e-ti*(S(0).$(t))dt. (1.2) 

Here $(t) is the total force exerted on the B particle at 
time t by the molecules in the surrounding fluid. Its time 
dependence is determined by the solution of the molecu
lar equations of motion subject to the condition that the 
B particle is held fixed in position. The average is over 
an equilibrium ensemble at temperature T. 

Lebowitz and Rubin and Resibois and Davis con
sidered in particular the case where there is a small 
constant external force, say an electric field E, acting 
on the B particle. This force corresponds to the term Y 
in (1.1) and has the effect of preventing the ^-particle 
distribution / from reaching equilibrium. Instead / 
reaches, as / —»<*>, a stationary nonequilibrium value in 
which the "driving" effect of the external force on the 
B particle is balanced by the dissipative effect of its 
interaction with the fluid which is represented to lowest 
order in (m/M)112 by a Fokker-Planck term. Higher 
order terms in (m/M)112 were also computed by these 
authors. 

In this note we carry further, and show the complete 
agreement between, the ideas developed in Refs. 2 and 3. 
In Sec. II we derive a "generalized transport" or master 
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equation for the distribution / of a B particle acted on 
by a small oscillatory electric field Eei(at. The method 
used here is simpler than that used previously and we 
try to point out along the way the precise nature of the 
limits taken and assumptions made in deriving an 
irreversible equation for / . 

In Sec. I l l we consider the steady-state distribution 
achieved by / as t —> oo, which represents a balance be
tween the external oscillatory force and the effect of the 
fluid. We find that the effect of the fluid may still be 
represented, to lowest order in (m/M)112, by a Fokker-
Planck term albeit the friction constant f is, in general, 
a function of co, 

/.CO 

j |ff(«) = $0 lim / ^ / ^ - ^ ^ ( 0 ) - ^ ( 0 ) ^ (1.3) 
to-+«J0 

reducing to (1.2) when co=0. 
In Sec. IV it is shown that the friction constant f (a>) 

is precisely the same as one would obtain by considering 
the force Fy(w) acting on a B particle moving through 
the fluid with an externally imposed small velocity 
\oeiut; /3mVo2«l, 

F F ( o O = - M f ( c o ) V 0 ^ . (1.4) 

In this latter case the B particle does not have any 
degrees of freedom but acts merely as a source of 
external potential for the fluid. The relation (1.4) is, of 
course, the one generally used in the macroscopic1 

theories of Brownian motion for defining the friction 
constant f (for co=0). Our result thus shows a complete 
agreement between the dynamical and stochastic 
theories of Brownian motion. The evaluation of f (co) 
from the appropriate kinetic theory (e.g., the Boltz-
mann equation for a dilute gas) or from hydrodynamics 
is also discussed in this section. 

In Sec. V we show the complete agreement (despite 
different appearances) between the transport equation 
for / derived here (which coincides in form with that of 
Ref. 2) and that obtained from the general Prigogine-
Resibois5 theory (which coincides with that of Ref. 3). 

II. GENERAL FORMULATION 

The Hamiltonian of our system, consisting of host 
fluid and B particle will have the form,2 

+ CE «( r -R)] = # i + # d - t / , (2.1) 

where r* and v» are the position and velocity of the ith. 
fluid particle. Here Hi and Hi are, respectively, the 
Hamiltonians of the isolated B particle and the isolated 
fluid and U is the interaction between them: x(R) is an 

5 I . Prigogine and P. Resibois, Physica 27, 629 (1961). 

external potential acting on the B particle and <p(ri3) the 
interaction between two fluid particles. The whole 
system is enclosed in a periodic box of volume 12. 

Consider now a situation where at time £=0 we turn 
on an external electric field6 equal to the real part of 
~Eei<at. This field acts only on the B particle which has a 
unit charge. The joint distribution function of the whole 
system /z will obey the Liouville equation, for / > 0 , 

dii(x,y9t)/dt= -(v,H)~yei0}tE- d/z/dv 

N 

= - L [ v r dfx/du— £ d<p(rij)/du- dfx/dVi 

— du(ti—R)/dri- d/z/dvj 

- Y O dfx/dR- dX/dR'dn/d\+¥- d/x/dv] 

- Y [ ^ E - < V d v ] , (2.2) 

where (tx,H) is the Poisson bracket between JJL and H and 
we have set m— 1, M=y~2, V=YV, 

# = ( R , v ) , y = 0 v - T „ , v i , - • • ¥ „ ) . (2.3) 
Also, 

F = -dU/dR= - Z ; du(Ti-R)/dR (2.4) 

is the microscopic force acting on the B particle. Equa
tion (2.2) is to be solved subject to some initial condition 

The terms in the first square bracket on the right side 
of (2.2) may be written in the form, 

fo#2(y;R)) = iZM , (2.5) 
where 

H2(y;R) = Hl(y)+U(y;R) (2.6) 

is the Hamiltonian of the fluid in the presence of a B 
particle fixed at R, i.e., R is a parameter in H2, not a 
dynamic variable and L operates only on the fluid 
variables y. The second and third bracket on the right 
side of (2.2) may be writen in the form 

ye^E-dv/dv^iSfx (2.8) 

with the Poisson bracket in (2.7) taken with respect to R 
and v. Equation (2.2) may now be written symbolically, 

idp/dt=(L+yJ+&)»=(£+S)n. (2.9) 

The distribution of the B particle as a function of v 
and R, normalized to unity, is given by 

/(*,*)= L(x,y,t)dy. (2.10) 

The equilibrium distributions in the absence of the 

6 The problem of introducing a spatially uniform electric field 
in a system with periodic boundary conditions is discussed in 
Appendix A of the paper by W. Kohn and J. Luttinger, Phvs. Rev. 
108, 590 (1957). 
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electric field are 

!A0(x,y) = Z - V * * , Z = / e-?Hdxdy, 

-/oC a) - 7 fx0(x,y)dy=e-^i(x) I I e~Wi(x)dx ? 

