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An investigation of the instabilities of longitudinal electrostatic oscillations in an infinite magnetized plasma 
at or near the ion cyclotron frequency has been made. This work extends that initiated by Harris. An 
approximate mechanical analysis of the coupling of the motion to the electrostatic field oscillations has been 
developed, which provides some degree of physical intuition and guides the more abstract dispersion-
equation approach used in the suceeding analysis. The possible instabilities arising from the ion motion 
have been classified into two types. Type-A instabilities are characterized by (1) the circumstance that the 
electrostatic field propagates nearly transversely to the magnetic field, and (2) as the analysis shows, by 
the requirement that the transverse energy distribution must be peaked at other than zero energy. A 
monotonically decreasing transverse energy distribution is necessarily stable in this instance. Type-B 
instabilities arise when the oscillating electric field has a significant component along the magnetic field. 
Because of the effect of ion motion along the magnetic field, it is now possible for instabilities to arise when 
the transverse energy distribution decreases monotonically, unlike Type A. Both types of instabilities 
have been examined as to their dependence on the type of coupling to the plasma electrons, and the various 
instability criteria are stated. In these electron-ion instabilities a central feature is the coupling of the 
transverse ion motion to the motion of the electrons along field lines. The most rapidly growing modes are 
those in which electrons move one axial wavelength in one ion cyclotron period. For actual experimental 
plasmas, this axial wavelength may be too long to be supported in the experimental device. This can put 
severe restrictions on the occurrence of these particular instabilities. Another class of instabilities is of those 
which arise from a coupling of the ion distribution with itself, the electrons playing a passive role only. Of 
the several kinds of instabilities of this class discussed, the most important are those which arise from a 
double distribution of ions; e.g., a cold plasma in the presence of a hot ion plasma. The important feature 
of these instabilities is that they can occur for very low densities. The relevance of this analysis to several 
current experimental programs is discussed. 

1. INTRODUCTION 

THE instabilities of longitudinal modes of oscilla­
tion in a plasma with anisotropic velocity distri­

butions have been studied by Harris1,2 and since then 
have received increasing attention,3-7 especially in con­
nection with experiments related to the achievement of 
controlled thermonuclear reactions. Harris1,2 obtained 
conditions for instability and growth rates for the un­
stable longitudinal modes in a magnetized plasma in 
which the temperatures along the magnetic-field lines 
were zero for both ions and electrons. Dnestrovsky, 
Kostomarov, and Pistunovich5 have attempted to ex-
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tend Harris' work to the case of nonzero temperature 
along the field, but their instability condition suffers 
from the use of an inconsistent approximation. It is our 
purpose here to present a more thorough examination of 
the several classes of electrostatic instabilities near 
cyclotron frequency in a magnetized plasma, and to ob­
tain as much analytical understanding as we can re­
garding this class of interactions. For the most part, the 
areas in which detailed numerical work is necessary are 
left for future publication. 

In the present paper we will examine the coupling of 
electrostatic oscillations to cyclotron motions from two 
points of view: first in terms of a mechanical solution to 
the equations of motion and then by means of the 
linearized Vlasov equations (i.e., ultimately in terms of a 
dispersion relation). In the former case, only an approxi­
mate analysis is attempted, the motivation being that 
of a search for physical insight rather than rigor. 

On returning to the dispersion analysis, we examine 
the limits of Harris' work1,2 and also analyze the results 
of Dnestrovsky, Kostomarov, and Pistunovich.5 We 
then consider anew the problem of electrostatic in­
stabilities near the cyclotron frequency with a somewhat 
modified plasma model, obtaining consistent instability 
criteria for several cases of interest. Specifically, con­
siderable difference is discovered between cases in which 
the electron temperature along field lines is zero (Harris) 
or nonzero. Several modes of instability are identified 
and analyzed, and their relevance to current experi­
ments is set forth. In particular, our results are used as a 
possible explanation of certain observations made in the 
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course of the Phoenix8 and ALICE9 experiments. The use 
of our results in connection with recent work on Table 
Top10 is also discussed. 

2. A MECHANICAL ANALYSIS OF THE ELEC­
TROSTATIC COUPLING TO CYCLOTRON 

MOTIONS 

In the absence of a magnetic field the mechanism for 
growth or damping of plasma oscillations is seen11 as the 
result of the strong interaction possible between a wave 
and those particles moving very nearly at its phase 
velocity—particles trapped in the electrostatic troughs 
of the waves. This picture, which has often proved useful 
in guiding the intuition of plasma physicists, of course 
is also effective in the presence of a magnetic field for 
those motions directed along magnetic-field lines. On 
the other hand, the presence of a magnetic field also 
allows a coupling in the transverse direction between the 
electrostatic field and the cyclotron motions of the 
particles, and thus offers the possibility of an additional 
energy exchange between particles and waves via this 
mechanism. The present section is written in an attempt 
to gain a physical insight into the mechanics of the 
electrostatic cyclotron interaction comparable to that in 
the absence of a magnetic field. 

Let us first consider the two-dimensional problem of a 
particle interacting with a longitudinal electrostatic 
wave propagating normal to a uniform magnetic field 
B0. Thus 

f = (Ze/nOZcr1! x B 0 + E ] , (1) 

where r is the instantaneous position of the particle and 
E is given by 

E = -k-'kEo cos[k-r-«H-tf>°], (2) 

with k= | k | and <f>° an initial phase. Hence, taking the 
y axis along k and writing 0 = [ Q | , Q^ZeBo/mc, and 
setting r=x±iy, Eq. (1) takes the form 

r+ittf= -i(ZeE0/m) cos{Im(kr)-oot+<l>0} . (3) 

There is no loss of generality incurred by assuming co, 
£2, and ZeE0 to be intrinsically positive, since the co­
ordinate system (with £2 along the positive z axis) may 
always be set up as outlined. 

We may think of E as the y component of a vector 
Eo, of magnitude EQ sgn(Z), which rotates in the same 
sense as the particle in the %-y plane. If we also choose 
our origin of time such that the particle velocity is in the 
negative y direction at / = 0 , then $° is the angle meas­
ured in the sense of rotation by which the particle 
velocity leads E0 at £=0. 

8 L. G. Kuo, E. G. Murphy, M. Petravic, and D. R. Sweetman, 
Phys. Fluids 7, 988 (1964). 

9 C. C. Damm, A. H. Futch, F. Gordon, A. L. Hunt, E. C. 
Popp, R. F. Post, and J. F. Steinhaus, Nucl. Fusion 1, 280 (1961). 

10 W. A. Perkins and R. F. Post, Phys. Fluids 6, 1537 (1963). 
11 D. Bohm and E. P. Goss, Phys. Rev. 75, 1851 (1949). 

Let us now define the (complex) phase <j>(Q,t) which the 
particle's true velocity carries with respect to the un­
perturbed velocity, i.e., if vL is the magnitude of the 
initial velocity let cj> be defined by12 

f= — Mjxe-*(*+Q*). (4) 

Hence by our previous choice of the zero of time, 
0(0) = 0. Then 

r=-ivj dt'e-iwwi+ro. (5) 
Jo 

Since y(t=0) = lm(ro) = 0, if we now set s=&t, P=kv±/ti, 
v^oo/Q, and a^ZeE0/mvxU, Eqs. (3) through (5) yield 

d 
—e~~l* 
ds 

= aeis cos -p / ds' c o s [ < £ ( / ) + / ] - ^ + < £ 0 . (6) 

If the perturbing electric field is small, we may ex­
pand 0 in a power series in its amplitude, viz.: 

4>(s) = a4>i(s)+a*4>%(s)+---, (7) 

so that upon substituting (7) into (6) and equating 
coefficients of the first power of a, we obtain 

{d/ds)(j>i-=ieis cos{-/3 sins-w+<£0} . (8) 

We then ask for the quantity Ai=J*0
2Tds(d(l>i/ds), 

since aAi is the net (complex) change in phase of the 
particle's velocity (with respect to its unperturbed 
value) in one cyclotron period. Note that Re (aAi) gives 
the true phase change while Im(aAi) gives the change in 
magnitude of the velocity, and thus the change in 
energy. Because of the definition of </>, Eq. (4), the 
particle has gained energy if Im(Ai)>0 and has done 
net work on the field if Im(Ai)<0. 

Substituting (8) into the expression for Ai, the re­
sult is expressible in terms of Anger's functions,13 viz.: 

Ai/27r=J/(^)sin(</>°-^7r) 

-ipp-^UP)- J,(0)] cos(0°-^x) , (9) 
where 

J^EEETT- 1 / dscos(vs—psins). (10) 

12 We define the phase in terms of the velocity rather than the 
position of the particle since we wish to leave out the effects of the 
guiding-center motion. The guiding-center velocity, which is 
proportional to the average electric field seen by the particle over 
a cyclotron period, depends only on the amplitude of the electric 
field at the times under consideration (e.g., it disappears when the 
field is turned off) and should not be considered in computing 
rates of energy transfer between particles and the wave for the 
purpose of establishing instability in the present situation. 

13 G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, Cambridge, England, 1948) 2nd 
ed., pp. 309 ff. 
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When v is equal to the positive integer /, (10) is 
BessePs integral and (9) becomes 

Ai= (-)z27r[jy(0) smt-iip^JiiP) cos0] , (11) 

and we have dropped the now superfluous superscript 
zero on </>. Thus in general there are two phase angles 
which are unchanged on the average: </>=0 and $ = 7r. 
Only one of these is stable, however, the net change 
being such as to tend to cancel the initial value of sin$ 
in one case and to add to it in the other. [When (—) lJi(fi) 
is negative, it is the position 4> — 0 which is phase stable.] 
In addition, there are exceptional cases in which <f> is 
unchanged, for if we define ju/ as the &th extremum of 
Ji, then Re(Ai) vanishes at those energies for which 
P= jik, and all phase angles are stable. 

The rate of energy transfer to the particle by the field 
is, as we noted, proportional to Im(Ai). Thus, adia-
batically, recalling the definitions of a and /3 and setting 
a= ZeEok/niti2, 

d(^2)/dt= (-Y+iattlJiiP) cos<£. (12) 

(In using the adiabatic approximation we have had to 
assume that the time scale for energy exchange is long 
compared with the cyclotron period—essentially equiva­
lent to assuming a<<Cl.) Similarly, the rate of net change 
of phase is 

d<j>/dt= (-)laQ^-<t>Ji(l3) sin<£. (13) 

We note that for particles in the vicinity of the phase-
stable position, Eq. (12) indicates an energy gain if 
Ji{0)Ji(ff) is positive, whereas these particles lose 
energy if this product is negative. However, if the dis­
tribution of particles over phase angle is initially homo­
geneous, the rate of energy exchange averaged over the 
whole distribution vanishes at / = 0 . Therefore we must 
look at the second derivative of J/32 to find the direc­
tion of energy flow at small times. Thus from (12) 
and (13), 

d2(i(32)/dt2 = a2O2[sin20+/ c o s ^ / T ^ O ? ) / / ^ ) . (14) 

Averaging over phase, one sees that the average energy 
transfer to those particles whose speed is characterized 
by 13 is of the same sign as Ji(fi)Ji(J3)y i.e., exactly as for 
those particles near the phase stable positions. In the 
present picture, therefore, the phase stable position, 
0 = 0 or else $ = 7r, plays essentially the same role as the 
position at the trough of the wave plays in the absence 
of a magnetic field. 

Let (\f/) denote the average over initial transverse 
velocity of any function \f/. Then 

(d2(m/dt2)= - i a 2 0 2 ( l+ / ) (P , ( / 5 ) ) , (15) 
where 

P i 0 8 ) = - i [ / w a 0 8 ) - / H - i 2 0 8 ) ] 
= -2lp-VMJi'(0). (16) 

As we should expect from the above, we will find the 

quantity (Pi(0)) playing an important role in our later 
dispersion analysis. Here, however, its physical mean­
ing is clear as the proportionality constant which de­
termines the initial direction of average energy flow be­
tween the particles and an electrostatic wave propaga­
ting normal to the magnetic field. Energy flow is from or 
to the particles accordingly as (Pi(fi)) is positive or 
negative. Thus if we are to have an instability driven by 
an excess of energy in the perpendicular motion of the 
ions, say, then (Pi(fi)) must be positive for these parti­
cles, at least to the extent that the wavelength along the 
magnetic field is very long. The modification of this 
statement necessary when the wave propagates partially 
along the magnetic field will be considered shortly. 

