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where in integrating over relative positions we have chosen the origin at qi and the z axis is directed along the 
relative velocity v2—Vi. In using cylindrical coordinates the impact parameter b is the radial coordinate which can 
range from zero to <r, the hard-core diameter. The azimuthal angle is denoted as e. The length of the collision 
cylinder is vi2rc so that the volume element becomes 

dzq<^~ Vubdbdedrc, 

with rc ranging from zero to infinity. Similarly, 

/•27T /»<r 

(k0|«rW««)5,(12)|0k)=(8-*k-.Ti)1-1»«/ de W&e^'^^CGpi'pjO-CfoipO]', ' (B6) 
Jo J o 

where we have used the relation q2=qi+(vi~-v2)rc(12)+o-(^,€), with v(b,e) being the vector from qi to q2 at the 
instant of contact. 
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A general formalism for computing relaxation times characterizing two or more weakly coupled macro­
scopic systems is presented. The physical nature of the systems is arbitrary, although applications to spin 
systems are briefly discussed. The main assumptions are that each system is internally in equilibrium with 
a well-defined temperature, that the systems are weakly coupled to one another, and that the Hamiltonians 
of the systems form a commuting set. No high-temperature approximations are used. The formalism is 
presented in an effort to unify in part the approaches which have been developed for many special physical 
situations, and to show the form some relaxation times take when the high-temperature approximations 
are not used. I t is shown that when one of two coupled systems is a "Zeeman" system, the (spin) relaxation 
time is proportional to the magnetic adiabatic susceptibility. 

INTRODUCTION 

FOR many years there has been considerable interest, 
experimentally and theoretically, in relaxation 

processes occurring in a group of two or more systems 
weakly coupled to one another. References 1-12 indicate 
some of the work concerned with these phenomena. 
Each of these references is concerned in some way with 
spin relaxation, and as a rule, treats the spin systems in 

1 H . B. G. Casimir and F. K. DuPre, Physica 5, 507 (1938). 
2 H. B. G. Casimir, Physica 6, 156 (1939). 
3 C. J. Gorter, Paramagnetic Relaxation (Elsevier Publishing 

Company, Inc., New York, 1947), pp. 89, 90; C. P. Slichter, 
Principles of Magnetic Resonance (Harper and Row, Publishers, 
New York, 1963), pp. 118-121; A. Abragam, Principles of Nuclear 
Magnetism (Oxford University Press, New York, 1961). 

4 M. Yokota, J. Phys. Soc. Japan 10, 762 (1955). 
5 R. T. Schumacher, Phys. Rev. 112, 837 (1958). 
6 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 

Phys. Rev. 114, 445 (1959). 
7 P. S. Pershan, Phys. Rev. 117, 109 (1960). 
8 R . Orbach, Proc. Roy. Soc. (London) A264, 458, 485 (1961). 
9 B. N. Provotorov, Zh. Eksperim. i Teor. Fiz. 42, 882 (1962) 

[English transl.: Soviet Phys.—JETP 15, 611 (1962)]. 
10 S. R. Hartmann and A. G. Anderson, in Magnetic and Electric 

Resonance and Relaxation, edited by J. Smidt (North-Holland 
Publishing Company, Amsterdam, 1963), p. 157. 

11 J. Jeener, H. Eisendrath, and R. Van Steenwinkel, Phys. Rev. 
133, A478 (1964). 

12 R. L. Peterson, Phys. Rev. 137, A1444 (1965). 

a high-temperature approximation (that is, the approxi­
mation in which Curie's law is perfectly obeyed). An 
important exception is the work of Orbach.8 The ap­
proach typically is to postulate certain rate equations 
applicable to the physical systems of interest, and from 
these to calculate the characteristic relaxation times. 
The algebra involved is quite similar in most cases. 