(2.U) 

where 3Ci(x) is the "effective" Hamiltonian of the 
£ particle 

3ei(s)=Jw2+x(R)+w(R), (2.12) 
w being the potential of "average force," 

<r-/MR> = 12 je-^dy/ / ^ l ^ + x l ^ R . (2.13) 

The average force vanishes, w = constant, when the 
system described by Hi is really a fluid, but does not 
vanish when the B particle is embedded in a crystal (or 
when we deal with a composite B particle) to which 
our formalism also applies (cf. Appendix E, Ref. 2). We 
also introduce the conditional distribution function 
P(x,y,t) which gives the probability density of finding 
the fluid at y given that the B particle is at x, 

P(x,y,t)=Kx,y,t)/f(%>t), 

Po(x,y) = no(x,y)/f0(x) 

= 2expl-p(H2 - ) ] / / 

(2.14) 

e x p [ - / 3 ( ^ 2 + x ) ] ^ R . 

In order to obtain the time evolution of f(x,t), the 
aim of this whole formalism, we utilize the technique of 
projection operators developed by Zwanzig.7*8 Defining 
the projection operator*?, 

. / < 

we have 

<?(---) = P0 \{---)dy, 

<Pn(x,y,t) = P0(x,y)f(x,t). 

(2.15) 

(2.16) 

Applying the operator <P to the Liouville equation (2.9) 
we obtain in a straightforward manner 

dfixti/dt+yif&J+ye^E • df/dv 

= -yd/dv / $(l-<?)n(x,y,t)dy, (2.17) 

where the Poisson bracket is taken with respect to the 
variable v, and 

. - » - / FP0dy=F-(-dw(K)/dR). 

7 R. W. Zwanzig, Lectures in Theoretical Physics (Interscience 
Publishers, Inc., New York, 1961), Vol. 3, p. 106. 

8 R. W. Zwanzig (private communication); see also, J. Chem. 
Phys. 40, 2527 (1964). 

Applying now the operator (1—(P) to (2.9) yields, 

f(d/d/)(l-(P)/i=(l-CP)(«C+«)[(l-CP)/i+CP/*]- (2.18) 

Equation (2.18) can now be solved formally for 
(1-— (P)fi(x,y,t) in terms f(x/), f<t, and ix(x,yfi) and 
this solution substituted in (2.17) to obtain a "transport-
like" equation for / . Before carrying through this 
procedure, however, it is convenient at this stage to 
linearize (2.17) and (2.18) with respect to E, since we 
are not interested in the complications arising from a 
strong field. We therefore write 

M fey ,0-Mo(^)+M , fe^)+0(E 2 ) , *>0, (2.19) 

f(x,t) = f0(x)+f'(x,t)+O(E*)9 / > 0 , (2.20) 

with ix (and thus / ' ) linear in E (including their initial 
values at £=0). 

Actually the terms 0(E2) cannot be expected to be 
uniformly small for all times since we expect the system 
to absorb energy from the external field at a rate propor
tional to E2. Thus, for t sufficiently large, fx will be very 
far from fx0, no matter how small E is.9 We are however 
interested here solely in the 5-particle distribution func
tion when the size of the fluid becomes infinitely large 
while t is fixed, (cf. end of section). Under these condi
tions we expect that the 0(E2) term in (2.20) can indeed 
be made arbitrarily small for any fixed x and all /. 

The linearized equations (2.17) and (2.18) now assume 
the form, 

d/'/dH-7(/,3C,) - jfrye*"«E • v/0 

• / 
= -yd/d\> / $(l-<9)n'(x,y,t)dyy (2.21) 

^/aC(i - (P)M^=(i- (P)£C(i~(py+A/ / feO]. (2 .22) 

There is no term linear in E in (2.22) since 

(l-(P)<§Mo=(l-(P)Mo7iSv-E^*=0. (2.23) 

The solution of (2.22) may now be written formally in 
the form 

(l-(P)M/(/) = exp[ -^ ( l - (P )£ ] ( l - (Py(0) 

+ (l/i)f exp[-*y(l-(P)£] 
Jo 

X(l- (P)£Po- / ' ( / - / ' )* ' . (2.24) 

We shall now assume, for convenience, that at /=0, the 
conditional fluid distribution P is equal to its equi
librium value PQ, i.e., 

»'(x,yfl) = P0(x,y)f'(x,0). (2.25) 

9 We also have for the total momentum of the system 

[ly-1v+2vi']p(t)dxdy= V tf»',W[='Rti- for « = 0] . 
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Under these conditions the first term on the right side of 
(2.24) vanishes and upon substitution of the remainder 
into (2.21) we are led to the following equation for / ' : 

= iy(d/dv)> dy& e x p [ - * r ( l - ( P ) £ ] 

= / Y2 dy$exp{-it'ZL+y(l-6>)Jl}P0$ 
Jo L dv J 

x(—+pvy]f(t-odt' 

s /" XWiNrif'it-Odt', (2.26) 

where we have used the easily verifiable relations: 

(«£( • • • ) = -P0fdy(H< s,( - - - ) ) = 0 

and 

( l - (P) t£Po/oC/ , (^ - / / ) / /o ] 

= ( l - ( P ) i P o / t f y / [ / , ( < - 0 / / o ] 

= 7 i > o / o S r - ( d / d v ) [ y , a - 0 / / o ] . 

Equation (2.26) is to be solved subject to some initial 
condition f(xfi), and we have indicated explicitly that 
X depends on the size of the fluid, N=nti, and on the 
square root of the mass ratio y. 

