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We get then 

G(iO,y) = i[d{Y}(0\-y5LtY, ( yj) P 0 |0>, 
J w=i \L-iO / 

(A18) 

I. INTRODUCTION 

TH E second-quantized form of the Hamiltonian for 
a system of Bose-Einstein particles interacting 

via a two-body potential is given by 

H=lLkUkaa>*ak+(l/2Q)Y,k1M,k3Mv(\ki—k8|) 
Xak*ak*ak2akl8(ki+k^—k2—ki), (1) 

where a* and a^* are the annihilation and creation 
operators for particles in the state of momentum k, Q, is 
the volume occupied by the system, and v ( |k | ) is the 
Fourier transform of the two-body potential. The 
Bogoliubov1 approximation consists of assuming that 
most of the particles are in the state k = 0 and that it is 
thus permissible to replace a0* and a0 by c numbers 
equal to \/N, where N is the number of particles in the 
system. One then retains those portions of the inter­
action which are of order N. This procedure yields an 
energy spectrum 

£(mfc) = E ^ o w ^ 2 + 2 w ( ^ ) A V ^ ) 1 / 2 + ^ J (2) 

where mk is the number of elementary excitations of 
momentum k, and Eg is the energy of the ground state. 
This result may be improved by using either a pseudo-
potential2,3 or the single-particle Green's function.4 In 
addition, the number of particles in the state k = 0 is 
taken to be No rather than N, where iV0 is the average 
value of do*do. The energy of an elementary excitation 
of momentum k is then modified to 

€k= W+%™kN0a/ttniyi2 (3) 

where a is the 5-wave scattering length. (h=l). For 
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where the prime means that all intermediate states 
should correspond to nonvanishing wave numbers 
{ k } ^ 0 : Equation (A18) is precisely the complete ex­
pansion of the right side of Eq. (4.15), Ref. 3. The same 
calculation may be developed for the left side of (A8). 

sufficiently small momenta this expression is real only 
if a is positive. In this case we obtain an acoustic dis­
persion, and hence a zero energy gap between the ground 
state and the lowest excited states. However, if a is 
positive these low-momenta excitations are unstable 
against decay into two or more excitations, which is not 
observed in liquid helium I I . Unfortunately, a negative 
scattering length means a Bose-Einstein system cannot 
be dilute, which is an important assumption for the 
derivation of the above excitation spectrum. I t is thus 
of interest to examine a soluble model in which the 
interaction energy between particles is attractive in the 
limit that the momentum approaches zero. The model 
we propose examining is one that was studied by 
Bassichis and Foldy5 earlier. 

II. THE BASSICHIS AND FOLDY MODEL 

This model consists of extracting from H of Eq. (1) 
only those terms involving three single-particle levels 
of momenta k, —k, and zero. Thus, we consider the 
Hamiltonian6 

-\ [«<)(»*+«-*) + aQ**aka-k+ tfo2a/c*fl-/c*] 

v(0) 
H [2n0(nk+n^k) + 2nkn_k+nk

2—nk 
2Q 

-, v(2k) 

+ n^k2 — n-k+n0
2—noj-\ nkn-k, (4) 

12 

5 W. H. Bassichis and L. L. Foldy, Phys. Rev. 133, A935 (1964). 
6 In Eq. (4) we could retain the entire kinetic energy term 

without it affecting the ensuing discussion. The extra terms merely 
separate out. 
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where nkj n„k, and n0 are the usual number operators 

nk=ak*ak) n„k^=a^k*a-k, ^o=ao*#o; (5) 

the total number operator for the system (which com­
mutes with h) is given by 

9fl=wA+w__fc+«o. (6) 

Thus if A7 is the total number of particles we may re­
write Eq. (4) as 

h=o)k(nk+n^k) + (v(k)/9) 

X (n0nk+non-k+ao*2aka„k+a0
2ak*a-.k*) 

+(v(2k)/tt)nkn_-k+(l/2£l)v(0)N(N-1). (7) 