I t is interesting to determine what kinds of distribu­
tion functions can lead to positive values of (PzQ3)), 
and thus to the possibility of instability. If in zero order 
the particles are distributed in transverse velocity 
according to the function fi(vi), we have 

(P,(/3))=2TT/ vjvjMi-iip-vmjmi. (17) 
Jo 

On substituting for vL in terms of £ and integrating by 
parts, 

( 0 \ 2 r00 /&Q\ 

-j / dpji*wfi\—y (18) 
(We write k± instead of k in the above to conform to 
later notation.) Hence only distributions for which / / 
is somewhere positive can give rise to positive (Pi(@)) 
and thus instabilities of the nature under discussion. 
In particular, any monotonically varying distribution 
function (e.g., Maxwellian) is stable since / (vi) must 
vanish as vi —» °o. 

When the wave propagates partially along the mag­
netic field, our analysis must be somewhat modified. 
First of all, there is a Doppler shift of the driving fre­
quency as seen in the frame moving with the unper­
turbed velocity. Thus if k n and kx are the components of 
k parallel and perpendicular to the magnetic field, re­
spectively, and nu = ku/k, ni=ki/k, Eq. (6) becomes14 

d 
—e~i<t>=afi~1ni2eis 

ds 

X c o s J - p / " ds'cost^+s'^-ps+t+A , (19) 

where we now write 

P=kivx/to, v=(co — knVn)/Q, 

£=ku(z—vut), a^ZeEJz/mQ,2. 

In addition we have the equation for the displacement 

14 Since the electric field is assumed longitudinal, the component 
of E perpendicular to B0 is proportional to ni and the component 
along B0 is proportional to n\\. 
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FIG. 1. Ji((3)Jdi((3) and Wi{$)Jif{$) versus \i = i(32. 

in the JS direction relative to the unperturbed position, 

d2{ 
=anu

2 

ds2 

Xcosl-pj ds'cosZ4>(sO+s']-vs+?+<l>0\ . (21) 

Again, we may expand the equations in powers of the 
perturbing electric field amplitude, writing 

f=(a»i i 2)f i+(f l»n 2) 2f2+--- . 

Denning the net changes in <£i and f i over a cyclotron 
period, 

(d<f>i 

A2= / & ' / <fa( J= / (2x-*) ( Ufa, 
Jo i o \<faV Jo W / 

(22) 

we find Ai again given by Eq. (9) with v now to be in­
terpreted in terms of the Doppler-shifted frequency, and 

A 2 /2TT= [TT cos(0°-^7r)+sin(0°-^7r)^/^]J,(/S). (23) 

We now wish to obtain the adiabatic time derivatives 
analogous to Eqs. (12) and (13) for the present context. 
Indeed, since Ai is unchanged in form, Eq. (12) will 
again describe the average rate of change of perpendicu­

lar energy over a cyclotron period when the Doppler-
shifted frequency of the electrostatic wave is an integral 
multiple of the cyclotron frequency. The phase of the 
particle's velocity with respect to that of the electro­
static field, however, is now changed by two effects. 
The first contribution, as before, comes from the real 
part of Ai, corresponding to a true phase change of the 
particle's transverse velocity with respect to its un­
perturbed phase. On the other hand, when the direction 
of propagation of the electric field is partially along the 
magnetic field, the net displacement of the particle with 
respect to its zero-order longitudinal position also con­
tributes an equivalent azimuthal phase change a^n

2A2. 
Thus (again dropping the superscript zero on 0), 

d(^2)/dt={-)l+lani
2Q,lJi(P) cos<£ (24) 

d(j)/dt= (-yanJQp-Vi'iP) sin<£ 
+ (-yann2^LirJi(P) cos<£+hiifi) s in0] , (25) 

where 

As before, dQzfi2)/dt vanishes on averaging over </> 
initially, so that we differentiate (24) a second time, 
using both (24) and (25) in the result, obtaining 

(d2 (m/dt2) = haWm[nuVM hi(P)) 
+ni2( /+l)</3-1 / ,05)/ i ,03))] . (26) 

Equation (26) is useful, for example, in whatever 
numerical analysis may have to be undertaken for the 
examination of a dispersion equation, in that the re­
quirement that (d2(^l32)/dt2) be initially negative elimi­
nates certain parts of parameter space as possible re­
gions of instability. However, we can no longer conclude, 
as we did from Eq. (15), that a system is stable when­
ever (Pi(fi)) is negative. The presence of the extra 
term propportional to nu

2, which comes from the phase 
shift caused by an average parallel displacement of the 
perturbation allows (d2(^f32)/dt2) to be negative even 
for monotonic distributions of transverse energy. 

For purposes of illustration, the quan t i t i e s^ (fi)Jai(P)) 
and 0~XJi(fi)Ji (fi)) have been computed numerically 
and plotted versus \i=ki2(icTL/nitt2) for the case of a 
delta-function distribution at energy KTI. The results 
for the cases / = 1, 2 are shown in Fig. 1. 

3. THE DISPERSION RELATION 

With the elementary ideas of the preceding section 
in mind, we may now proceed to a more detailed analysis 
of the total problem. Following the work of Bernstein15 

and Harris,2 one can show that for perturbations of the 
form exp(ik*r— icot) of a steady-state infinite plasma 
in a uniform magnetic field B0, the linearized Vlasov 
equations yield the following general result for the 

1 6 1 . B. Bernstein, Phys. Rev. 109, 10 (1958). 
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perturbed distribution of the jth species of particles16 

iZjeNji r dfoj dfoj n 1 r dfoj dfoj'] 
j $ ki Iij+kn Iij +""-^1 (*II«II—w) knVi \hj 

mftj I L dvL <3̂ n J c L dvi dvuA 

1 f dfoj dfoH 1 T / dfoj d/oA dfo 
+-A2\ (*IIVJI—w) *nwi U 3y+-^-3 kAv vn Uij—o) 

c L dvL dvn J c L \ dfln cftjj./ ctoi 

A 1121 

/ i = -

d/o; 
(27) 

Here Zye, A7'/, and mj are, respectively, the charge, where 
number-density, and mass for particles of species j : ,,_ , I ^ T O / ^ O - A ^ 7 9 / ^ 9 
Sl^ZjeBo/tnsc is the (signed) cyclotron frequency; *> « > s « / l » / l . H^WM/mft?, j X y ^ W M J , 
is the electrostatic potential and A = (^1,^2,^3) is the and 
electromagnetic vector potential if B 0 = (0,0,50) and nn

2=ku2/k2=l—ni2. 
k = ( M , * , , ) ; and fafav,,), normalized to unity, is the B & ̂  m o d i f i c a t i o n o f t h e d e r i v a t i o n ) o n e c a n a l s o 

zero-order distribution of particles of type j , where / ,, . ., 
*>!= (^i2+^22)1/2 is the magnitude of the perpendicular . .2v 
velocity and vn the velocity along B0. The quantities f0j=fij(vl)(2TrKTuj/mj)-ll2exp( ^ - ) , (34) 

then 
I\j are the integrals 

hj= ' dtfGjWd) 

where 

G / 0 » = expj 

fcos<£ 

1 

I sin<£' J 

for X - (28) F 

• < 

i (0-0O 

+i (sin</>— sin<//) , 
Qj J 

(29) 

where 

and 

XJo(2Pj sm^x)[nu
2x+ni2 sinx] \ , (35) 

/»0O 

<*(&)>s 2TT / vldvlfjj(vx)4,(ps). 

For longitudinal oscillations in a nonrelativistic plasma, 
the vector potentials may be set equal to zero and a>/k When fx is Maxwellian, Eq. (33) is regained, whereas 
neglected next to the velocity of light, so that if (27) if fi is a delta function in perpendicular speed, the 
is inserted into Poisson's equation, we obtain a dis- angular brackets in (35) drop away. 

Finally, when /0j- is a Lorentzian in the parallel 
direction, 

(30) UJ/T 

foj=fuM-

persion relation which may be written 

where 
copj2 = 4:TNjZ-2e2/mj, uj2+vl{ 

Qj 
Fj=i— I d*\\ 

k2 

dfoj dfoj 
ki Iij-\~ki 1 I2J 

. dvi dvu J 

and the sum in (30) is over particle species. 
When foj is bi-Maxwellian in form, viz., 

foj=(2wKTlj/mj)-1(27TKTuj/mj)-1}2 

t mjVx2 tnjvu
2~\ 

, (32) 
2KTU 2KTUJJ 

then the prescription of Bernstein17 may be followed, 
allowing one to obtain the expression 

= / dxe^^-^^-^^-^^ln^x+n^sinx], (33) 
Jo 

(31) it is shown in Appendix A that one may write 

Fj=(\nu
2 %2~—V^rXft)) . 

d Si d 

d$j ft . 

Here fo=«,-+i|ftii#y/S2/|, and 

Tf (/3) = - if / dxe^Jo^p sinjx) 
Jo 

= f csc( rf)f 
Jo 

dx cos(£x)Jo(2l3 cos§#) 

pj 

= («{•) csc(xf)/rC8)7_rC8) 

00 (2m) I 

(36) 

(37) 

(38a) 

(38b) 

(38c) 

—1 22m(m!)2 (f2- l 2 ) ( f 2 -2 2 ) • • • ( f 2 -m 2 ) 

16 This result is derived only for lm(«)>0 , corresponding to 
the search for instabilities. 

1 7 1 . B. Bernstein, Ref. 15, Appendix I I . ]C=r—<X> 

(38d) 

(38e) 
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where J$ (J3) is a Bessel function whose index f is in 
general complex. (Note, however, that Im(fy) = Im(co:7) 
+ \kuUj/£lj\>0.) The integral representations (33), 
(35), and (37) are quite useful and often may be pre­
ferable to the infinite sums of Harris2 and Dnestrovsky 
et al.5 which, however, may be regained by use of (38e). 
In particular, when % is small so that Landau damping 
of waves travelling in the parallel direction is small, the 
representations (38b) and (38c) show very compactly 
the resonances at integral multiples of the cyclotron 
frequency via the esc (xf) term. We also note that from 
(37) and (38d), only /?/ and f/ enter into the determina­
tion of Fj. 

4. SPECIAL LIMITS AND PRELIMINARY 
COMMENTS 

Because of its simplicity we will be particularly con­
cerned here with the case of a two-component plasma 
in which the electrons are represented by the bi-
Maxwellian (32) and the ions by (36), especially when 
fn(vi)= (2Trvli)~

18(vl— vu) or when fLi is Maxwellian. 
However, before we go into the details of these special 
cases, we will discuss a few of the features of the more 
general problem, particularly as it relates to the work of 
Harris1'2 and Dnestrovsky, Kostomarov, and Pistuno-
vich.5 In the first place, we note that for instabilities 
associated with the ion cyclotron motion, there is a real 
qualitative difference in the solution of (30) obtained 
when the electron temperature in the parallel direction, 
Tne, is set equal to zero as opposed to the case when 
Tu e/Tu is considered finite.18 As shown by Harris,1,2 

the contribution of the ions to Z)(co,k), Eq. (30), 
vanishes as (me/w?)

1/2 compared with the electron 
contribution when TUe/TLi is first set equal to zero. On 
the other hand, we will find that this is no longer true 
(indeed, as in Sec. 6, even the opposite behavior can 
be exhibited) when the small-mass-ratio approximation 
is made for finite TUe/TL%. To see our point most clearly, 
let us first assume that ( r l e / r i , ) « (m, - /w e ) , so that the 
ion cyclotron radius is large compared to that of the 
electrons.19 For the ion cyclotron instabilities in which 
we are interested, kip^l, where pt is the ion cyclotron 
radius. Thus, for electrons whose distribution is bi-
Maxwellian, \e=^kL

2pe
2 is negligible in (33). Then, 

introducing the so-called plasma dispersion function20 

Ztf) = 2i dye***-*, (39) 
Jo 

18 We use TJL somewhat loosely in this discussion. When fu (vi) 
is not Maxwellian, KTU is to be interpreted as a characteristic 
mean energy of the ion's perpendicular motion. 