I t should be emphasized here that the derivation of 
(2.26) for the jB-particle distribution function from the 
Liouville equation (2.2) for /*, linearized with respect to E, 
is exact subject to the assumed initial condition (2.25).In 
particular, if E is set equal to zero in (2.26) then (2.26) 
will be an exact equation for / subject to /z satisfying the 
initial condition (2.25). Thus the fact that we want to 
deal with a macroscopic size fluid, which might be 
expected to show dissipative-type behavior, or that we 
shall be interested in y<<Cl has not been introduced yet. 
Indeed, if E = 0 (or if Eeio}t is present for all t, but 
linearization is still meaningful), (2.26) is equally valid 
f o r / > 0 o r K Q . 

Before considering the transition to the limit of an 
infinite size fluid, N —>oo y N/Q—n fixed we must ensure 
that the density of B particles remains finite in this limit. 
We shall therefore renormalize / by multiplying it 
through by the constant term, Q'^fe'^+^dR: 

p(x,t) = tff(x,t)=p0(x)+il/(x,t), (2.27) 

Po(x) = (27r / /3) - 8 / 2 exp- /3[^ /2+x(R)+^(R)] . (2.28) 

12' will be proportional to 0 when the B particles are not 
confined to a limited region of space by their effective 
potential x+ w > and will equal 12 in a uniform system, 

/o independent of R, in which case p(v,0 is just the 
velocity distribution of the B particles. \f/ will satisfy 
the same equation as / ' , Eq. (2.26), with f0 replaced 
by po. 

We shall now assume, what appears physically as 
obvious, that \{/ considered as a function of t and N, 
$(t,N), will approach a definite limit as N—>oo, N/ti=n 
fixed, 

Km f(t,N)=f(t), (2.29) 

N-+ao 

and similarly for the operator 5C defined in (2.26), 

lim X(t,N,y) = 3Z(t,y) , (2.30) 
N-+oo 

where the limit N—><*> of 3Z(t,N,y) is to be taken after 
the integration over y, in the definition of 3C, Eq. (2.26) 
has been performed. 

Combining Eqs. (2.26) and (2.30) we finally obtain 
the following equation for \p 

= [ XW,y)f(x,t-t)M. (2.31) 

Equation (2.31) is a non-Markoffian irreversible equa
tion which describes the evolution of the i?-particle 
distribution, linearized with respect to E, towards its 
stationary value. 

III. STEADY-STATE DISTRIBUTION FUNCTION 

Defining now, 

$(x,t) = eriuy(x,t), 

<£> will obey the equation 

d$(x9f) 

(3.1) 

dt 
-io;<£>+Y($,3CI)—/3yE • vp0 

J o 

dt'yi(l!,y)<ri»*'$(t-t!). (3.2) 

We shall now make the physical assumption that $(xti) 
approaches a limiting value as / —»<*>. The validity of 
this assumption might be expected to depend on the 
nature of the potentials ^>(r#) and #(r»— R). This 
assumption can be weakened by requiring only the 
existence of the limit of the "Laplace average" of <£, i.e., 

1 r°° 
lim - / 6r«/«o« 
^-"toJo 

>$(t)dt= lim $ ( / o ) = $ , (3.3) 

exists. <$(to) will satisfy the equation 

*(*,o) r i . . -|_ 

to L/Q 
- + K O *(<o)+7($(/o),3ei)-j8yE.vpo 

=K(t0,-w,y)${t0), (3.4) 
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where <S>(#,0)=^(#,0), and 

Jo 

Assuming now also the existence of 

\imK(t0,a>,y)=K(a),y), (3.6) 

we obtain finally the following equation for $ 

iw$(^,7)+7Cv-3$/dR-(d(x+w)/aR)-a$/dv] 
-0yE- v p 0 = £ ( - « , Y ) $ ( * , T ) , (3.7) 

where we have indicated explicitly the y dependence 
of <£>. 

Expansion in Powers of y 

We consider now the case where y=M~~ll2<gl, and 
treat the variables y» and v as quantities of 0(1), i.e., we 
assume that the velocity of the B particle V = 7 V ~ 0 ( Y ) 
is much smaller (in the range of interest), than the 
velocities of the fluid particles. We then formally expand 
R in powers of y and obtain, 

Z(-o>,7)=iS-1C(co):(a/av)D3v+d/dv]+0(73), (3.8) 

with the "friction tensor" {(co) given by 

<(CO)=/3Y2 lim lim / dte~^tQe-i<at \ $5(-t)P0dy. (3.9) 
tQ-*co N-*oo J J 

Here, 
$(-t) = e-itL$(y,R) (3.10) 

is the microscopic fluctuating force, (3r=F—(F)0), 
acting on the B particle at —/, when the state of the 
fluid at 2=0 is specified by the point y in its own phase 
space and the B particle is kept fixed at its position R. 
When the fluid is isotropic (our "fluid" can actually be 
a crystal. Cf. Appendix E, Ref. 2), £(co) is diagonal 
C(co)=f(a>)l and (3.11) becomes equal to the Fokker-
Planck operator on the right-hand side of (1.1) albeit 
with a frequency-dependent friction constant. The 
higher order terms in K(o),y) can also be evaluated 
readily and are discussed extensively for the case of a 
spacially uniform system and co=0, in Ref. 2. 

IV. CONNECTION WITH MACROSCOPIC 
THEORY 

In order to prove the equivalence of our microscopic 
approach and the usual stochastic theory, we need a 
demonstration of the equivalence between the defini
tions (1.3) and (1.4) for the friction coefficient. 