The last term on the right-hand side of Eq. (7) is a 
constant and may be dropped from further considera­
tion. In applying the Bogoliubov approximation to 
Eq. (7) one neglects the term involving v(2k). Inasmuch 
as we wish to make comparisons with these results we 
shall choose v(2k) to be zero. The Bogoliubov approxi­
mation applied to the remaining terms gives rise5 to 
the analog of Eq. (2) for this model: 

E(mit,w_fc) = (mA;+w_fc)(coA;
2+2co^(^)AV^)1/2+-£^ 

Eg^(cck
2+2ukv(k)No/tt)ll2-uk-v(k)No/Q, W 

where N0 is the average value of n0. Bassichis and 
Foldy compared these results to those obtained numeri­
cally with the aid of a computing machine. They con­
sidered a range of positive values of v(k)No/& and found 
excelent agreement for the cases (a) mk=m-k=0 and 
(b) mk=m^k=l. The situation we wish to consider is 
that for which v(k)<0 and ook—> 0, where clearly 
Eq. (8) is not valid. 

III. ENERGY SPECTRUM OF h FOR 
A SPECIAL CASE 

I t is convenient to introduce operators which have 
the same commutation relations as the components of 
angular momenta, 

L+=y/2(ak*ao+ao*a-.k), 

£_=V2(ao*a*+a-**0o), (9) 

Lz=nk—n_k, 

and the "total angular momentum operator" 

L2 = Ld
2+i(L+L_+L„L+) 

^nk
2+n„k

2+nk+n„k+2n0+2[nonk+non_.k 

— 2nkn_k+a0*
2aka-.k+ao2ak*a-.k*']. (10) 

These operators satisfy the commutation relations 

[ L 2 , L + ] = C L 2 , L _ ] = [ L 2 , L B ] ^ 0 , 

LLZ,L±1=±L±, (11) 

[X+ ,L_] = 2L3. 

Eq. (7)] may then be written as 

h= - [ co ,+^W/20>o~C^W/212]L 3
2 

+ [v(k)/2ti]L2+ [co*- v(k)/2ti]N. (12) 

We are interested in the case where v(k) is negative. 
Furthermore, if we choose ook= — v(k)/2tt=p\v(k)\/2Ny 

(p=N/Q), we see that u>k is of order \/N times the 
strength of the interaction and hence is very close to 
zero. This is exactly the situation in which we are 
interested. From here on we will set g=v(k)/ti, and 
cok— —g/2, with the understanding that g<0. Omitting 
the last term of Eq. (12), (which is a constant), we 
thus have 

k=\g{L2-W). (13) 

The number operator 91 commutes with L2 and L%. 
Hence all three may be simultaneously diagonalized. If 
we denote the eigenvalues of L2 by 1(1+1) and L3 by m, 
then the energy spectrum is 

£=*«[*(*+D-»2]. (14) 

Below, we show that / can take on the positive values 
N, N-2, NA, etc., and m as usual is restricted to 
— l^m^l in integer steps. We note that the momentum 
operator for this model is 

P = k Z 3 . (15) 

Thus m=0, corresponds to a state of zero momentum, 
while w = d b l to one of momentum dzk, etc. Inasmuch 
as g < 0 , the ground state is given by l=N and m = 0 : 

Egnd=igN(N+l). (16) 

The first excited state of momentum k (or —k) has 
the energy 

Ek=igN(N+l)-g/2. 
Thus 

Ek-Egnd=-g/2=\g\/2. (17) 

This energy difference is of order 1/N times the ground-
state energy per particle and hence is essentially zero. 
Thus there is no energy gap between the first excited 
state and the ground state. However, the first doubly 
excited state of zero momentum has the energy 

E(k,-k) = ig(N-2)(N-l) (18) 
and 

E(k, -k)-Egnd=-2gN=2\gN\ . (19) 

Now gN is of the order of the ground-state energy 
per particle, and thus Eq. (19) represents an energy 
gap as o)k —> 0. In this model there is therefore a big 
qualitative difference between a doubly excited state 
of momentum 2k and one of momentum zero. Below, 
we will further show that the state of momentum k 
(or 2k) may be generated from the ground state by 
operating on it with the density operator pk (orpk