19 This approximation, which was not made by Harris, neverthe­
less is appropriate to almost all systems of current physical interest 
in which the initial nonrelativistic approximations hold. Certainly 
this is true of realistic systems for which the parallel electron 
velocity is small compared to the transverse ion velocity, and this 
is the limit in which we will argue that Harris' results are valid. 

20 B. D. Fried and S. D. Conte, The Plasma Dispersion Function 
(Academic Press Inc., New York, 1961). 

one may write 

4/ze Vv/4/Xc/ 

VW2L VvW V W - I 
In addition, both \xe and coe are small, so that inserting 
the asymptotic form of Z for large argument20 into the 
second term, and substituting the definitions of jj,e and 
coe in the first term, writing vUe= (2KTUe/me)

112, we find 

— 12 2 

Fe^ Z'(a>/kuvn e)+nx
2. (40) 

(2KTUe/me)k
2 

Putting (40) in (30), n?uv
2l&2 can be neglected next 

to unity and our dispersion relation becomes 

0 = # ( c o , k ) ^ l + & - 2 ^ - 2 

Xl-lZ'^/knVne^+co^^Fi, (41) 

where de= (KTUe/4:7rNee
2)112 is the Debye length cor­

responding to the temperature TUe. Note that both the 
real and imaginary parts of the term in square brackets 
are of less than unit magnitude when lm(w)>0,20 and 
that its imaginary part has the sign of Re(w).21 

To obtain Harris' result for the electron term in (41), 
one merely lets TUe~-> 0, in which case the term takes 
on the value — nu

2Q)pe
2/u2. However, note that unless 

nu
2 is small,22 the fact that co-̂ O,- and k^pf-1 means 

that a condition for validity of Harris' analysis is that 
the parallel electron velocity be small compared to the 
ion velocity normal to the magnetic field. This is a 
severe restriction, although it may be nearly true under 
some of the experimental conditions in machines such 
Phoenix8 and ALICE.9 Nevertheless, even in these 
machines, a very small amount of electron heating 
would eliminate this possibility and it is desirable to 
examine the situation when the approximation is not 
made. 

The equivalent of Eq. (41) using a series representa­
tion of (33) for Fi has also been studied by Dnestrovsky, 
Kostomarov, and Pistunovich23 who do not make 
Harris' implicit assumption that parallel electron 
velocities are small compared to perpendicular ion 
velocities. Nevertheless, these authors do use the 
asymptotic form of Z'(f) for large argument in (41), 
in effect considering nn= \ku/k\<^(me/mz)

112 in order 
to make (a/knvUe large. However, this approximation 
is not explicitly stated, and indeed is inconsistently 
used when they obtain as a result the instability criterion 
o)pe>^Qi together with the conclusion that the most 

21 The tables of Ref. 20 imply this. A proof is given following 
Eq. (13)ofRef. 7(a). 

22 Harris [Ref. 1(b)] eventually assumes nn2~l to obtain his 
instability criterion: cope

2>tti2, unstable. 
23 Reference 5, Eq. (9). Note that their foe^WiX) is our Z(f). 
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rapid growth rate is attained when cop(Mu/Qi is nearly an 
integer. (For then cope/Ql^>>(mt./me)

ll2'^>l is implicitly 
assumed!) In fact, since they eventually neglect the 
contribution of Re(F») in (41), we can see immediately 
that upe>ffii cannot be a general condition for in­
stability in their limit. Because the maximum value of 
Re[Z ' ( f ) ] for l m ( f ) > 0 is 0.57, it is necessary that 
k2de

2>0.2S. But kp^l, so that a condition assuring 
that pi>^de is at least required for the validity of 
their results. 

We will not go on to an analysis of the whole solution 
to (41) when the ions are bi-Maxwellian, but we do 
mention here that a number of theorems can be proved 
regarding regions in the complex co plane in which no 
solutions can occur. The details are given in the refer­
ences of Footnote 7, the principal results being that 
conditions of marginal instability p m (co) == 0+] are 
possible only if both / + ^ < o ^ - < / + l — Tm/Tu (where 
/ = 0 , 1, 2,- • •) and coi<Tu/TUi— 1. Hence in particular 
the system is stable if Tm/Tu>^. 

For reasons of analytic simplicity, and in order to 
be free to consider distributions of perpendicular veloc­
ity that may more nearly correspond to experiment, 
we will drop further consideration of the system 

When (44) is used in (41), we see that both the elec­
tron and the ion terms depend strongly on whether nu 

is assumed small or not. In addition, and depending on 
24 W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag, 

Vienna, 1961), 3rd ed., Part 2, p. 201. 

analyzed by Dnestrovsky, Kostomarov, and Pistuno-
vich and will concentrate instead on the use of (37) 
for the ion term in (41). This then corresponds to a 
situation in which the electrons have a Maxwellian dis­
tribution of parallel velocity, the ions being Lorentzian 
in this direction. For simplicity, we will also assume that 
di^ | kuUi/&i\ is small, and will then look for instabilities 
near integral multiples of the ion cyclotron frequency. 
Specifically, we write f^co ;+ ia ;= /+?7 , where / is an 
integer and Im(r?) = ai+Im(coi)>0, and we consider 
|*?|<3C1. Because — co*= — Re(co)-\-i Im(co) satisfies the 
dispersion relation if a> does, we need look for solutions 
only in the first quadrant of the complex w plane. 

Using (38b), one can easily show from Bessel's 
equation that 

1 d 
T r(£) = CSC(7Tf) 

Pd/3 

X / dx sin(f#) sinxJ0(2f3 cos|x) (42) 
Jo 

so that substituting l+rj for f» in (37), using (38b) for 
Tf and expanding in powers of rj, one finds 

the various parameters involved, the presence of the 
electrons may or may not be essential to the onset of 
instability. In the next section we will begin by focussing 
our attention on those instabilities in which both 
species of particles play an essential part. 

/ r d l+rj dn r \ 
Fi= (—)l{ nu

2 nL
2 CSC7H7 / dx cos[_(l-{-r})x']Jo(2/3 cosjx) ) 

XL drj (3 d/3J Jo / 

/ l rT [ nn
2 coslx n2 sinx sin/x r /w2—3x2\ "1 

= (—)l/ - / dxJ0(2fi cosJ#) \ 1 M nu
2[ )-\-?ii2x sinx coslx 

\ T T J O I T ? 2 ri L \ 6 / J 

r /7r 2-x 2 \ /7r2-3x2 \ -| | \ 
+ *? —^n2( )x+^x2[ J sinx sinfaH f / . (43) 

Using the identity sinx sin/x=J[cos(/— \)x— cos ( /+ l )x] , the first two terms may be integrated analytically,24 

obtaining 

Fi= -nnVm)v-2+nx2(Pimv-l+Ln^ • • • , (44) 

where Ji(fi) is a Bessel function and Pi(J3) has been previously defined in Eq. (16), and where 

(45) 

Cil(/3)^ (—)lir~l I dxJ0\~_2f3 cos(|x)]x sin(x) cos(lx), 
Jo 

Cin((3) = ( - ) V"1 J dxJQ[_2$ c o s ( | x ) ] i [ 3 x 2 - x 2 ] cos(fo), 
Jo 

Df(fi) = (-) i+17r-1 / dxJ0[2/3 cos(ix)]J[3x2-7T2] sin(x) sin(/x), 
J o 

^ n ( / 3 ) = (_)z+i7r-i J dxJQ[_2p cos (Jx) ] i [7r 2 -x 2 > sin(to). 
Jo 

(46) 

file:///ttJo
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FIG. 2. Values of the parameter <r extremizing Imfo) versus 
kHe

2 for Type-A electron-ion instabilities. 

5. COUPLING BETWEEN UNLIKE PARTICLES 
(ELECTRON-ION INSTABILITIES) 

We will find in this section, in addition to unstable 
modes such as those found by Harris1 '2 in the limit of 
very low electron temperature, that instabilities arising 
because of the interaction of the electron and ion terms 
in the dispersion relation also occur (in systems which 
can support long axial wavelengths) which depend on 
the finiteness of the electron temperature. In all of these 
cases, the tendency is for the direction cosine of the 
propagation vector to be small along magnetic field 
lines, typically nu~Vxi/vUe where vu is a characteristic 
transverse speed of the ions and imeViie2=KTue. Thus a 
typical electron tends to move about a wavelength in 
the axial direction in the same time it takes an ion to 
move a wavelength in the transverse direction, i.e., of 
the order of a cyclotron orbit diameter. The wavelength 
of these instabilities along the magnetic field lines, 
therefore, is usually very long. 

We will find two distinct kinds of electron-ion 
instability—one class which depends sensitively on the 
form of the distribution of ion velocities normal to the 
magnetic field, and another class which does not. In 
accord with the mechanical picture previously given, 
the first of these is an interaction in which the ions 
couple only to the transverse electric field, whereas in 
the second case the instabilities depend on the ability 
of the ions to move longitudinally in perturbation. As we 
have seen, the first class of unstable modes should 
occur only when the distribution of perpendicular 
energy has a hump in it (for otherwise the energy flow is 
from the wave to the ions at small times) and for pur­
poses of reference we will call these Type-A modes. We 
will study these primarily for the case in which the 
transverse distribution of ion energies is a delta func­
tion. The other class of electron-ion modes, which we 
will call Type B, occur because the ions can shift their 
phase with respect to the electric field by moving 
longitudinally. These are restricted in occurrence by 
energy flow considerations only to the extent that Eq. 
(26) be negative. Type-B modes will be studied here 

primarily when the distribution of ion transverse 
velocities is Maxwellian. 

A. Type-A Electron-Ion Instabilities 

If we assume that ionic velocities are small compared 
to electronic velocities and choose nn^vLi/vne so that 
<T=u/kn'0\\e is of order unity near cyclotron resonance, 
then as long as nn

2^(vLi/viu)2<^\ v | <3C1, only the second 
term of (44) contributes appreciably to Fi and (41) 
becomes 

0=Z) (co ,k )^ l+^ 2 J 6 - 2 C- iZ / ( ( r ) ] 

+upWr2(Pi)>n-1, (47) 
whence 

(Pi) / N 
V- • 48 

W l+&-24-2[-iZ'(cr)] 
Because the electron term contributes a positive imagi­
nary part to the denominator, instabilities occur only 
when (Pi) is positive, confirming the result already 
found in Sec. 2 for purely transversely coupled ions. As 
we have seen, (Pi) can be positive only in the case of a 
humped distribution of transverse energy, and in par­
ticular if we have a delta function distribution of 
perpendicular energy at energy KTX, (Pi) = Pi(kipi) 
where pi= (2nTi/ni£li2)112 is the ion cyclotron radius. 
Thus, from Eq. (16), instability is possible only if 
kipi>ji where fi is the first maximum of Ji. For ex­
ample, 77=1.841, 3.054, 4.201, 5.317 for 1=1, 2, 3, 4. 
(It can be shown25 that in general j/>l and that 
asymptotically for large I, we have ji^l+O.&O&l11*-™) 

To the present small n[{ approximation, we may re­
place ki in (Pi) by k. Then we may choose nu (which 
now appears only in a and, through the ion Landau 
damping term #;, in TJ) SO as to maximize the growth 
rate.27 If for the moment we assume the damping is 
small in order to get an idea of the magnitude of the 
growth rate, we may choose <j(=l£li/kuvu<) so as to 
maximize lra{rj). Figure 2 shows those values of <r ex­
tremizing Im(77) plotted versus k2de

2. When k2de
2<0.06, 

three roots appear although for larger values only one 
root occurs. In the former case, the extrema correspond 
to two maxima and one minimum, whereas for larger 
k2de

2 the single solution maximizes Im(?]). In both cases, 
however, the same curve is the locus of absolute maxima, 
so that for unrestricted <r, the extra roots at small 
k2de

2 may be ignored. No maxima occur for <7<(1/2)1/2. 
When k2d2 is large, oQ^l /^) 1 ' 2 , Im[-£Z'(<r)] 

^(x /2^) 1 / 2 , and 

rj^a)pi
2ttr2L- l+i(ir/2eyi2k~2de-

2l(Pi), 

k*d*»l. (49) 
25 G. N. Watson, Ref. 13, p. 485. 
26 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., 1953), Vol. II , p. 1565. 
27 Recall that growth rate = Im (w;) — fti[Im (TJ) = a,i]=tti Im (77) 

— fl\\kUi. 
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On the other hand, when k2de
2 is small, the maximum of 

the imaginary part in (48) occurs for a such that the real 
part of the denominator vanishes. (This is the regime 
which should most nearly correspond to the work of 
Dnestrovsky, Kostomarov, and Pistunovich.5) Through 
use of asymptotic relation20 

-\Z'{?)~v^*€-* f"l+—+ • • •] , 
2(T2L 2(72 J 

the real part of the denominator in (48) vanishes for 
a=(2k2de

2)~112, corresponding to nuo)pe=lQi, and28 

7i = iupi
2tti-2(Pi)(2/iryi2k*de* 

Xexp( !£ - 2 ^ - 2 ) , W « l . (50) 

Thus the growth rate appears to increase exponentially 
with k~2de~

2. Of course this cannot be true indefinitely, 
for the approximation 1171<<Cl will soon break down. In 
particular, one difficulty will be that the electron con­
tribution to Im[Z)(co,k)], which we retained in (47), 
now becomes exponentially small, whereas we have al­
ready thrown out imaginary contributions of first order 
in 77. More practically, however, in a given experimental 
system it becomes more and more difficult to fit in the 
required long axial wavelengths (which are proportional 
to a) for the larger values of a. 