One of our purposes in this paper is to present a 
unified treatment of relaxation in a group of loosely 
coupled systems, the physical nature of which may be 
left unspecified. The result is a prescription for calcu­
lating the relaxation times, namely, finding the roots of 
a "relaxation time matrix." Of course, general tech­
niques for computing damping constants in electrical 
circuits are well known and can be found in texts on 
differential equations and circuit theory. However, we 
are not aware of any publication containing a prescrip­
tion for computing relaxation times characterizing a 
group of macroscopic, thermal systems, and feel that 
this presentation fills a need. 

Perhaps more important is the fact that we have 
avoided any high-temperature approximation. We dis­
cuss in some detail the special cases of two and three 
coupled systems. We show that the relaxation time 
characterizing two systems, one of which is a "Zeeman" 
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system, is proportional to the magnetic adiabatic 
susceptibility. 

DEVELOPMENT 

We consider a group of n systems with Hamiltonians 
3d (i—1, 2, • • •, n). Examples of the 3C; common in 
spin relaxation problems are the harmonic lattice, Zee-
man, spin-wave, and secular spin-spin Hamiltonians. 
The Hamiltonians are assumed to commute with each 
other. Each system is supposed to be in internal equi­
librium characterized by a temperature 7\= (fe/J*)-1, 
where k is Boltzmann's constant. Small interactions are 
assumed to exist between all pairs of systems, which 
eventually bring all temperatures to the same value 
T^{k($)~l. The Hamiltonians and perturbations are 
taken to be time-independent since we are here not 
interested in frequency-dependent phenomena. 

Van Hove and others13 have shown from first princi­
ples that small perturbative interactions within an 
isolated system (as distinguished from an open system, 
i.e., a system subject to external influences) bring the 
system into equilibrium in a manner describable by the 
Pauli master equation [Eq. (1) below]. The Pauli equa­
tion is a set of coupled equations for the occupation 
probabilities of the states of the system. The solutions 
to this set consist of sums of exponentially decaying 
terms, involving an enormous number of decay times. 
For more than a few degrees of freedom, the decay con­
stants cannot be determined exactly. Although the 
Pauli equation undoubtedly has never been used rigor­
ously in an analysis of the relaxation behavior of macro­
scopic systems, there is little doubt that it provides a 
suitable basis for describing, for example, physical 
systems for which a single relaxation time emerges as the 
dominating feature of the dynamics. Likewise, one 
expects that the Pauli equation can be used to describe 
a system certain portions of which come rapidly into an 
internal quasi-equilibrium, after which these portions 
come into equilibrium with each other. Most of the 
references given above implicitly assume that the Pauli 
equation, or special forms of it, can be used to describe 
the latter situation, and we make this hypothesis here. 
The principal assumption regards the form the density 
matrix takes [see Eq. (5)] after the subsystems have 
reached their internal quasi-equilibrium, namely, canoni­
cal distributions with time-varying temperatures. 

The Pauli equation for the density matrix p(t) is 

-<*IPI*HX)*' WW[<*'|P|*'M*IPI*>:]. (i) 
dt 

The state | <t>) is one of the complete set of eigenstates 
in which all 3C» are simultaneously diagonal. Ideally, the 

*3 L. Van Hove, Physica 21, 517 (1955). Also, L. yan Hove in 
La theorie des gaz neutres et ionises, edited by C. deWitt and J. G. 
Detoeuf (John Wiley & Sons, Inc., New York, 1959), pp. 169T183; 
I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience 
Publishers, Inc., New York, 1962), pp. 262-264. 

Hilbert spaces of the different systems are mutually 
exclusive, so that | </>) is a product state, | <£i) | ̂ 2) • • • |4>n), 
where |<fo) is an eigenstate of 3C». However, there have 
been instances in which two commuting Hamiltonians 
in the same Hilbert space have been used to describe 
"separate" systems,4'10 with theoretical justification14 

and experimental agreement.10,15 To include such cases, 
we shall therefore make no assumption as to the sepa­
rability of the states |#) into product states. W^ is the 
transition probability per unit time, given in lowest 
order by 

W„> = (2*/*)| (</>1 VI<£'>125(3C*-0CV), (2) 

where 5C0 is the eigenvalue of 3C in state | <j>), 

3C=2L»^W ? W) 

V=X Vij7 (4) 

Vij is the interaction (assumed weak) between systems 
i and j , and the summation in Eq. (4) is over all such 
interactions. To account for higher order processes, V in 
Eq. (2) can be replaced by an "effective" interaction, as 
for example Orbach8 has done in describing two-phonon 
processes in spin-lattice relaxation. 