2), 
Thus FeynmanV approximation is exact in this situa-

The Hamiltonian h [still omitting the last two terms in i R. p. Feynman, Phys. Rev. 94, 262 (1954). 
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tion. However, the first excited state of zero momentum 
can not be generated by the application of pkp-k-

IV. EIGENFUNCTIONS OF h FOR <*k=-g/2 

Let \pim be an eigenfunction of L2, L3, and 91 with 
eigenvalues 1(1+1), m and I, respectively. Then 

^rz=(«)-1/2(a-**) l |0>, (20) 

where |0) is the state of zero particles. \j/im may then 
be constructed with the aid of the raising operator L+. 
Thus 

r 1 (l-m)\~\^2 

hm=\ (L+y+«i<rl. (21) 
l(2l)\(l+m)\A 

Inasmuch as L+ commutes with 91 this is still an eigen­
function of 91 with eigenvalue /. In order to increase the 
number of particles without changing I or m we intro­
duce the operator K, 

K=a0*
2/2-ak*a~k*, (22) 

K commutes with Lz, L± (and hence L2). It increases 
the number of particles by two. Let ^im(N) be an eigen­
function of L2, L3, and 91 with eigenvalues 1(1+1), m 
and N, respectively. Then 

yr(N)=c(KyN-»i2 ypr, (23) 

where C is a constant of normalization. Since the eigen-
functions of h and 91 must be homogeneous polynomials 
of degree N in the a0*, 0±x* we see that I is restricted 
to the values N, N-2, NA, etc. 

Now the density operator pk is given by 

pk= / e^'^(x)^(x)dzx 

= Zq%q*a-q. (24) 

We note that when acting on the ground state ^rN°(N), 
it has the same effect as Z,+/v2. However, L+ acting on 
this state generates ^N1(N) which is the first excited 
state of momentum k. Similarly, pk

2 acting on tyN°(N) 
is the same as L+2/2 acting on tyN°(N) which generates 
^?N2(N). On the other hand, PkP-k is the same asL+Z_/2 
acting on ^N°(N) which gives back ^fN°(N). This 
justifies the statement made at the end of Sec. III. 

V. AVERAGE VALUE OF n0 

Inasmuch as the Bogoliubov approximation fails for 
this model, it is of interest to ask if the state k = 0 is 
macroscopically occupied. Thus we would like to calcu­
late the average number of particles in this level, both 
for the ground state (tyN

0(N)) and the first doubly 
excited state of zero momentum (M>j\r_2°(iV)). 

In principle we could use the form of the eigenfunc-
tions given by Eq. (23). However, these are difficult to 

handle and it is preferable first to transform to "spheri­
cal coordinates" where the derivatives of the Legendre 
polynomials are well known. 

As a first step in this procedure we introduce "rec­
tangular" annihilation and creation operators bi and 
fc*(i=l,2,3). 

a**=-(fti*+#2*)/v2, 

o^*=(h*-ibi*)/tf, (25) 

0O* = & 3 * . 

The Hermitian conjugate of Eqs. (25) then gives the 
relationships between the ak and the bi. The bi and bf 
satisfy the commutation relations P>*A*] = fai a n ( i zero 
otherwise. These commutation relations are satisfied by 
setting bj* — Xj and bj= d/dxj. However, since it involves 
very little effort to formalize this transformation we will 
do so. To this end we introduce the eigenfunctions of the 
annihilation operator8 

oo oo oo (Xl*bX*)ni 

Q(*iV2V8*)= £ Z L 
»1=0 na=0 W3=0 fl\! 

(x2*b2*)n* (x3%*)n3 

X 10>, (26) 
n2\ n%\ 

where the Xi are complex variables. Thus 

W2=a<*Q. (27) 

Let tya(bi*) be a wave function in Foch space given by 

^a=EniPn2ln8 Ca(ni,n2,nZ) 

(&1*)W* (62*)n a (^3*)n3 

X 10). (28) 

We define the corresponding wave function <pa(%i) by 

<Pa(%i) = E n i , n 2 , n 8 C a(n\,n<L,n%) 