As will be shown presently, this property is easily 
demonstrated in a very general way, and does not 
require a detailed analysis of the behavior of the fluid 

distribution functions. However, the explicit evaluation 
of f depends on the stationary state which is attained 
by the one-body fluid distribution function Wi(r,\yt) 
in the presence of a moving B particle; this problem 
requires the derivation of a transport equation for 
^i(ri,vi) and is much more complicated.10 As such an 
analysis falls outside the general scope of this paper, we 
shall merely illustrate it here for the case of a dilute 
gas where Wi is assumed to obey a Boltzmann equation. 

Consider a B particle moving in a fluid with a prescribed 
velocity equal to the real part of \0e

io}t, for />0. If we 
call the fluid coordinates y' = (r/,* • TJV',VI',* • • Vj/), the 
fluid will now be characterized by the time-dependent 
Hamiltonian H2(y

f; R(/)) given in (2.6), 

W ; R « ) 
= W ) + E * [ r / -R 0 - Vote*1-l)/&>], (4.1) 

where R0 is the position of the B particle at t=0 and 
we have set m= 1. The N-particle distribution function 
of the fluid (normalized to unity) WNf{y\i) will evolve 
according to the Liouville equation, 

dWN'/dt+[WN',H2(y', R(0)]=0. (4.2) 

We now make the transformation of variables, yf—> 
y=(th...yN) 

r < = r / - R ( 0 , v<=v/-Vae*". (4.3) 

The distribution function WN(yj) will now obey the 
equation, 

dWN(y,t)/dt=(H2(y),WN) 

+ic\0e
i-t(i:d/dyj)WN, (4.4) 

i.e., TFi\r(y,0 evolves under the action of the time-
independent Hamiltonian H^iy) and a time-dependent 
"force"-icoV0e

iw* acting on each fluid particle. 
We shall now assume that the fluid was in equilibrium 

aU=0 , 

JF2/(/,0)=P0(/;Ro) 

= e-0ff2<*/'; Ro) / / e~PHi(v'; R o ) j y ? (4.5) 

and that V0 is small compared to the molecular ve
locities, /3Fo2<^l. We may then write 

WN(yyt) = P0(th- • -r^, vi+ V0e-V • •, v^+ V o ^ 0 
+P'(y,t) = Po(y)-p\<ti°t- ( E vj)Po+P', (4.6) 

10 The general transport equation for Wi (ri,vi) can easily be 
obtained using the techniques of I. Progogine and co-workers 
[for a similar case, see R. Balescu, Physica 27, 693 (1961); P. 
Resibois, J. Chem. Phys. 41, 2979 (1964)]. In particular, the Boltz
mann equation (4.18) may be rigorously proved for a dilute gas, 
provided that the momentum transfer due to the B force during 
a collision is small with respect to the exchange of momentum 
between the two particles [P. Resibois (unpublished)]. 
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where P' is linear in V0, and satisfies the equation 

dPf{y,t)/dt= -iLP'+FJ&toHLfc vjPo) 

= -iLPf-0oe
i(at¥Po. (4.7) 

The operator L and F are defined in (2.5) and (2.7), 
F being the force on the moving B particle. Equation 
(4.7) is to be solved with the initial condition P'iyfi) — 0. 
This gives 

*(*0=-/" 
J 0 

e-i(t-t')Lpyoei»t>.-pPgdi' 

= - /3V 0 e loot. I p—it 

Jo 
Le-i*t'Ypodl> 

= Pv'(y,<a,t)eu (4.8) 

Computing now the macroscopic force on the moving 
B particle at time t gives 

<F)= jwN{y,t)dy 

= F r(«AiV). 

VV(-f)Pady 

(4.9) 

Upon taking the limit N~>°°, and t—-><*> we finally 
obtain 

^" 'F F (co) = lim lim e~iut¥v(^,tyN)=-M^)\o (4.10) 

in agreement with (1.4): assuming that these limits 
exist. If the limit t —><*> does not exist we have to intro
duce the convergence factor e~t{to as in (3.9). 

We have thus shown the complete equivalence be
tween the friction constant appearing in the Fokker-
Plank equation for an unconstrained heavy B particle 
and the "friction" constant appearing in the force acting 
on a B particle moving with a small prescribed velocity. 
In the latter case the mass of the B particle does not, 
of course, enter the analysis. 

Evaluation of £: Kinetic Theory 

In order to actually compute f we note that Eq. (4.9) 
may also be written in the form 

(F)= /Wi ( r i , v i , 0<*r idv i , (4.11) 

where 

F 1 = d/dnuin); F = E Fi(r<), (4.12) 

and Wi(ri\i,t) is the one-particle distribution function, 
of the fluid, 

Wi(rl7Yht) = N / WN(y,t)drr • -diNdYr -dvN. (4.13) 

According to (4.6) and (4.8), W\ may be written for 
small V0 in the form 

-Voe- ' [ j3vi i r i 0 ( r i ,v i )+^i(r i ,Vi ,0] , (4.14) 

where Wi° is the equilibrium one-particle distribution 
of the fluid in the presence of an external one-body 
potential u{x) and 

<pi=PN dr2" 'd\N\ dt' 

X{exp[- ; (L+co) / ' ]}FP 0 (y) . (4.15) 