In accordance with the assumption that the systems 
are in internal equilibrium, we write 

(0|p(O|0) = e x p ( - E t / 5 i ^ ) / T r { e x p ( - i : ^ ^ ) } , (5) 

where Tr is the trace operation, and the & are time 
dependent. Since | <£) is not assumed to be separable, Tr 
likewise is not written as a product of traces. 

The technique we use for generating the rate equa­
tions determining the &(/) is to use Eq. (5) in the Pauli 
equation (1), to multiply by 3Cy$, and then to sum on all 
states |0), thus obtaining n coupled, nonlinear differ­
ential equations in the n variables &(/). The nonlinear 
aspects are usually, but not always,12 avoided by the 
use of one or more of several techniques. These include 
high-temperature approximations, the assumption that 
one of the systems has an infinite heat capacity so that 
its temperature is constant, and the assumption that the 
temperatures are sufficiently close to the final tempera­
ture that the differential equations can be linearized in 
the temperature differences. For the purpose of extract­
ing relaxation times, it is the last technique which is 
best, for it is in the asymptotic region of time (for which 
the temperature differences become small) that relaxa­
tion, as described by exponential functions, emerges 
from the nonlinear behavior. Further, high-temperature 
approximations are thereby avoided. 

Since we are here interested only in computing the 
relaxation times, and not in the general problem of 
analyzing the details of the approach to equilibrium, 
we write 

ft(0=/5+^(0, (6) 

14 J. Philippot, Phys. Rev. 133, A471 (1964). 
15 R. L. Peterson, Phys. Letters 8, 158 (1964). 
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expand the exponential functions of Eq. (5) in powers Remember that the Hilbert spaces are not necessarily 
of Affi, and retain only terms linear in Aft. Thus, distinct. Accordingly, we shall define partial heat 

<*|p(0l*>-p(W)Ci-E*^^-<3e<»], (7) ™P»citiesC«™ 
d^WK^i^)- <jei><aei>]=c*. (13) 

where 
p(^,/3)-exp(-/35C^)/Tr{exp(~^5C)}. (8) Equation (10) thus may be written 

The angular brackets ( ) refer to an ensemble average £ i [ C ^ ( A ^ t ) / ^ + ^ M ^ A ^ J = 0 (j = 1, 2, • • •, n). (14) 
with respect to p{<$>fi)\ e.g., 

<3C*>==E*3Ci*p(^). (9) 

Multiplying Eq. (1) by 3C,>, summing on |<£), and 
using Eq. (7), one obtains 

£<C<aeiKi>-<jc<><3ci>]rf(^)/*= - E < A M ^ (io) 
where 

==2' S <£,<£' W^00'p(^>j/5)(3C^—5C^')(^>~~^y0') 

= ^i». (11) By Eq. (11) we have 

In deriving Eqs. (10) and (11), use has been made of the Hi Aij=J^j Aij=0 

Trying a solution of the form 

A&=atf-", (15) 

one finds that r must satisfy the determinantal equation 

kt32Au-rCu WA1%-rCir- kp2Aln-rCin\ 
kp2An-rCu k/32A22~rC22 = 0 . 

• K(J /inn ^v^wn| 

(16) 

That one of the roots must be zero is seen as follows: 

(17) 
energy-conserving delta function in Ww* The quantity 
in square brackets in Eq. (10) is similar to the expression Also, from Eqs. (12) and (13), 
for a heat capacity. The heat capacity of system i at the sp r _r /* o\ 
final temperature T is ^ U 7 - c< , ^ a ; 

Q and of course the total heat capacity C is £y Q. Adding 
C. = _kP*—(Wi)=&02[<3C^C>- <3Ci)<3C>]. (12) e a c h column of the determinant in Eq. (16) to the first 

d/3 column, and each row to the first row, one obtains 

-rC —rC2 —fC3* •• 
-rC2 kf32A22—rC22 k/32A2Z—rC2 

-rC% kj32A2z~~rC2z 

-rCn 

2/1 —.rr 

==0. (19) 

Since r is a factor of each element of the first row (or column), r = 0 is a root. 
The r = 0 root would give rise to a constant term in A&. That this constant is zero, as it must be if the pi(t) 

eventually all acquire the same common value, is shown in the Appendix. We also show there that r must be real 
and non-negative. 