(#1*)W1 fe*)n3 (^3*)n3 

X . (29) 
(miyi* fal)11* (nz\y* 

Then tya and <pa are related by the transformation 

/

d2xid*x2d*xz 

X expC- (| xt 1
2+ | x21

2+ | x, |2]) vafaMxfbi*), (30) 

where fd2xi means the integral over the entire complex 

8 These functions and the transformation following, [Eq. (32)], 
have been discussed by R. Glauber, in another connection: Phys. 
Rev. 131, 2766 (1963). See also V. Bargmann, Commun. Pure 
Appl. Math. 14, 187 (1961); Proc. Natl. Acad. Sci. U. S. 48, 199 
(1962). 
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plane, i.e., 

r r c2« 

J d2Xi= / dpi pi I don, 

Xi=pieiai. 

(31) 

The previously mentioned relations are now established 
via the equations 

J i-1 
3 

Xexp[— J^\»i\ 2~\(pci<Pa(%i))&(%i*'bi*), 

and 

J i=i 

Xexp[- i\xi\ *](—^«M V * W ) . (32) 
*-i \dxi J 

Equations (32) follow upon expanding both sides in a 
power series in the bi*. Furthermore, the inner product 
of two states ^a and ^ is given in terms of <pa and <pp by 

(*«{*?)= [tildWto*! 
3 

Xexp[— £ | ^ | 2 ] ( ^ a f e ) * ^ ( ^ ) ) . (^) 

The angular-momentum operators Lk, when acting 
on the (pa are now written in the usual form 

Lk= —iekim(xi(d/dxk) — xk(d/dxi)), (34) 

where ekim is the completely anti-symmetric tensor equal 
to 0, ± 1. The operator K acting on the <pa is just \r2, i.e., 

K(pa = %(xii+X22+X32)(pa. (35) 

I t is thus desirable to make the customary trans­
formation to spherical coordinates r, 0, <p. In terms of 
these the number operator and no are given by 

and 
dl=rd/dr 

n0=Xzd/dxz = (cos26)rd/dr— cos0 sin0d/d0 • (36) 

Furthermore, if $im(AJ) is the transformed eigenfunction 
corresponding to ^rr(N) of Eq. (23), then 

$l'»(N) = DrNYim(d,<p), (37) 

where D is a constant of normalization, and Yim is the 
usual spherical harmonic. If we set z=cos0, then 

Wo$^(/V) = [ iVz 2 +z( l -2 2 )d /d2]$r( i \ T ) . (38) 

For both the ground state and first doubly excited state 
m = 0 . Thus the spherical harmonics involved in Eq. 
(37) reduces to the Legendre polynomials Pi°(z). They 
satisfy the following relationships: 

Nz2Pl°(z) = N\ • 
r (l+\)(l+2) 
L(2H-l)(2/+3) 

(21(1+1)-!) 

1+2 

-P? 
1(1-1) 

(2l+3)(2l-l) (2l+l)(2l-l) 
(39) 

and 

d 1(1+1) 
z(l-z2)—Pi°(z)= 

dz (22+1) 

(21+1) 

(*-D 
( 2 / - 1 ) 

.(2l+3)(2l-l) 

(1+2) 

(21+3) 
1+2 (40) 

Since we are interested in the expectation value of n0, 
we need only retain the terms involving Pi0 on the right-
hand sides of Eqs. (39) and (40). The terms involving 
Pz+2° and Pz_2°, when multiplied by rN, give rise to the 
eigenfunctions <£z+2°(A) and <I>z_20(Ar) which are or­
thogonal to $i°(N). Thus the sum of the coefficients of 
Pi0 on the right-hand sides of Eqs. (39) and (40) is the 
expectation value of n0 in the state ^i°(N). Thus 

(*i°(N)\no\*i°(N)) = 
[ ( 2 A + 1 ) ( / + 1 ) / - A ] 

(2Z+3)(2 / - l ) 
(41) 

For the ground state, l=N; while for the first excited 
state with m==0, l=N—2. In both cases (w0)—A7/2. For 
the most highly excited state with m=0, we have 1=0 
and (n0) = N/3. Thus, the single-particle level with k = 0 
is always macroscopically occupied even though the 
Bogoliubov approximation is not valid. 