In any event, the large growth rates may occur in 
infinite systems when 2&2de

2<Max{Re[Z'^)]}==0.57. 
Hence k2de

2=0.2S effectively defines the stability 
boundary in the sense that large growth rates are possi­
ble when k2de

2 can be made smaller than this value. The 
transition from "small'' to "large" values of Im(??) is 
exponential, as shown by (50), although the actual 
limiting growth rate is determined by other considera­
tions. On the other hand, k cannot be made so small that 
(Pi) becomes negative, and for a delta-function distribu­
tion this means that kpi>ji = 1.841. Thus we have the 
condition for "strongly" unstable growth in an infinite 
system: 

3Ade<pi, unstable. (51) 

We can also obtain an instability condition for the 
more slowly growing modes which occur when (51) is 
violated. We write,27 using (48), 

Im(co) = lSli<j-l{-o>pi
2&i-2l-l{Pi) 

X<r lmll-lk-He-
2Zf{<j)~]-l-Ui/vue} , 

where we have used <y=lQ,i/nnkvUe to eliminate nu. At 
the stability boundary, the maximum of the first term 
in braces just cancels the second. Moreover, when 

28 A convenient approximation for computing the maximum 
value of Im (rj) from (54) is 

MaxClm(r7)]=coiJi
2Qr2(Pt)(7r/2e)1/^-2^-2, 2 W > 0 . 5 7 , 

=a>i3i
212r2(i>i>{-Re[Z,(cro)]/ImCZ,((ro)]v}, 

2 W < 0 . 5 7 , 

where <r$ is determined from \ Re£Z'(cro)] = £ W . The worst 
error occurs when k2de

2 is near unity, where the true value is 
about J that given by this approximate form, 

2k2de
2 becomes larger than 0.57, 

-a lmli-ik~2de-
2Z\a)y-1^--^k~2de-

2a ImZ'(o-), 

which maximizes when <r= 1, giving 

</2TrU2\/a>pi
2\2Tu <Pf> 

Im(w)^K2< 
\/2^2\foipi

2\2Txi <P«) m) 

l \ e A o , 2 / TuelkW vUe\ 

Putting in the maximum value of l~lk~2pi~2Pi(kpi) 
(=0.016; 1=1, kpi=2A) for the delta-function distri­
bution, we find that to have growth in the range 
3Ade>pi, 

(co2,,2/^2)2>50(we/m i)
1/2 

Xl(TueTm)ll2/TLi], unstable. (53) 

Let us return to the point raised above regarding the 
suppression of long wavelengths in the axial direction 
due to the finite length of any real laboratory apparatus. 
(A qualitative discussion of the applicability of such 
criteria to this and other cases is given in Appendix B.) 
We note that it is unusual to find any experiment in 
which a machine is more than, say, 10 cyclotron-orbit 
diameters in length. Thus if \ u = 2ir/ku and we choose 
k = jipf1 corresponding to the boundary of instability 
when (51) just begins to be satisfied, then the smallest 
wavelength Xn which is unstable is \n = (irji /nu)(2pi), 
so that for practical systems irji'S lOtiu. More generally, 
if we take L to be the maximum longitudinal wavelength 
supportable by the system in units of cyclotron-orbit 
diameters, we must have <r<(L/ir)(vii/vue) for the 
instability to occur. With L < 1 0 practically, a will be 
limited to rather small values unless the ions are very 
much more energetic than the electrons. Because k2de

2 

cannot get very large (for rapid growth), this means 
that we are in fact usually below the lower branch in Fig. 
2 rather than near the absolute maximum of Im(r?). In 
any event, we are in a regime in which the smallest 
possible nu gives the greatest instability. 

If we are limited as above to small 0-, —\Z'{v) 
=l-\-iirll2(r and (48) becomes for a delta-function 
distribution18 

We 2 Mr1'2, i«z r tirx'za- "I 
- 1 + P,0S), (54) 

xWi. l+xWA 

where x=de/pi and 0=kxpe=kpi. Setting 

ai=kt,Ui/Qi= 2irUi/\nQi= (ir/L)(ui/vu) , for 1= 1, 

Im(w) = Q{ 
L T„, /32Pi(/3) vu * ut 

2 T « * TU (1+x^y vne Lvu 
(55) 

Now /32Pi(/3) is an oscillating function of nearly constant 
amplitude, so that 02Pi(/3)[l+x2/32]-2 is a maximum 
near the first maximum of $2Pi{0) (since x cannot be too 
large if we are to have instability). Thus /32==7.7 and 
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0 2 P i ( £ ) ^ O . 7 6 , a n d 

wQi/MeTueV12 

I m ( « ) S — f — — ) 
L \ Mil n / 

r 0.068L2 /nuTuA1'2-] 
X — ( , (56) 

L ( l + 7 . 7 ^ 2
P r 2 ) 2 \meTuJ J 

using ^tniUi2 = KTui. Hence we have the instability 
criterion for finite machines: 

L*>15(miTni/meTlle)(l+7.7d*pc2), unstable. (57) 

Inequality (57) is a severe limitation on the possibility 
of finding such instabilities in ordinary experiments. 

We may summarize this section by observing that 
although an infinite system is unstable with rather large 
growth rates when (51) is satisfied [Eq. (50) begins to 
break down when Im(co) approaches the smaller of <aPi 
or flj, or with smaller growth rates when (53) is satis­
fied, these instabilities occur for very long axial wave­
lengths. In a finite machine L cyclotron orbit diameters 
in length, the suppression of long wavelengths leads to 
the stability criterion (57) which is much less severe, 
with growth rates being given by Eq. (56). 

The principal approximation of the analysis is that 
( ^ i t A i i e ) 2 « M « l , and from Eq. (54) this means that 
at the condition of maximum growth (me/mi)(Tii/Tue) 
«0 .38(2 n „ 6 / r i i ) ( l+7 . 7d e

2 / P i
2 )« l . I t is the first of these 

inequalities that is the most critical, since that is what 
suppressed the first term in the expansion (44), and we 
will consider in the next section what happens when this 
term is taken into account. When the second inequality 
begins to be violated, the failure is due primarily to the 
relatively large real frequency shift below resonance, 
and an expansion in powers of Im(?7) may be used 
instead,29 or the problem may be attacked numerically. 
I t is unlikely that a material change in the conclusions 
would occur, however. 

B. Type-B Electron-Ion Instabilities 

When the distribution of transverse ion velocities is 
a monotonic function of the speed, so that (Pi) is nega­
tive and Type-A instabilities are proscribed, the cou­
pling provided by the first term in the expansion (44) 
can still give rise to other forms of instability. The first 
of these is the instability originally studied by Harris1,2 

and by Dnestrovsky et al.,5 in which the electrons make 
a large negative real contribution to the dispersion 
relation—overcoming the Laplacian contribution repre­
sented by unity in Eq. (41). In order for this to occur, 
however, u must be larger than 0.925 and as we ob­
served in Sec. 4 this is rarely possible experimentally, at 
least if one tries to use the expedient of Dnestrovsky 
et al. Unless the electrons are truly cold, as Harris 

29 See Sec. 6 for an analysis of Type-A ion-ion instabilities using 
this approach. 

originally assumed, the long axial wavelengths required 
cannot be supported in a practical experiment. 

Semiquantitatively, when <r(z=il£li/kuVne) can be made 
larger than about 3 or 4, the asymptotic form of Zf(cr) 
can be substituted in and the dispersion relation, Eq. 
(41), becomes 

I - W M ^ V C / W J - W N V ^ - ^ O . (58) 

Thus instability is possible when nu
2upe

2>l2Qi2. As we 
noted, however, in order to justify use of the asymptotic 
form for Z'(er), we require o-2>10 or /2SV> 10^n

2^,e
2. 

Hence cope
2> 10k2Vne

2 or, for instability, 

<*n*W> W(kp%)2(TUe/Tl%). (59) 

Using the smallest permissible kpi for a given system 
allows one to estimate its susceptibility to unstable 
Harris modes from (59). One must keep in mind that 
(59) is not sufficient, however, and that this instability 
only goes when the electron temperature is so small that 
a- can be made at least larger than unity, despite the 
finite machine length. We will not try to refine these 
results here, but defer further discussion of cold-
electron plasmas to the specific experiments covered 
in Sec. 8. 

Another instability can occur if one capitalizes on the 
dissipative rather than the reactive contribution of the 
electrons to D(u,k)—indeed this is just what was done 
in obtaining the Type-A instabilities, except that we 
used the second rather than the first term of (44) to 
provide the coupling to the ions. We consider these 
modes next. 

Because of the restriction of a to small values in most 
important cases, we will confine our analysis to the cir­
cumstances in which Z\d) can be represented by the 
first two terms in its power series expansion in a. How­
ever, since the instabilities will again tend to come in 
soonest when nu is as small as possible within the limits 
imposed by finite geometry, both of the first two terms 
in (44) are important and (41) becomes 

+oopi^r2L-nll
2(Ji2)rj-2+nl

2(Pl)V~^J 

so that, for the unstable solution, 

1 1 

_ = [ov-2OrW<Pz> 

rj 2copi
2ttr2nn2(Ji2) 

- { [ co^ 2 O r W(P z ) ] 2 +4 W ^ 2 12 r
2 ^ I I

2 ( / i
2 ) 

X[ l+^ - 2 ^ r 2 ( l+ i7 r 1 /V) ]} 1 - 2 ] , (60) 
where the principal value of the square root is to be 
taken. Moreover, if the distribution of transverse 
velocities is Maxwellian and we define pi

2^2KTii/mi^i2 

as before, then 

(Pi)=-2lkr*Pi-*bi, 
(Ji2) = h; b^e-K^h^kft*). (61) 
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When Tii/Tue is large, the last term in the square root 
dominates and 

rj^tiukp, 
LTT^O 

- - i + i — — 
L i+me

2 J L I + J W J 
i+k2d, 

Thus, for 1=1, 

Im(a)) = niik(2KTxi/mi)1/2 

f(rr^i(rIIe/ri,)-n/2 

(62) 

X - - ( — ) > (63) 

UL (1+iSW)8 J Vr^V J 
and on the boundary of instability a takes on its maxi­
mum value: 

(L/^imeTu/miTue)1/2. 

The quantity a^=b\{l-\-k2de
2)~* maximizes when b± 

maximizes if de
2<<Cpi2, and for the reverse inequality a 

maximizes when k2de
2 = %. Hence, writing am for the 

maximum value of a, this means 

(64) 
a w = ( l / 2 7 ) ( p , W ) , Pi

2«de
2, 

am=0.219, Pi2»de
2. 

Therefore, we have the instability condition from (63) 

amL2> 16w(miTui/meTii), unstable. (65) 

Again, it is very difficult to find an experiment in which 
the length of the machine is sufficiently great that these 
modes become offensive. 