I t is now clear that if W\ obeys any transport equa
tion in the presence of an external potential «(ri) and 
a small oscillating external force, —i<jo\oeio}t (in the 
proper thermodynamic limit and time scale), then Fy 
and thus f can be computed from the stationary solution 
of this transport equation subject to the boundary 
conditions, 

lim I^i(ri,v1) = I^ 1
0 ( r i ,v 1 +Vo^O 

|ri|->co 

= ^i0(r i ,vi)[ l- /3Voc-*vi] (4.16) 

linearized with respect to V0; /3V0
2«1. Thus, for the 

case where the fluid-is a dilute gas the appropriate 
transport equation would be the Boltzmann equation 
(see footnote, Ref. 10) 

dW1(T1,\i,t)/dt+\vdW1/dr1--¥vdWi/dYi 

-iuV^'-dWi/dv^JiWiiWi), (4.17) 

where J is the Boltzmann collision operator. Linearizing 
Wi in the form (4.14) we obtain the following equation 
for <pu 

i c o ^ i + a ^ i / ^ + ( v r a / a r i - F r a / a v i ) ^ i - / 5 F i ^ i 0 

= J(W.i°,<p{)+J(fpl9W1
0), (4.18) 

where Wi° is now given by 
^ 1 0 ( r i j V l ) = ^(27r/ i5)-3/2^[|,12+w(r1)] ^ ( 4 # 1 9 ) 

where n is the particle density far from the source of 
the external potential. The stationary state achieved by 
<Pi as / —>oo from which Fy and f may be computed can 
be found from (4.18). by setting d(pi/dt = 0 there and 
solving the resulting time-independent equation with 
the boundary condition <pi—>0 as |ri|—><». 

Evaluation of £: Hydrodynamics 

I t is seen from (4.11) that if we are only interested in 
computing (F), it is not necessary to know the complete 
J^i(ri,Vi,/). Rather it is sufficient to know the one-
particle fluid density 

(4.20) n(rht) = / Wi(rhyht)dyiy 
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since 

(F)= faiinMtiddn. (4.21) 

For obtaining F^(co) and f(co) only the steady-state 
value of n is necessary. 

The density n(r,t) satisfies the continuity equation11 

dn(r,t)/dt+ d • nu(r,t)/dr= 0 , (4.22) 

where u(r,/) [not to be confused with the external po
tential u{x)~] is the local velocity 

u(r,0 = tn(r,t)-]-i f v1W1(r,vlyt)dy1. (4.23) 

The momentum density nxx obeys in turn the dynamical 
equation, appropriate to the present problem, 

d (»u) /d /+d-p( r ,0 /dr+«Fi ( r )+«oV 0 e t o ' »=O, (4.24) 

where p is the stress tensor of the fluid which will be 
some functional of W\ whenever W\ obeys a transport 
equation. In particular, for a dilute gas, 

p(r,*)= / ViViPFi(r,vi,0^vi. (4.25) 

Equation (4.24) may also be used to compute (F). The 
result is especially simple for w = 0, when we obtain for 
the stationary value of (F), 

F F = - A p ^ S , (4.26) 

where the integration is over any surface enclosing the 
origin but sufficiently far from it that Fi(r) vanishes 
outside this surface. 

Equations (4.22) and (4.24) are not closed as they 
stand since they contain in addition to n and u also p. 
I t is only when p is expressible as a functional of n and u 
(or of n, u, and some other variables for which new 
equations are supplied11) that there will exist a closed 
set of hydrodynamic equations, e.g., the Navier-Stokes 
equations, for the fluid. When such a set of equations 
exists for our system, i.e., for the fluid in the presence 
of an external potential u(r) and a small oscillating 
external force — iu>N$eioit then Fy(co) and f(w) may be 
computed from the stationary solution of these equa
tions (linearized with respect to V0) subject to the 
appropriate boundary conditions at infinity. 

An investigation of the conditions necessary to ensure 
the validity of the hydrodynamic equations for the 
description of the steady state is outside the range of 
this paper. Intuitively, the requirement would seem to 
be that the length and time scale associated with u{t\) 
and co"-1 should be large compared to the microscopic 
length and time scales associated with the fluid. For a 

11 See, e.g., H. S. Green, Molecular Theory of Fluids (North-
Holland Publishing Company, Amsterdam, 1952). 

dilute gas these latter are, respectively, the mean free 
path and mean free time between collisions.12 

The hydrodynamic equations and hence f (co) will 
depend explicitly on the parameters of the fluid, such 
as its viscosity rj, as well as on the nature of the 
"external" potential u(t). In some cases the effect of 
u(x) may be represented by appropriate boundary con
ditions. Thus, if u(x) represents a rigid-sphere type of 
interaction 

« ( r ) = o o , | r [ < | a , 

= 0, | r | > £ a , (4.27) 

then n(r) will be zero for | r | <\a. The hydrodynamic 
equations will then have to be solved13 subject to the 
conditions that the normal component of u(r) as well as 
the tangential components of the stress p vanish at 
| r | = \a. A solution of the Navier-Stokes equations with 
these boundary conditions is given by Lamb,14 for the 
case co = 0, and yields 

F ^ 0 ) = - 4 m ^ V 0 = - M f ( 0 ) V 0 . (4.28) 

As mentioned before the validity of the Navier-Stokes 
equations for this problem requires that a be very large 
compared to the mean free path in the fluid. Hence the 
value of f (0) given in (4.28) does not conflict with the 
value of f (0) computed for a heavy sphere moving in an 
ideal gas15 where the mean free path is infinite. 

Finally we might mention that it is not clear to us 
whether there exists any potential u(r) which leads to 
Navier-Stokes equations with a boundary condition 
that the fluid velocity, both normal and tangential, 
vanish at the "surface" of the B particle. I t is this 
boundary condition which leads to Stokes' law 
F F = — 67n?aV0, commonly used for B particles.16 

Perhaps such a boundary condition arises when one 
considers a "composite B particle" with internal struc
ture. A fluid particle can then be "absorbed" by the 
B particle and re-emitted with zero average velocity. 

V. AN ALTERNATIVE FORMULATION 

Let us now return to the general time-dependent 
equation (2.31), 

dtixd/dt+yirPiHJ-ype^E-vpoix) 

= j 3Z(t-t',y)f(x/)dt', (5.1) 
Jo 

12 H. Grad, Encyclopedia of Physics, edited by S. Flugge 
(Springer-Verlag, Berlin, 1958), Vol. XII, p. 205. 

13 G. Grad (private communication) believes that this can be 
shown rigorously for the case of a dilute gas satisfying the Boltz-
mann equation. 