There are thus at most n—\ distinct relaxation times characterizing a group of n loosely coupled systems in 
internal equilibrium. The inverse relaxation times are the n—\ roots of the determinantal equation 

l^y|=0, 
where (R%j) is the nXn relaxation time matrix16 

(**) = 

(-C/r C2 

C2 kft2A 22—rC 22 

Cz k(32A23—rC22 

C3 
-rC% 

Cn 

kj32Ann-rC nn. 

(20) 

(21) 

Of course, Eq. (16) could alternatively be used. Equa­
tions (20) and (21), however, are considerably more 
convenient. 

If the Hilbert spaces of systems i and j are inde-
16 This is not to be confused with the relaxation matrix of Red-

field: A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957). His 
relaxation matrix Raa',w is analogous to the transition probability 
per unit time W^. 

pendent, a certain simplification of the relaxation-time 
matrix results. In this case (X$Cy)=(3Ci)(3C/), giving 
Cij—Cu^ij by Eq. (13). 

TWO COUPLED SYSTEMS 

When two systems are coupled, the relaxation time r, 
characterizing the rate of equalization of the two tern-
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peratures, is found from Eqs. (20) and (21) to be 

r = (CC 22- Cf)/kp*A C, (22) 

where 

A = A22=Au=—Ai2. 

Note that 

CC22— C22 — C11C22—C122=CC n—C12. 

Equation (22) is the low-temperature generalization of 
formulas developed for spin-lattice3'12 and spin-spin10 

relaxation, when applied to those systems. 
Equation (22) takes a simple and physically interest­

ing form when one of the two systems is a "Zeeman" 
system, whose Hamiltonian is of the form 

3C2=-MH, (23) 

where H is the magnitude of a magnetic field H, and M 
is the magnetic-moment operator in the direction of H. 
Let XT be the isothermal susceptibility per unit volume. 
Then 

l/d(M)\ p Czz 

X r — ( 1 = C M - « ] = , (24) 
U \ dH JT 0 # 2 kpttH2 

where 0 is the volume. Also, 

(d(M)/dT)s=-C,/H. (25) 

The thermodynamic identity17 

X * = X r - (T/QCH)(d(M)/dT)H
2, (26) 

where Xs is the adiabatic susceptibility per unit volume, 
anil CH is the total heat capacity at constant H, thus 
yields 

k/3QH2CH 

Recognizing that C in Eq. (22) is the constant-field heat 
capacity, we see that 

r=kTXsQH2/A. (28) 

The spin-relaxation time is thus proportional to the 
adiabatic susceptibility when the Zeeman system is 
coupled to but a single additional thermal system. This 
simple proportionality is destroyed when two or more 
additional systems are involved, as will be evident from 
the next section. (Here "adiabatic" means that the 
total entropy of the set of two systems is constant.) 

The expression (28), which follows from Eq. (22) 
without any approximations, can be written in a possibly 
more familiar form by considering an example.2,12 If the 
"second" system is a lattice, we can write Eq. (27) as 

kf3MI2Xs=CzCi/(Cz+Ci), (27a) 

17 Related identities may be found, for example, in the review 
article: A. H. Cooke, Rept. Progr. Phys. 13, 276 (1950). 

and Eq. (28) as 

r=kT2Cz/A(l+Cz/Ci)^ 2 Y ( i + c y C , ) , (28a) 

where T\ is the spin-lattice relaxation time for infinite 
lattice heat capacity. The factor 1+Cz/Ci directly 
reflects the existence of Xs rather than XT in Eq. (28): 
This factor goes to unity, and Xs —> XTy as Ci —> <*>. An 
analogous factor, l+Tr^ 2 /T r3C s e c