6. INTERACTIONS OF A SINGLE DISTRIBU­
TION WITH ITSELF (ION-ION 

INSTABILITIES) 

We have seen in the previous section that microin-
stabilities can arise through the coupling of the ion 
cyclotron motion to an electrostatic wave which in turn 
couples either reactively (Harris modes) or dissipatively 
to the longitudinal motions of the electrons in a plasma. 
I t is also possible for the wave to couple into the parallel 
motion of the ions, with the electrons playing only a 
passive role. Such instabilities we call ion-ion instabilities 
to distinguish them from the previously considered 
electron-ion modes. Specifically, we characterize the 
ion-ion instabilities by the requirement that only one 
species of particles makes other than a nonresonant 
positive real contribution to the dispersion relation, 
Eq. (30).30 

When neither the electron temperature nor nu is ex­
tremely small, a is small in Eq. (41) and the dispersion 
relation takes the form 

0=D(u,k)=l+k-2de-
2+upi

2ttr2Fi. (66) 

One may again use the expansion (44) for Fi and try to 

30 It is clear that electron-electron instabilities are covered in 
a discussion of ion-ion instabilities by making the appropriate 
change in cyclotron and plasma frequencies. See Sec. 6C. 

determine the unstable solutions to (66), but it is now 
necessary to keep at least the first three terms in order 
to find any solution for other than purely real rj, and it 
appears to be necessary to keep at least the first four 
terms for an adequate exploration of the whole problem. 
Thus one begins to worry about the effects of an early 
termination of the series at all, and in order to present a 
more convincing analysis we seek an alternative to 
keeping a large number of terms in the representation 
(44). The methods we will adopt will vary with the 
cases examined. 

As in the section on electron-ion instabilities, we also 
find that ion-ion instabilities depend on the two classes 
of interaction corresponding to the two driving mecha­
nisms discussed in Sec. 2. We will again denote these as 
Type A or Type B, our nomenclature depending upon 
which driving mechanism is of principal importance. 

A. Type A Ion-Ion Instabilities 

The Type A ion-ion instability, as the Type A electron-
ion instability, is driven by an interaction which is pri­
marily between a purely transversely propagating elec­
tric wave and the cyclotron motions of the particles. 
Formally, we may separate out this mode by letting 
nu2 vanish, so that from (37) 

-u^ar^dTfGsyd/s). (67) 0=D(kS)=l+k-2de 

Again one can easily show31 that no unstable solution 
exists for Type-A modes when the distribution of trans­
verse ion energies is monotonic (e.g., Maxwellian). 
Hence we now restrict our attention to a delta-function 
distribution at energy KTH. 

The method of attack which we will use in the present 
case is equivalent to writing t=v+in and expanding the 
dispersion function in powers of £i.32'33 If one then keeps 
only terms through first order, both real and imaginary 

31 The proof depends on showing that Im (D) is nonvanishing. 
To see this most easily, observe that application of the identity 
1 = 2»_—*/„*G8) to (38*) allows one to write Tf = Sn=_eo

00 w2 

X(£2—w2)_1/n2(^), after which the proof becomes trivial. For a 
transverse Maxwellian, an equivalent proof is also noted by Harris 
[Ret. 1(b)], the special case of a more general result later obtained 
by Hall and Heckrotte £Ref. 7(a), footnote 6] . 

32 Strictly speaking, in this approximation a solution exists only 
if D(k,v)=Q and [cf .Eq. (75)] G„(X,*>)=0+, since the electrons 
contribute a positive imaginary part although we take it vanish-
ingly small here. Thus if the curve of Gv(\,i>) touches the axis 
tangentially from below, but does not cross, there is no instability. 

33 It is interesting as an aside to note that if we define k {v) by 
the requirement that D(k,p) vanish, then 0=^dD{k,v)/dv = Dv{k>v) 
-\-Dk{k,v)dk/dv. Hence in order to guarantee the vanishing of 
Dv(k,v), it is sufficient that either Dk(k,v) or dk/dv vanish (in 
such a way that the product goes to 0+). Since dv/dk=z£lcld<a/dk, 
the vanishing of dk/dv can be interpreted as the group velocity 
of the waves becoming infinite. It is at this point that the direction 
of energy propagation changes direction, i.e., this is the transition 
point between "forward" and "backward" waves, and thus it 
corresponds to the condition at which the feedback to a disturbance 
generated "upstream" goes from negative to positive. Instabilities 
of such nature are well known in electrical engineering technology, 
and have been used, for example, in the development of the so-
called "backward-wave" oscillators. We will not make explicit 
use of this result here, however. 
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parts of the dispersion relation may be solved (in part 
numerically) for the conditions of instability. 

Let us define X=§/32 and set 

«r(X)«/r08)/-rO3) 

= 7T-1/ dxcos(£x)Jo[2pcos(£x)l. (68) 
Jo 

If a prime is used to denote differentiation with respect 
to X, our dispersion relation may then be rewritten 

0 ^ p T 2 + ( W r n ^ " 1 = ^ cscfa>/(X)^G(X,f). (69) 

Equation (69), except for the second term on the left, 
is equivalent to that considered by Gross34 and subse­
quently by Sen35 and Harris.1,2 Although in the previous 
work2 instability was thought to be possible when 
/3>1.84 (the first maximum of J\) corresponding to 
X> 1.69, we find that in fact the requirement is /3>3.83 
(the first zero of Ji), or X>7.34.36 

If we recall Eq. (42) or, equivalently, note the relation 

fu/(X) = J[um(X)-u r_!(X)], (70) 

we may multiply (69) through by sin(Trf), set f=^+i/z, 
and separate real and imaginary parts, obtaining the 
pair of equations 

^i203p%~%+(Tii/Tue)\~~1:= — I dx sin# sin(^) cosh(/xx)/0[2/3 cos(Jx)] / sin(7n>) cosh(7Tju) 

= — / dx sin# cos(z>x) sinh(/xx)/o[2/3 cos(Jx)] / cos(7n>) sinh(7r/x). 

(71) 

Since the term in the middle in (71) has a magnitude less 
than 7T | CSC(7TJ>) | and the last term is less than IT \ secirv \ 
in magnitude, a necessary condition for instability is 
that 

o,2co2,r2+(r1,/rIU)x-1<7r21/2. (72) 
From the equality involving the two integrals in (71) 

one can show, with a little trigonometry, that 

JJT1 I dx sinx sin (̂7r—x) sinh/x(x+x) 

X/o[2/?cos(^)]=0, (73) 

which in the limit ju —» 0 becomes 

dx(ir+x) sin* sim<7r—x)J0[2/3 cos(§#)] = 0. (74) 
/ 

Similarly, taking the limit ju —> 0 of (73) directly, 

WuVi-2+{TLi/Tue)\-1 

-C$C(TTV) I dx si 
Jo 

sinx smvxJo[2l3 cos(Jx)] 

(75) 

J 0 

= — 7T"1 sec(7r̂ ) / dxx sinx cosvxJ0[2fi cos(|x)]. 

In numerical work, for example, the first integral may 
be used with (74) when l+l<v<l+l and the second 
when I— l<v<l+l, where I is an integer, in order to 
determine conditions of marginal instability. 

When v=l, Eq. (74) requires X=Xz&, the &th zero of 
vi (i.e., \ik=hPik2 where ptk is the 4th positive zero of 
dJi2((3)/d/3). It is convenient, therefore, to classify solu­
tions in general by that branch of the curve \=Ak(v) 

satisfying (74) which satisfies Ak(l) = X^.37 The functions 
Ak(v) for 1<&<4 were obtained from numerical solu­
tion of (74) and the corresponding values of G(\,v) 
[equal to the integrals in (75)] were also computed along 
these curves. When k=l and 3, G(\,v) is negative along 
Ak(v) so that neither of these cases lead to instability. 
Figure 3 shows G(\,v) along A2 and A4, and A2(v) is also 
shown there. Cross plotting the results against X"1 and 
determining the envelope of its intersection with the 

7.0 8,0, 9.0 

FIG. 3. Showing G(X,v) along X=A2M and X=A4M, 
and showing A2

_1W. 
34 E. P. Gross, Phys. Rev. 82, 232 (1951). 
35 H. K. Sen, Phys. Rev. 88, 816 (1952). 
36 An exception is the special case of zero frequency CRe(£) = 0 ] 

for which instabilities first occur when /3>2.40 (the first zero of 
Jo). See Appendix C. 

37 We have not investigated i>/(X) completely in order to show 
that the solutions A&(*>) yield all of the zeros of v/(\) for non-
integral v, but this seems a reasonable conjecture. 
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FIG. 4. Showing the instability boundary for Type-A ion-ion 
instabilities satisfying Eq. (75). 

straight lines a+bX*1 allows the determination of the 
instability boundary, Fig. 4. From this we see that a 
necessary condition for instability is 

copi
2>6.6tti\ (76) 

B. Type-B Ion-Ion Instabilities 

As in the case of electron-ion instability, we may 
separate out the Type B ion-ion modes by choosing a 
distribution function for which the Type A modes can­
not exist. Thus if the transverse distribution of ion 
energies is Maxwellian at temperature Tu, and if we 
define 

\L^KTiikL2/mi2i2=:^kx2pi2, 

Xn = §ftii2P»2 = » i i 2 \ iAi 2 , 
and 

T^XO^Ax-1 / ^exp(-^ 2 /2Xx)T r ( /3) 

= f csc(?rf) / dxe~^1+cosz) cos(f x), (77) 
Jo 

then from (37) and (66) 

0A>Pr2+(rx</rII.)(Xx+x„)-1 

= [ f r ( X x ) - l ] ( X x + X 1 I ) - 1 - ^ , 2 a [ r 1 T f ( X x ) ] / ^ . (78) 

Equation (78) is intrinsically more complicated than 
the comparable result (69) obtained for Type-A in­
stabilities because of the presence of the additional free 
parameter Xn(or nu

2). Indeed, if we were to pursue the 
previous approach and assume Im(f) = ^ to be small at 
this point (which cannot be justified anyway in the pres­
ent finite nu case unless Tm/Tn is very small) it seems 
to be possible to find a very large range of unstable con­
ditions, for much of which the growth rate could be 
easily compensated by adding a little Landau damping. 
Hence before any further approximations are made, we 
will call to mind some general restrictions regarding pos­
sible solutions to (78). Several theorems of a general 
nature have been explicitly obtained in the references of 
footnote 7 for the case of a bi-Maxwellian distribution of 
ions, and the methods described there can also be used 
for our Maxwellian-Lorentzian distribution, Eq. (36), 
to show from the behavior of the imaginary part of 
(78) that 

(a) solutions may occur only when I—\ < v^ Re(f) < /, 
where / is an integer; 

(b) marginally unstable solutions may occur only if 
Tui/TLi<h and 

(c) Im(T f )<0. 

Recalling that /* = Im(co/i2»)+a*-, we note that ^2 = a\u 

where a=(2Tui/Tli)[_l+Im(a)/knUi)'li
2. Clearly, condi­

tion (b) above implies that solutions to (78) may occur 
only when o:< 1. Secondly, however, the imaginary part 
of (78) may be rewritten 

X1I = A(f,Xx)^Im{T f(Xx)}/Im{a[r1TKXx)]/ar} (79) 

and the impossibility of solving this equation unless 
jLt2<Xn is equivalent to the fact that A(f,Xx) is negative 
unless JJL2> A. Thus A changes sign only discontinuously, 
and since (for /x> a{> 0) both numerator and denominator 
of (79) are continuous and bounded, changes in sign of 
A occur only at zeros of the denominator. Recalling (77) 
and condition (c), this means that solutions occur only 
inside regions of the f-plane bounded by the real axis 
and those curves for which 

t 0~=G(Xx; JU,J0 = [ 1 — cos(27rz/) cosh(27rju)] / dx exp[—Xx(l+coS7rx)](l — X2) sm{jv{\ — x)~} 
sinh[7r/x(l — x)~] 

Tfx(l — x) 

sinh(2xM) fl 

+ 2 sin(27rz>) / dx exp[—Xx(l+cos7r^)](l+x) cos[7n>(l — %)3 cosh[ir/i(l —#)] . (80) 
27T/X J _ 1 

I t is clear from condition (a) above that these bounda- Equation (80) has been solved numerically for / = 1, 
ries are closed curves lying within the strips l—\ and typical results are shown in Fig. 5. Before discussing 
< Re(f) < /. these results further, however, it is useful to go back and 
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0.5 0.6 0.7 0.8 0.9 1.0 

FIG. 5. Curves of ju versus v along G(Xj.; n,v)=0 for various 
Xj.. The dashed line corresponds to the condition at which 
R e { - d ( r i ; ? f ) / d r } changes sign. 

examine (78) again from a slightly different point of 
view. 