14 H. Lamb, Hydrodynamics (Dover Publications, Inc., New 
York, 1945), 6th ed., Art. 337, p. 602. 

^15 J. L. Lebowitz, Phys. Rev. 114, 1192 (1959), and references 
cited there. 

16 A very interesting derivation of Stokes law which expresses 
£* in the form (1.2) but with ^ representing a "hydrodynamic 
force" has been given recently by R. Zwanzig, J. Res. Natl. 
Bur. Std. 68B, 143 (1964). 
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where we have replaced, for a fluid 3Ci by Hi. A re
markable feature of this equation is that, except for the 
trivial flow terms, the complete and exact dynamics of 
the problem has been incorporated in the collision opera
tor 3C(/,Y). This result seems at first sight in contradic
tion with the general theory of approach to equilibrium 
developed by Prigogine and one of us5 (P.R.). Indeed 
it is expected in general that the transport equation for 
\f/ should have the following form: 

**(*,*) 

dt 
f 7 ( ^ ^ i ) - 7 ^ w f E . v L + f dfX>o(t-f, Y)PO] 

= SDo(*,7)*(*,0)+/ G(t-t',yMx/)dt'. (5.2) 
Jo 

Here G(t,y) is a generalized collision operator, to 
be defined below; the so-called "destruction term" 
£>o(t,y)\f/(x,0) represents the effect of the initial spatial 
correlations while the last term on the left side describes 
the acceleration of the particle due to the external field 
during a collision process; these two latter terms are not 
present in (5.1). A similar paradox was found in the 
stationary situation discussed in Ref. 3. 

We shall now show that it is possible indeed to write 
down an alternative transport equation for \f/(x,t) which 
has precisely the structure (5.2); this equation is the 
exact analog of the general kinetic equation of Prigogine-
Resibois, as applied to the present problem. However, 
the operators £)0 and G are not independent of 5C: they 
are connected in such a way that the solutions of the 
two equations (5.1) and (5.2) are identical for all times. 
In order to avoid long calculations in the main text, 
some proofs are left for the Appendix. 

Let us start again with the Liouville equation (2.9), 
linearized in the external field: 

idn'/dt- &P0/o= (L+yJW, (5.3) 

and let us assume again the initial condition (2.25). 
We define a projection operator / by 

/ ( • • • ) = 
/ 

<*y( . . . ) , (5.4) 

where po/({v}) is the fluid equilibrium velocity (distribu
tion function): 

Po'({ v}) = (2*/0)-3*" exp[-/3 Zi ViV2~]. (5.5) 

As will be seen later (Appendix A) the motivation for 
introducing the operator / is that it is closely related 
to the so-called "irreducibility condition" in Fourier 
space, which plays a very important role in the calcula
tion of Ref. 3. We then notice the two useful identities: 

/ L = 0 , (5.6) 

and introduce the abbreviation: 

T(x,y,t) = (l-IW(x,y,t). (5.8) 

We now apply the operators I and (1—7) to the 
Liouville equation (5.3); we get, respectively, 

a/'fefl 
dt 

-7(AffiM)-YJfc*'E.v/o 

d 
7 - fdy¥r(x,y,t), (5.9) 

dvJ 

idT(x,y,t) Po'({v}) 
( l - / ) P 0 S / o = { Z + 7 ( l - / ) / > f(*,t) 

dt tiN 

+ {L+y(l-I)J}T(x,y,t). (5.10) 

The similarity between (5.9), (5.10), and (2.21), (2.22) 
is striking; the formal manipulations followed here will 
thus be the same as in Sec. II : one writes the formal 
solution of (5.10), which is then inserted into (5.9). The 
limit process TV—xx), (N/ti) = n finite is applied as 
before; assuming that this limit exists, we immediately 
obtain Eq. (5.2) with the following definitions: 

© o ( ' , 7 ) = - r - fdy F ( e x p { - i [ L + 7 ( W X n 0 ) 

X(l-I)Po(*,y), (5.11) 

G(t,y)=-iy— fdy F ( e x p { - C £ + 7 ( W X O } ) 
d\J 

XlL+y(l-I)jyPo(x,y), (5.12) 

where we have used the identity: 

Ji>o(*,y) = Po'(M)/G*. (5.13) 

The formal device of introducing / has thus allowed 
us to express 3}0 and G in a closed form; this provides 
us with an explicit transport equation for ^(xj) which 
has exactly the same structure as the Prigogine-Resibois 
transport equation. More precisely, it may be shown 
that Eq. (5.2) together with (5.11) and (5.12) is identical 
to this equation, when this latter is specialized to our 
particular Brownian problem. This result is discussed in 
Appendix A for the stationary solution of (5.2). 

Let us now show that the solutions of Eqs. (5.1) and 
(5.2) are identical. We introduce the Laplace transform 
of^: 

r 
= / exp[izQ^(x,t)dt, 

^ 0 

$(x,*)-- (5.14) 

\f/(x,t)= (p dzexp[—izf]$(%,z), 
2m J 

(5.15) 

/r(R, v,/) = {/>(/({ y})/SlN}~1Iix'{x,yj) , (5.7) where the contour C is parallel to the real axis above the 
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singularities of ^. Similarly we define K(z,y) [see also explicit form. In particular, if we study the relaxation 
(3.5)], G(z,y) and D0(z,y). From (5.1), we obtain easily: of the B particle toward its equilibrium value in absence 

-iz^(x,z)^(xfi)+y(^H1)-y(i/(c,+z))l3E'ypo(x) 

= K(z,y)t(x,z), (5.16) 

while Eq. (5.2) gives 

-y(i/(a)+z))£l+Do(z,y)lpE-vp0(x) 

= Do(z,yMx,0)+G(z,y)$(x,z). (5.17) 

If we set, 

iyL0--=y(- - - , # i ) , 

iybL1=-yY'{d/d\), 

and solve (5.16) and (5.17) formally, we get 

4>(x,z) = Z—iz+iyL0—K(z,y)2~l 

X{t(xfl)+(i/(a>+z))t3yE-vp0(x)}, (5.160 

fe) = L-iz+iyL0-G(zjy)-]-^l+Do(z,y)-] 

X{^ ,0 ) ( i / ( co+2) )^yE . vpo(x)} , (5.170 

where we have explicitly: 

K(z,y) = i [dyyhL1 ( l - (P)£P 0 (*oO, (5.20) 

of external field ( £ = 0 ) : 

\p(x,t) = p(x,t)—po(x)—>0 as /—»oo . (5.25) 

In the limit 72<3Cl, one has to take the time scale / —><*> 
t/y2 finite2,3; in this case both Eqs. (5.1) and (5.2) reduce 
to the time-dependent Fokker-Planck equation (1.1) 
with f=f (0) given by (3.12). 
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APPENDIX A: THE EQUIVALENCE OF 
EQS. (5.1) AND (5.2) 

G(z,y) = i J dyyhL1-

D0(z,y) = - jdyydL1-

( l - ( P ) £ - z 

1 

(l-I)£-z 

1 

( l - / ) £ J P o f e O , (5.21) 

(l-I)Po(x,y). (5.22) 
(l-I)£-z 

Obviously, the solutions of the two transport equa
tions will be the same provided the following identity 
holds: 

{ — iz+iyLo—K(z,y)}~1 

= {~iz+iyL0-G(z,y)}-i£l+D0(z,y)l, (5.23) 

which may be written as 

0(z9y) — izDo(z,y)+iyDo(z,y)LQ 

= [ l+£o(s ,7)]£(* ,Y) . (5.24) 

Using Eqs. (5.20), (5.21), and (5.22), the validity of 
(5.24) may be proven by direct algebraic manipulations. 
The explicit proof is left to Appendix A. 

This establishes the link between the methods used 
respectively in Refs. 2 and 3. We just want to add the 
following remarks: 

(1) The simplicity of (5.1) is related to the very particu
lar choice of an initial condition (2.25); in a more general 
case, we would also find in (5.1) a "destruction term" 
which keeps trace of the initial correlations in the system 
[see Eq. (2.24) and Ref. 2, Sec. V ] . 

(2) If one considers the limit of small 7, the two 
transport equations (5.1) and (5.2) lead to the same 

Let us first prove the identity (5.24). Using the 
definitions (5.20), (5.21), and (5.22), together with the 
obvious identity valid for an arbitrary function A (x,y) 

/ P < / ( { V } ) \ r 

((?-I)A(x,y)=[Po —J] dyA(x,y) 

x,y) dyA(x,: = (l-J)JPoC ,y), (AD 

one obtains by straightforward calculations: 

— izD0(z,y)+G(z,y)+iyBo(z,y)Lo 

1 

' / • 

i I dyyhL1-

while 
( l - / ) £ - z 

- ( l - ( P ) £ P o , (A2) 

' / 
i I dyyhL1-

1 

(l-I)£-z 
<l-(P)£Po 

,{/ +*{ / dyySL1- - (1 - / )P< 
(l-/)JB-« 

X Y ^ O *y ( l - (P)£Po 
[J (l-I)£-z 

(A3) 

We see thus that (5.24) will be satisfied provided the 
second term on the right side of (A3) vanishes. However, 
one has 

where 

dyT(x,y,z) = 0, 

T(x,y,z) = 
1 

( l - (P)«C-s 
( l - (P)Po 

(A4) 

(A5) 
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Indeed, we have We now write explicitly 

[ ( l - ( P ) £ - z ] r ( ^ , z ) r = ( l - ( P ) £ P o . (A6) r r 
rdy= d{t)d{y) 

Applying the operator (P to both sides of (A6), we get J J 

~, N n /* 7 -n,/ \ n /A»\ and take the Fourier transform of the operators involved 
-z(PT(x,y,z)=-zP0J dyT(x,y,z) = 0, (A7) i n ( M 0 ) w i t h r e s p e c t t Q { r } ; w e u g e for ̂  t h e c o m _ 

pleteness relation 
which is precisely (A4). 

This completes the proof of the equivalence between £ j k j | {k})({k} ] = <5(r— r ' ) , (A13) 
the two methods used in the text. 

In order to establish the contact with our previous where |{k}) is the eigenvector in Hilbert space which 
work, we still have to prove that in the case where E has the spatial representation 
is independent of time (co = 0) and in the absence of 
external force (x(R) = 0), Eq. (5.2) which becomes now <W I {k}> = £ r ^ 2 exp[i L i V *v]. (A14) 
in the limit t —> <*>: „ r , , . ^ , / A*/ i \ 

We obtain then from (A12) 
-7/3E.vp0(v)-7/3A(0,7)E-vpo(w) , - x 

= G(0,yMx,t^x») (A8) G(i0,y) = i d{v} £ < 0 | 7 M / - | {k '}> 
J {k'Hk'T"L L—iO 

is identical to Eq. (4.15) of Ref. 3. 
Let us consider the collision operator: X <{k'}|(l-7)777>0 |0> 

r 1 *• 

G(0,y) = i dyySU , , , „ , , , , n r ( _ 1 \ , i " i \ 
J L+y(l-I)J-iO + ( { k ' } i ( l - / ) T / — — |{k"}> 