If we use our previous definition, JU2=aXU7 to eliminate 
An (and nu

2) from (78), we obtain 

a= . (81) 

Tr(xi)-i-r1,/r1Ie-xi^
2^r2 

Note that Im(co) and ku now both appear only in the 
ratio Im(co)/kuUi, and then only in the parameter a. 
Hence in the unstable regime the growth rate is pro­
portional to kuUi and the fastest growth occurs for large 
ku. Depending upon what process ultimately limits the 
smallest supportable wavelength, these growth rates 
may become very large indeed. 

In general, in order to solve (81) one should look for 
OLM, the largest value of a consistent with those fixed 
parameters O;2copr

2 and Tn/TUe appropriate to a given 
system. Such systems are then seen to be unstable for 
all ion-temperature ratios TUi/TLi<\aM- Carrying out 
such a program numerically, on the other hand, is a 
difficult problem and beyond the scope intended for the 
present paper. However, if we ask for the more modest 
result determining the marginally unstable condition 
when Tui/Tu is very small, the numerical work is 
simplified considerably, for solutions then become possi­
ble only when the numerator of (81) vanishes.38 Such 
instabilities have very short axial wavelengths, as is 
implied by the relation between n2 and An, and our re­
sulting equation 

oi
2coPr2+a[r1Tf(Ax)]/af-o (82) 

as well could have been obtained directly from (78) by 
taking the limit An —>QO . 

The imaginary part of (82) is satisfied along our pre­
viously determined curves G(\i] n,v) = 0 (cf. Fig. 5), 
which we now see to have a dual significance: not only 
do they enclose all regions of possible instability, 
but they also determine the limiting condition of 
marginal stability when Tui/TLi<^\. The real part of 

38 Special mention should be made of the circumstance for which 
/*<$Cl, \v—Z|<<Cl, where the equations need special handling. It 
may be easily verified, however, that no solutions to (78) are 
possible in this neighborhood. 

— ^[f_1ff (Ai)]/df has been computed numerically along 
the curves G(\j.; /*,*>) = 0, typical results being shown in 
Fig. 6. Instabilities of this kind are thus seen to be 
possible (for / — - | 0 < / ) when 

cV>0.70SV. (83) 

The tendency of instabilities to occur near half-
integral multiples of the cyclotron frequency in this 
limit is again notable. In the present case the unstable 
frequencies lie just above the half-multiples whereas for 
the Type-A modes they were found just below. An addi­
tional distinction is that here the lowest unstable fre­
quencies lie near |fi%- while Type-A modes began to be 
unstable near § 12;. 

C. Electron-Electron Instabilities 

Electron-electron instabilities are really just a special 
case of ion-ion instabilities, since these modes also 
satisfy an equation of the form (66). The difference is 
that there is now no contribution from the opposite 
species analogous to the term k~2de~

2 formerly con­
tributed by the electrons, since the ions are effectively 
immobilized in virtue of their large mass. Thus a pre­
scription for transforming the analyses of ion-ion insta­
bilities over to the electron-electron case is to first set 
TUe— oo in all of the former formulas, and then 
change all subscripts i to e. Hence from Sec. 6A we 
find that Type-A electron-electron instabilities occur 
when uPe2>6.6£2e

2, and from Sec. 6B, unstable Type-B 
modes occur in the limit Tue/Tle<Kl whencope

2>0.7lV. 

7. DOUBLE DISTRIBUTIONS 

I t is sometimes true that a group of particles with 
anisotropic velocity distribution is found—or placed— 
within an experimental system in which there is another 
group of the same species of particles, usually colder, 
whose velocity distribution is more or less isotropic. 
Such a condition might well be realized, for example, in 

FIG. 6. Re{ — d[r"1Tf(\.i.)]/df} versus v for various Xi along 
G(>i; fx,p)=0. The dashed line corresponds to the condition at 
which JW changes sign. 
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many experiments8 *9,39'40 which inject energetic par­
ticles into a machine and ionize or dissociate them on a 
background plasma. Or it may be that the high-energy 
electrons generated in a high-compression mirror 
machine10 are contaminated with a low-temperature 
plasma that has somehow leaked in from regions which 
have escaped the heating cycle. In any event, the pres­
ence of a cold plasma can provide a dissipative medium 
to which the hotter, and more ordered, group can give 
up its energy via electrostatic instabilities. 

Let us consider the case in which the transverse energy 
of the cold (c) ions is much less than that of the hotter 
(h) group. Then pG<£ph(p= cyclotron radius) so that to a 
good approximation kj.pc may be considered to vanish for 
those waves that can couple appreciably to the hot ions. 
Then, if the distribution of cold ions is taken to be 
Maxwellian in the parallel direction at temperature 
Tii0 and we set Kr n c =|w^i ic 2 , we obtain from (33) 
and (39) 

Fc= - Ln*Q2kn-hn0-*z{--^-) 
I \kuVnJ 

r / c o + 0 \ /co —12\ HI 

+i^ , r^ ,c -W z - z ) . (84) 
L \kuVuJ \kuVuG/j\ 

If we let cop be the total plasma frequency due to the 
densities of both hot and cold groups, and take qc and 
qh=l — qc to be the fractions of cold and hot ions, re-
respectively, the dispersion equation, Eq. (30), becomes 

0 = D(«,k)= l + ^ Q - ^ e F c + ^ F j . (85) 

The extra term k~2de~
2, which should be added in general 

for computations near ion cyclotron frequency, has been 
dropped for simplicity in the present analysis, the 
assumption being that Txh/Tue^Sl^pf2 for this case. 
The inclusion of this term would present no special 
problem. Equation (85) is also appropriate as it stands 
to the study of the stability of double distributions at 
the electron cyclotron frequency. 

The expression for the cold-ion contribution to the 
dispersion equation shows that these particles partici­
pate dissipatively through the imaginary part of Eq. 
(85). These particles can also make a negative real 
contribution, corresponding to a reactive participa­
tion, and this can also play a part in instability. 

Because of the presence of Fc, it is again possible for 
instabilities to appear close to cyclotron resonance, as 
in the case of the electron-ion modes, rather than re­
quiring the rather large frequency shifts that were found 
in Sec. 6 when a single distribution has to couple to itself. 

39 J. L. Dunlap, C. F. Barnett, R. A. Dandl, and H. Postma, 
Nucl. Fusion, Suppl. 1, 233 (1962); and P. R. Bell, G. G. Kellev, 
N. W. Lazar, and R. J. Mackin, Jr., ibid. 1, 251 (1962). 

40 G. F. Bogdanov, I. N. Golovin, Yu. Kucheryaev, and D. A. 
Panov, Nucl. Fusion SuppL 1, 215 (1962); and A. E. Bazhanova, 
V. T. Karpukhin, A. N. Kharkov, and V. I. Pistunovich, ibid. 
1, 227 (1962). 

Thus the contribution to the dispersion relation of the 
driving particles may again be handled satisfactorily 
by use of the expansion (44), and (85) becomes 

q*{nuVi2)vT2-nf{Pi)yrl}^Wo>p-
2 

— qcQ^k~2vUo~2Zf {o)/kuVuG) — hqoni2^lku~lVi\c~l 

X{ZC(co+0)/ftI,T>IIO]-Z[(a>-0)/ftIIw„0]}. (86) 

The cold-ion terms on the right of (86) are of impor­
tance (for co~/12) only when kl{V\\c<l£l or when 
|a>--i2|~&nfliio, the latter case differing from the 
former only near the fundamental resonance (1=1). 
However when kuVuo^Q, the hot-ion Landau damping 
becomes large (0h~fliihA>nc) and the coupling to the hot 
ions is lost (unless fluh^flnc, a circumstance of consider­
ably limited physical importance). Thus in both cases 
we are interested in the limit kuvUG<^il2, the difference 
being whether 5= (co—ti)/kuvnc is or is not of lower order 
than o)/kuVlUi. Of these, the former cases appear to be of 
considerable importance since such modes can be shown 
to be unstable even at low densities, where cop

2<$Ci22, and 
therefore of possible relevance to several current ex­
periments.8-10 '39 '40 In the following we will concentrate 
on these low-density instabilities, considering the be­
havior at higher harmonics only briefly at the end. 

A. Low-Density Instabilities of Double Distributions 

When 1=1, |co—£2|<<CS2, and kuvlUi<Z$l, the only term 
of importance contributed by the cold ions in (86) is 
that containing Z(5). Thus if we define y 2 = TUh./TUG and 
recall that ah=kuvUh/^, we may make use of the identity 
rj=ah(8+iy)/y to obtain 

?h{7*n2</iVtfh~2(5+*30-2-^^ 
= 92^p-

2+^qGn3?yah-
1Z{8). (87) 

Separating this result into its real and imaginary parts 
on the boundary of instability, with a little algebra one 
finds 

q0ni2 

{ y R e [ - Z ( 5 ) ] - S I m [ Z ( 5 ) ] } 
2 ah 

W _q^nu
2{J1

2) 

Up2 ah
2(52+y2) 

(88) 
qc(8

2+y2) 28ynu
2(Ji2) 

(Pi)— Im[Z(*)] = — — . 
2qhy <wij?(&+y2) 

Probably all situations of physical interest are those 
for which y>l. Because 0 < 5 Im[Z(6)]/12 e[~Z(5)] 
<JTT 1 / 2 , for all 8, one readily finds that solutions for 
y>0.866 occur only for 8>0. But if 5>0 , then <i\> 
must be positive, so that only Type-A modes can occur. 

When (Pi) is positive, the least possible density for 
which instability can set in occurs for the smallest 
admissible nu. In the limit of small nu Eqs. (87) or (88) 

file:///kuVnJ
file:///kuVuJ
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FIG. 7. The instability boundary for double distributions for Type-
A coupling. The unstable regions lie below the curves. 

can be rewritten 

where 
<r=-\j+Z(8)l(8+iy) 

s= 2ttkuVUc/qcup
2, cr= 2{P1)qh/qc 

(89) 

(90) 

it being required that nu<^kvUc/Q. (In this approxima­
tion only Type-A modes are possible, since solutions to 
(89) exist for positive y and s only when a>0.) 

Now let us assume that, for given y, we have found a 
particular solution, s—si and o-=<ri, to (88). Clearly 
then, to the extent kn is arbitrary, a solution exists for 
all values of o>p

2 since we only need choose the appropri­
ate new value of ku, keeping all other parameters fixed. 
However, it is again true that ku cannot be made so 
small that the required longitudinal wavelength cannot 
occur in the finite geometry of a given experimental 
assembly.41 Therefore if L is the longest supportable 
wavelength in units of the hot-ion cyclotron orbit 
diameter, ku>irti/Lvih, and the minimum unstable 
density is attained for (2w/L)(ti2/qcQ)p

2)(TUc/T1}i)ll2=si. 
In a similar fashion we note that kL appears only in a 

and if we now keep the density of cold plasma fixed, so 
that s is held fixed also, unstable values of kx are related 
to the hot plasma density through the expression 
qh = <ri/(<ri+2(Pi)). Since (Pi) is free to take on 
all values less than its maximum by a suitable choice 

of ki, all densities greater than that for which 
£h=0"i/(o-i+2(Pi)max) are unstable. 

By use of a delta function at energy KT^ for the trans­
verse distribution of hot ions (so that (Pi ) m a x = 0.101), 
Eq. (89) has been solved numerically for several values 
of y. The resulting instability boundaries, in terms of the 
parameters s==(2T/L)(W/q0a>p

2)(Tllc/Tlhyi2 and qh/qcy 
= cr/2y(Pi)max, have been plotted in Fig. 7. Because the 
curves asymptote to zero on the left, there exists a 
smallest value of q^ for which instability can exist. 
Similarly, the system stabilizes when qG becomes small 
or when the total density drops below some critical value 
characteristic of the remaining parameters. However, 
depending upon the values of L and the temperature 
ratios, the densities corresponding to the onset of in­
stability may be very small. 