L—iQ 
X\X+y(l-t)jyP0(.x,y). (A9) , , „ , , 

L J K '" X ( { k " } | ( l - I ) y J P 0 1 0 > + - - . 
Here, some care has to be taken in going to the limit f_-n 
z—• iO; indeed, at first sight it seems that + ( f k ' } | (l—I)yJ-——\(k"))- • • 

L—iO 

\imG{z,y) = iJdyybUIP0{x,y) = Q, X({k<»>} | ( l -7)T77>0 |0>j~| . (A15) 

which is obviously wrong. However, for finite z, Eq. (A9) B u t w e h a v e > for t w Q a r b i t r a r y { u n c t i o n s o r o p e ra tors 
may be rewritten as Fi a n d ^ d e p e n d i n g o n l y o n a finite n u m b e r of fluid 

particles 
f * G(z,y) = i I dyybL1 

J L+y(l-DJ-£ + 7 ( 1 - 7 ) 7 - 2 

/ 
d{Y)Fi({v})\ {k})({k} | ( l - / ) F 2 ( { v » P o 

X ( l - 7 ) 7 / ( — — / P o ) , (A10) 

a n d w e h a v e *"' -/Wi«*»|{k» 

lim —~IP0(x,y) = P0(x,y). (All ) 
^i0L-z X |"<{k} | FtPo-pSJdi v} (01 F,P0d w ,0

Kr 1 (A16) 

This result was proved in Ref. 3 using a perturbation 
expansion for L [see Ref. 3, Eq. (4.12)]. _ [ j M p / r v n | m v m i P P ffcl^n 

Using (A10) and (Al l ) , we get immediately the - J d{v}I<i({v})\{k})({k}\F2P0, { k } ^ 0 
expansion: 

= 0 {k}E=0. (A17) 

G(i0,y) = i I dy(~y8LT) This latter formula holds in the thermodynamic limit, 
* r / _ i -in because the contributions involving the same particle 

X V ( ]^n — / ) / ' P0. (A12) m b ° t n ^ i a n d ^2 are of negligible weight as compared 
n = 1 LYL—iO/ J to the others (see Ref. 3, Appendix 1 for more details). 
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We get then 

G(iO,y) = i[d{Y}(0\-y5LtY, ( yj) P 0 |0>, 
J w=i \L-iO / 

(A18) 

I. INTRODUCTION 

TH E second-quantized form of the Hamiltonian for 
a system of Bose-Einstein particles interacting 

via a two-body potential is given by 

H=lLkUkaa>*ak+(l/2Q)Y,k1M,k3Mv(\ki—k8|) 
Xak*ak*ak2akl8(ki+k^—k2—ki), (1) 

where a* and a^* are the annihilation and creation 
operators for particles in the state of momentum k, Q, is 
the volume occupied by the system, and v ( |k | ) is the 
Fourier transform of the two-body potential. The 
Bogoliubov1 approximation consists of assuming that 
most of the particles are in the state k = 0 and that it is 
thus permissible to replace a0* and a0 by c numbers 
equal to \/N, where N is the number of particles in the 
system. One then retains those portions of the inter
action which are of order N. This procedure yields an 
energy spectrum 

£(mfc) = E ^ o w ^ 2 + 2 w ( ^ ) A V ^ ) 1 / 2 + ^ J (2) 

where mk is the number of elementary excitations of 
momentum k, and Eg is the energy of the ground state. 
This result may be improved by using either a pseudo-
potential2,3 or the single-particle Green's function.4 In 
addition, the number of particles in the state k = 0 is 
taken to be No rather than N, where iV0 is the average 
value of do*do. The energy of an elementary excitation 
of momentum k is then modified to 

€k= W+%™kN0a/ttniyi2 (3) 

where a is the 5-wave scattering length. (h=l). For 

* This work was supported in part by National Science Founda
tion grant No. GP-3706. 

1 N. N. Bogoliubov, J. Phvs. (USSR) 11, 23 (1947). 
2 T. D . Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135 

(1957). 
3 T. T. Wu, Phys. Rev. 115, 1390 (1959). 
4 N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959). 

where the prime means that all intermediate states 
should correspond to nonvanishing wave numbers 
{ k } ^ 0 : Equation (A18) is precisely the complete ex
pansion of the right side of Eq. (4.15), Ref. 3. The same 
calculation may be developed for the left side of (A8). 

sufficiently small momenta this expression is real only 
if a is positive. In this case we obtain an acoustic dis
persion, and hence a zero energy gap between the ground 
state and the lowest excited states. However, if a is 
positive these low-momenta excitations are unstable 
against decay into two or more excitations, which is not 
observed in liquid helium I I . Unfortunately, a negative 
scattering length means a Bose-Einstein system cannot 
be dilute, which is an important assumption for the 
derivation of the above excitation spectrum. I t is thus 
of interest to examine a soluble model in which the 
interaction energy between particles is attractive in the 
limit that the momentum approaches zero. The model 
we propose examining is one that was studied by 
Bassichis and Foldy5 earlier. 

II. THE BASSICHIS AND FOLDY MODEL 

This model consists of extracting from H of Eq. (1) 
only those terms involving three single-particle levels 
of momenta k, —k, and zero. Thus, we consider the 
Hamiltonian6 

-\ [«<)(»*+«-*) + aQ**aka-k+ tfo2a/c*fl-/c*] 

v(0) 
H [2n0(nk+n^k) + 2nkn_k+nk

2—nk 
2Q 

-, v(2k) 

+ n^k2 — n-k+n0
2—noj-\ nkn-k, (4) 

12 

5 W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 (1964). 
6 In Eq. (4) we could retain the entire kinetic energy term 

without it affecting the ensuing discussion. The extra terms merely 
separate out. 
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