I t is of interest to note that this mode shares with the 
Type-A ion-ion instability (but to a much lesser degree) 
the peculiar feature of a shift toward higher frequencies 
than that of cyclotron resonance. This is contrary to the 
tendency of most unstable electrostatic cyclotron modes, 
e.g., the Type-A electron-ion instabilities of Sec. 6A 
and all Type B instabilities (which can only exhibit 
negative shifts7b). The mathematical origin of this be­
havior in the present case is the ability of the cold ions 
to contribute simultaneously both an imaginary (dissi-
pative) and a negative real (reactive) part to the dis­
persion equation. Semiquantitatively this positive shift 
is here of order (7r/L)(rIic/rJLh)1/212. Thus for systems 
of sufficient uniformity of magnetic field, this feature 
may prove useful as a partial aid to experimental 
identification. 

B. Other Double Distribution Instabilities 

When co—12 is not small, i.e., near the higher har­
monics of the cyclotron frequency, for small kuVUG/Q 
Eq. (86) becomes 

qAnu
2(Ji2)v-2-

whence 
- g c ( / 2 - » n 2 ) / P 2 ( / 2 - l ) ] , (91) 

/ / f 4 ^ n 2 rl2-nu
2 & l l 1 / 2 \ 

V=2nu
2(Ji2)/ U2(Pi)- W(Pl)

2 </,«> — — • . (92) 
/ \ I qh LJ2(Z2-1) ftup

2JJ / 

No purely Type-A instabilities (wn = 0) exist in this 
limit. However, the least possible cold-plasma density 
for which the instability can set in occurs when (Pi) 
can be made to vanish for finite kx (i.e., such that 
(Ji2) does not also vanish). This is only possible when the 
distribution in transverse energy of the hot particles 
has somewhere a positive slope, and thus the Type-A 
nature is important when it occurs. However, the first 

41 See Appendix B for the reasoning by which this procedure is 
justified in the present case, and which differs from the reasoning 
applicable to the case of electron-ion instabilities. 

term on the left of (91) is also necessary and instability 
can occur even for a purely Type-B condition where 
(Pi) is negative. 

When (Pi) is zero, the instability condition is 

qcwp
2>l2(l2-l)a2/(l2-nu

2)^l2^2. (93) 

When (Pi) cannot be made to vanish, a restriction on 
hot-particle density is also imposed, the system appar­
ently stabilizing again above some maximum hot plasma 
density if the density of cold plasma stays fixed. We 
leave the further investigation of this case to the reader. 
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8. EXPERIMENTAL APPLICATIONS 

I t is useful to attempt to discuss some current ex­
periments in order to determine their susceptibility to 
the types of instabilities we have analyzed and to see if 
certain observations can be explained on the basis of 
our results. In this vein let us first look at some recent 
measurements made on the Phoenix high-energy neutral 
injection mirror machine at Culham.8 The effects with 
which we will be concerned have also been noted on the 
ALICE machine at Livermore,42 an experiment quite 
similar to Phoenix,9 and although there is insufficient 
information to make a detailed comparison, the observa­
tions of the Culham and Livermore groups appear to be 
in substantial agreement. Moreover, although we shall 
not refer in specific detail to the Ogra40 and DCX3 9 

experiments, many of our remarks in relation to 
Phoenix can be applied to these machines as well. 

A characteristic feature of experiments such as those 
currently reported on Phoenix (and one which will un­
doubtedly be eliminated either naturally or intentionally 
as these experiments progress) is that typical electron 
velocities are of the same order as the transverse veloci­
ties of the hot ions of the plasma. Thus, since a relatively 
small amount of electron heating should change the 
situation greatly, it is probable that the only instances 
in which the electrostatic electron-ion instabilities will 
be a serious problem is in the current stages of such 
experiments.43 

Because in these experiments <r(=l&i/kiiVne) is not 
necessarily small compared with unity, the finite length 
limitations we obtained with that approximation, i.e., 
conditions (57) and (65), are too severe. On the other 
hand, it is beginning to stretch the parameters a little 
in order to require tha t a be as large as 3 or 4 so that the 
infinite geometry criteria become applicable. Neverthe­
less the results in this limit should be at least semi­
quantitative, and conditions (51) [or (53)] and (59) 
can be expected to be reasonable approximations.44 

Of particular interest in the way of experimental 
observations is that of noise at the ion cyclotron fre­
quency, the onset of which is interpreted as indicating 
the presence of an instability. The relevant information 
with respect to Phoenix is presented in Fig. 8, which is 
a modification of a similar diagram given by the Culham 

42 C. C. Damm and A. H. Futch (private communication). 
43 This statement is made in the context of application to the 

programs of controlled thermonuclear research. Certain effects, 
for example, occurring in Van Allen-belt plasmas may require an 
understanding of electron-ion instabilities for their explanation. 
The authors are indebted to Dr. Theodore Northrop for pointing 
out this application. 

44 In any event, in order to make a really good analysis, numeri­
cal computations would be required that are too specific for in­
clusion here. In addition to references already cited, a series of 
calculations have recently been made by Soper and Harris [G. K. 
Soper, U. S. Atomic Energy Commission Report No. ORNL-3696, 
1964 (unpublished); G. K. Soper and E. G. Harris, Phys. Fluids 
8,984 (1965)]. The choices of parameters in this work were directed 
by the experiments on the Phoenix, ALICE, DCX, and Ogra 
machines. 
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FIG. 8. Regions of instability in the Phoenix experiment, 
plotted versus magnetic field and square root of the density (see 
Ref. 45). 

group.45 Two regions of interest are indicated, the first 
being one in which noise is continuously observed, and 
the second in which the noise is discontinuous, coming 
in intermittent bursts. There is no sharp line between 
the two regimes, but instead there is an overlap region 
in which the noise is sometimes continuous, sometimes 
discontinuous. 

The presence of two regions, interpreted as being 
continuously or intermittently unstable, is very sug­
gestive if the instability criterion is density-dependent. 
If the plasma density is at a value at which instabilities 
should occur, one would indeed expect to find noise 
generated more or less continuously. However, if the 
system is somewhat below the critical density, normal 
fluctuations can be expected to occasionally raise the 
density to the point at which the condition for instability 
is satisfied. Noise would then be generated until the 
fluctuation abates and the density again drops below 
the critical value. The closer the density is to the critical 
value, the more often one should find such bursts of 
noise and the longer each burst should endure. This 
qualitative aspect also seems to correspond, at least 
roughly, with the experimental facts.42 Moreover, the 
failure to observe the noise at small magnetic fields 
may be explained in terms of the large ion cyclotron 
radii then obtaining, and the inability of the machine 
to support the required long wavelengths in its finite 
geometry. 

We have drawn in a dashed line in Fig. 8 correspond­
ing to <op«=4.2Q» (on the axis of the Phoenix machine), 
this curve being the one which bounds the observed re­
gion of continuous noise. If we interpret this line in 
terms of the Type-A electron-ion instability, we find 
that 3Ade=pi for electrons of about 30 eV, assuming 20-
keV perpendicular energy for the protons. Since the 
electron temperature in Phoenix has been estimated to 
be of the order of 10 eV,46 such a result is consistent 

45 Taken, with changes of scale, from Fig. 9 of Ref. 8. 
46 Gioietta Kuo-Petravic (private communication). 
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within the experimental and theoretical accuracies of 
the comparison. On the other hand, if we interpret these 
instabilities in terms of the Type-B electron-ion modes, 
we have to say something about how the minimum 
wavenumber varies with magnetic field. However, 
since (except for the smaller magnetic fields) the overall 
size of the plasma does not vary appreciably with mag­
netic field, we would expect that the instability condi­
tion (59) should be essentially independent of B—not 
the behavior indicated by the experimental data of Fig. 
8. Nevertheless, the Phoenix parameters are such that 
(59) is not far from being satisfied and we cannot rule 
out the possibility that, say, the two separate regimes 
of Fig. 8 correspond to Type-A modes in the continuous 
case and Type-B modes in the intermittent case. But 
in such an event the reason for the intermittency of the 
Type-B instabilities would not be explained, and the 
simplest picture would seem to be the one given first 
in which Type-A modes are taken to be the cause of 
instability in both regimes.47 

As has been previously noted, both Phoenix and 
ALICE are on the borderline as far as electron-ion insta­
bilities are concerned, and only a very slight heating of 
the electrons would make it impossible for the coupling 
to occur (within the compass of a linearized theory) be­
cause of the finite length of these machines. Moreover, 
from the point of view of avoiding electrostatic insta­
bilities altogether, it would seem that heating the elec­
trons to a temperature of 100 eV or so (so that an initial 
density perturbation of the electrons would be dispersed 
throughout the length of the system in a time somewhat 
less than the cyclotron period of the ions) is about 
optimum. Not only would the coupling to the electrons 
be lost, but the passive contribution of these particles to 
the dispersion relation would be about as large as 
possible, tending to stabilize the ion-ion or double dis­
tribution modes. (The critical density for onset of insta­
bility would be increased by the factor l+&_2de~

2.) 
Another system where our instability computations 

may have immediate relevance is the Table Top10 ex­
periment in which noise is observed at the electron 
cyclotron frequency. Up to the present, no satisfactory 

explanation in terms of known instabilities has been 
possible for the observations48 at the relatively low 
densities characterizing the experiment (wP6

2^Oe
2/40). 

However, recent observations have suggested that a 
relatively large amount of cold plasma may be present 
as a contaminant when the instabilities are found to 
occur, and the evidence is increasing that the double-
distribution modes of Sec. 7 may be able to account for 
the results. For example, if a longitudinal wavelength 
of about 10 cm can be supported in the Table Top 
plasma, Z—100 if we take the experimental value 
7 ^ = 1 0 - 2 5 keV for the hot electrons. Thus a cold 
plasma contaminant at a temperature less than about 
100 eV, if present in appreciable fraction, would easily 
put the system within the region of instability given in 
Fig. 7. 
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APPENDIX A. EVALUATION OF 
CERTAIN INTEGRALS 

In obtaining the dispersion equations for the modes of 
oscillation of a plasma in a magnetic field, certain aver­
ages of the characteristic function i\y, Eq. (28), are 
needed. In particular, if the distribution function is de­
pendent (in zero order) only on the magnitude of the 
velocity normal to the magnetic field, the perturbed 
distribution function is given by (27). Then, since (27) 
is to be used in Poission's equation, the averages 

1 r2 

2ir J o 
dct>h (Al) 

are needed. Dropping the subscript j and writing 
v
f~(u—kuVu)/Q, jS'Es&jflj/Q, we have for X={ 1,2,3} 

that 

Kx= {2TT)~1 I d<j> / d0'{cos0',l, sin*'} e x p [ - * V ( 0 - 0 O + W s i n * - s i n 0 ' ) ] 
Jo J Zoo 

r2T r° i d 1 • 
= (27T)-1 / d4>\ # exp(wty) iip')"1—, 1, s in(0+^) exp{i£ / [s in0-s in(0+^)]} 

J o J Zoo I d\p J 

= [ #exp( i ,V)(27^)- 1 / , ^ ' L ( / 3 ' - i _ ) , l , ^ r 
Jz» J-* I # L 

(PT1 c t n ( # ) + — exp{-2*/3' s i n ( ^ ) cos^'} . 
ty d/3'JJ 

47 For still another discussion, see G. Rowlands and L. G. Kuo, unpublished memo, Culham Laboratory, United Kingdom 
Atomic Energy Agency, 1964 (unpublished). Also, it may be necessary to take into account still another kind of interaction. 
One of us (L. S. H., to be published) has computed a related instability occurring when electrons oscillating in a longitudinal 
space-charge well (set up, say, by ambipolar diffusion of a plasma through the ends of a mirror machine) couple to the ion cyclotron 
motion. There is some experimental evidence (A. Gardner, private communication) that this instability is of importance in ALICE, 
and it may also be of importance in Phoenix. In particular, observations in Phoenix of oscillations at half the ion cyclotron fre 
quency may be due to instabilities of this type. 

48 W. A. Perkins and W. L. Barr, Bull. Am. Phys. Soc. 10, 204 (1965); and W. A. Perkins (private communication). 
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Using the identity49 

Jn(z) = TT~l I exp{iz cosx—^mri} cosnx dx 
Jo 

and setting x—\j/ s g n Z = ^ sgnft, v—vf sgnft, and $—$' sgnQ, then 

Kx= sgn(Q) / dx eivA -ip'1—, -1, \i sgn(Q)— /0(2/3 sinjx). (A2) 
Jo I dx dpi 

If we define50 

T„(/3) - - & / <fo eivxJo(2$ s in£s)=K?6M (A3) 
Jo 

for Im(V) > 0, then 
iK2sgnQ=Q(l3,v), 

Kz=-Kd/dplQ(p,v). 
(A4) 

Judicious integrations by parts also allow terms involving K\ arising from integrating (27) over velocity to be ex­
pressed simply in terms of Q functions. For example, if as in the text we only need use (31) for F, we are able to 
write 

r r /dfo\ r 
F—~ I dvu I dvA U122&~2 / dxexp[i\&\~1(co—kuVu)~] 

y_oo Jo \dViJ Jo 
-co -co ,df. r-k±Vi u-knVin 

X c o s ( | x ) ^ x | ^ | - 1 / i ( 2 ^ 1 | ^ | - 1 s i n J x ) + 2 7 r / vxdvx / dvu[ )\tt\kuk~2Q\ , 
Jo J-oo \dvj L|Q| 12 J 

/

oo -oo /•co 

dvu J dvxfoi£l2k~2 I dx explJil^l^^—knVu^cos^x 
-oo J 0 «/ 0 

X ( a / ^ i ) [ ^ ^ J . | 0 | - 1 / i ( 2 ^ J . | ^ | ~ 1 s i n ^ ) ] - 2 7 r / vj/foi / ^ i , / 0 | f l |A i i* - 2 (d /^n )e , > 
Jo i-oo L |0 | 12 J 

or 

F=2*f vxdvj tfWo{*ii2(-)eGM+^^ (A5) 

where ^n2 = &n2/&2, nL
2=ki2/k2= 1 — #n

2 , z/= |l2|_1(co—&nfln), and (3=kiVL/\Q\. We will show below that 

KQ(P, »+i)-Q(fi, * - i ) ] = -vp-Kd/W)Q(P,v) (A6) 

whence, on converting to the use of the T function,51 

F = 2TT[ v.dvj ^ , I / O ( W . I , V I ) | » I I 2 ( — V w i 2 ^ 1 ^ — j V ^ O J ) . (A7) 

For large values of | *> |, T„(/3) —» 1 so that if vuf(vlhVi) —» 0 (negative). Then, since co has a positive imaginary part 
as | fln | —>co, we can complete the contour of integra- and the poles of ^-1Tv(/5) all lie on the real v axis [cf. Eq. 
tion in the complex vu plane by including the infinite (38d)], all of the poles of v~lT lie outside the contour in 
semicircle below (above) the real axis if ku is positive the Vn plane. Hence the only contributions come from 

those poles of / 0 within the contour. For example, if the 
49 G. N. Watson, Ref. 13, p. 177, Eq. (5). zero-order distribution is of the form (36), the calculus of 

m
 50 From the point of:view of its mathematical properties, T,(£) r e s idues immediately yields (37) for F, with the real 

is somewhat to be preferred over Q((3,v) and has been retained m T^ , , .. J J . ' . . 
the text for this reason. For our specific application, and in particu- -Doppler shift -knVu going over to an imaginary Dop-
lar for the discussion of this Appendix, Q (0,?) is sometimes simpler. pier shift ik\\U through the substitution of f for v. 

51 By use of the representation (38e), Eq. (A7) can be shown to T?« n • r. . -u *.\. i r , i 
be identical to the result of Harris, Ref. 2, Eq. (46). (Caution: Finally, we Wish to show the equivalence of the repre-
our a is the negative of that of Harris.) sentations (38) for Tj-(^). From the definition of T, Eq. 

file:///dViJ
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(38a) or (A3), 

Tr(/3) = - i f E e27rimf / dx *«V O (20 s i n | x ) 
m=0 J 0 

= — if [1 — e27rtf]-V7^ / (fc e^xJ0(2^ COSJ.T) 

from which (38b) follows. In turn, (38b) is directly 
integrable,24 yielding (38c). Thus (A6) also follows im­
mediately on use of the identity J'̂ ±1(2;) = iiz~lJM(s) 
^JJiz), Next, Eq.. (38d) is obtainable from an expan­
sion given by Watson52 

(-)m(^)2m(2m)l 
/f(/3)JLr(/3) = £ 7 - — — 

m=0 ( w f ) 2 r ( f + W + l ) r ( ~ f + W + l ) 

if one also makes use of the identity 

7T CSC(7TX) = T(x)T(l — x). 

Lastly, Eq. (38e) is quickly obtained from (38a) using 
the identity 

00 

J0(2(3sm%x) = E JkK&) cos(kx). 
fc=_oo 

APPENDIX B. MINIMUM WAVE NUMBERS 

In the application of the theory of instabilities of an 
infinite medium to systems of finite geometry, a con­
trolling parameter is often the minimum wave number 
(maximum wavelength) which the disturbance is per­
mitted to have in a given direction. Since the reasons for 
imposing a minimum wave number differ with the 
mechanisms of instability (e.g., the electron-ion insta­
bilities of Sec. 5 and the double-distribution modes of 
Sec. 7), and since we have also studied modes applicable 
to finite systems in which wavelengths along the field are 
taken essentially infinite (cf. the discussion of Type-A 
ion-ion modes Sec. 6A) it is useful to attempt to discuss 
more fully the points of view we have used in this 
paper. 

In the first place, if the principal motions in an inter­
action are "localizable" in the sense that they take 
place in two dimensions rather than three, then an 
"open-circuit" termination of the plasma in the third 
dimension (i.e., such that no a priori restrictions are 
placed on the amplitudes of the perturbation at the 
ends) does nothing to limit the modes found from the 
infinite-geometry dispersion relation. Such a circum­
stance could be expected to be a good approximation, 
for example, in the case of purely Type-A ion-ion inter­
actions in which the temperature parallel to the mag­
netic field is small and in which the plasma is kept from 
contacting the end walls of the system by magnetic 
mirrors. We wish to emphasize, however, that both 

52 G. N. Watson, Ref. 13, p. 147. 

features—an inappreciable longitudinal motion due to 
zero-order velocities and the fact that longitudinal 
motion of the perturbation is unnecessary—are required 
for such a conclusion. 

The electron-ion interactions are essentially non-
localizable. For when the electron temperature is zero 
(Harris modes), it is necessary that perturbations in 
electron density be free to move distances of the order 
of the longitudinal wavelength in order to set up the 
plasma oscillations to which the ions couple, and this is 
possible only when the axial wavelength is less than the 
length of the machine. On the other hand, for the modes 
in which the electrons contribute a dissipation, it is 
necessary for a typical electron to be able to move about 
a wavelength in the longitudinal direction in order to 
pick up energy from the wave. If the particles are pre­
vented from doing this by the extremeties of the system, 
again the instability as described by the analysis will 
not go. Thus, for the electron-ion modes a limitation to 
longitudinal wavelengths shorter than those of the order 
of the length of the system is a valid restriction. 

We have also made use of finite-geometry limitations 
in our discussion of double distributions, and in this 
case one might be justified in viewing our procedure as 
something of a swindle. The rationale here lies with the 
requirement that the participating particles must be 
allowed to interact for a time sufficiently long that the 
instability can develop to appreciable proportions. For 
example, if the characteristic macroscopic length over 
which the parameters have an appreciable variation is 
d, then for an instability to be experimentally recogniza­
ble as such, Im(a)/2T)>Vui/d, where vm is a typical 
longitudinal velocity for the ions. But in the analysis of 
the double-distribution modes, Im(co) appears only in 
combination with kuvui. Thus our lower bound on co is 
equivalent to requiring ku>2ir/d, just the condition we 
have used. 

APPENDIX C. ZERO-FREQUENCY MODES 

After the present paper had been written, the authors 
were informed of the work of Dory, Guest, and Harris53 

who study the special case of instabilities in which the 
real part of the frequency is zero. Such instabilities have 
their physical origin in a process which is quite different 
from that described by our model of Sec. 2, and it is 
perhaps useful to describe the mechanical picture which 
we have formed in response to the work of Dory et al.bZ 

and to provide the slight extension necessary to take 
account of the passive background of electrons. 

The instabilities under discussion occur when k is 
normal to the magnetic field. Thus they are also de­
scribed by the dispersion equation governing Type-A 
ion-ion instabilities, Eq. (67), and, like the Type-A 
modes of Sec. 2A, only nonmonotonic transverse energy 

63 R. A. Dory, G. E. Guest, and E. G. Harris, Phys. Rev. 
Letters 14, 131 (1965). We are indebted to these authors for 
making their results available to us before publication. 
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FIG. 9. Showing the instability boundary for zero-frequency 
ion-ion modes transverse to the magnetic field and with a delta-
function distribution of transverse energy. 

distributions can give rise to instability. When Re(co) = 0, 
however, the imaginary part of the dispersion equation is 
automatically satisfied, and the condition for marginal 
instability becomes 

(Vi2/o>pi*) + (Txi/Tne)\-i= < / 3 - W o W < ^ > , (CI) 

where X=WiisT nj m&l?).18 For a delta-function distribu­
tion at energy KTU, the angular brackets in (CI) fall 
away (with J/32=X) and the result is simply the limiting 
case of Eqs. (75) with J>=0. [Eq. (74) again is auto­
matically satisfied.] Except for the second term on the 
left, Eq. (CI) is equivalent to that considered by Dory, 
Guest, and Harris.53 

When the distribution is a delta function, solutions 
can occur for sufficiently high density whenever /3 lies 
between a zero of Jo and its succeeding extremum, i.e., 
for 2.40</3<3.83, 5.52<0<7.O2, etc. These modes, 
therefore, can go unstable for somewhat smaller wave 
numbers than were possible for the oscillatory, or over-
stable, modes (the lower limit here being /3= 2.40 rather 
than 0 = 3.83 as in the overstable case). In the present 
case, moreover, there is no real frequency shift (in con­
tradistinction to the resonant modes of Sec. 6A), there 
being a continuum of wave numbers at the given fre­
quency (zero) for which the right-hand side of (CI) is 
positive. Thus these modes are distinct from those we 
have already considered. They cannot be obtained as a 
limiting case of the oscillatory instabilities where the 
wave numbers appropriate to a given frequency are 
selected out of the continua by the requirement that the 
imaginary part of the dispersion relation be satisfied. 

The right-hand side of Eq. (CI) was plotted versus 
X-1 for the case of a delta function distribution of 
transverse energy, and the envelope of its intersection 
with the straight lines a+bX"1 determined graphically 
in order to determine the instability boundary. The re­
sults are shown in Fig. 9. As noted by Dory, Guest, and 
Harris,53 no instability is possible for co^2< 17.10/. 

FIG. 10. Illustrating the mechanism of zero-frequency electro­
static instability. A and B are the unperturbed orbits of two par­
ticles whose guiding centers are displaced a half-wavelength along 
the electrostatic wave. The spatial dependence of the potential 
is also shown. 

If Fig. 9 is compared with Fig. 4, we see that the area of 
zero-frequency instability lies well within the area of 
overstability. 

The physical origin of the zero-frequency instabilities 
is most easily understood from the diagram of Fig. 10. 
If we consider a monoenergetic distribution in transverse 
energy, the particle orbit diameters will be very nearly 
equal to integral multiples of the wavelength. For 
example, fi=kpi lies between 2.40 and 3.83 for the 
fundamental modes, so that if I is the wavelength of the 
disturbance, 0.77l<2pi<1.22l. Consider therefore a 
particle whose unperturbed orbit is indicated by A in 
Fig. 10 and compare its contribution to the charge 
density with that of a particle in orbit B, displaced a 
half-wavelength along k with respect to A. Position 1 is 
on the crest of the electrostatic wave for particle A and 
at the bottom of the wave for particle B. At position 2 
the condition is the reverse and at 3 the condition is 
again as at the start. 

Because the potential energy of particle A is somewhat 
greater than that of particle B at positions 1, and since 
the total energy is the same for both, A will travel more 
slowly across the crest of the wave than B will travel 
through the trough, and will thus make a somewhat 
greater contribution to the density at the peak than will 
B at the bottom of the electrostatic well. Again, at 
positions 2, the particle at the peak will be going more 
slowly than the particle in the trough, and similarly at 
position 3. But then the contribution to the charge 
density is always such as to increase the height of the 
peaks and the depth of the wells, causing an even greater 
disparity in the relative velocities, and thus in the rela­
tive contributions to the local density. That such a 
mechanism should give rise to instabilities at zero fre­
quency is therefore clear. 