2 , where 3C Sec is the 
secular spin-spin Hamiltonian, appears in the high-
temperature longitudinal spin-spin relaxation time 
formula.10 The definition of 7 i by Eq. (28a) is the low-
temperature generalization of the usual formula3,12 for 
spin-lattice relaxation. In the spin-spin case, formulas 
similar to Eqs. (27a) and (28a) cannot be written, except 
at high-temperature, because the Zeeman and secular 
Hamiltonians have the same Hilbert space. 

THREE COUPLED SYSTEMS 

In this section, we exhibit the general form of the 
quadratic equation from which the two relaxation times 
characterizing three coupled systems may be found, and 
give an example. Equations (20) and (21) give 

W2 

r2 [A 2 2 r 33+^ 3 3 r 2 2 - 2A 23r23> 

k2/3AC 
+ (A 22A 23- A 23

2) = 0 , (29) 
If--! 

where 

i- ij O O %j ^ i^y j , ^OUy 

and \Cij\ is the determinant of the partial heat-
capacity matrix. 

As an example of Eq. (29), we consider that the three 
systems have distinct Hilbert spaces, and that the heat 
capacity of system 1 is infinite. This would correspond 
to the situation analyzed by Schumacher,5 in which 
system 1 corresponds to an infinite "lattice", and sys­
tems 2 and 3 correspond to two separate spin systems. 
We have 

r22 1 r 3 3 1 r23 i 
- — : = - ; - — r = — ; - — - = - T - o . (31) 
\Cij\ Cz \Cij\ C2 \Cij\ C\ 

In addition, the quantities Aij, defined in Eq. (11), now 
separate into sums. Using 

(<Pt4j<t>k I Vij I <f>/(t>/(t>k) = {<l>ift>j I Vij I <£ /# / )£^ A ' , (32) 

and 

H<f>kp(<M>y,<£*; 0) = p(0*vfe; ff)> (33) 

we find that 

^ 2 2 = ^ 1 2 + ^ 2 3 , 

^ 3 3 = ^ 1 3 + ^ 2 3 , (34) 

^23=—-B23, 
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where ACKNOWLEDGMENT 

Ba=\ E(2*/*) i <M;i ̂ I */*/> 12 

p(^^;/5)(3C^-5C^.02 . (35) 

With the change of notation 

R*=kpBu/C*, Ri=kpBv*/Cz, 

Rn=kpB2i/Ci, Rz^k^Bn/Cz, 

(to facilitate comparison with Schumacher's work), we 
can now write Eq. (29) as 

r2~(^2+^3+^23+^32)r+^2^3+^^32+^A3==0. (37) 

When systems 2 and 3 are taken as spin systems, and a 
high-temperature approximation is used for each, Eq. 
(37) gives Schumacher's two relaxation times. 

Another well-known three-system group consists of 
the Zeeman energy of a set of spins coupled to the 
secular energy (that part of the spin-spin interaction 
which commutes with the Zeeman energy) of the same 
spins, which are in turn coupled to the lattice vibrational 
energy, or to the crystalline-field energy. This has been 
discussed by Bloembergen et al.6 Fletcher, LeCraw, and 
Spencer,18 and Sparks19 have discussed three- and four-
system groups involving magnons. 

We conclude by mentioning that although no high-
temperature approximations have been made in the 
formalism presented here, the formulas are not neces­
sarily valid at arbitrarily low temperatures. A coupling 
mechanism which is weak at high temperature can well 
become strong at low temperature, as is the case with 
spin-spin interactions. Additional restrictions on the tem­
perature arise when two Hamiltonians have the same 
Hilbert space.14 On the other hand, the usual high-
temperature approximation for spin systems is unneces­
sarily restrictive. Deviations of the spin heat capacity 
from the T~~2 form, and deviations from Curie's law can 
be appreciable well within the paramagnetic region. 

18 R. C. Fletcher, R. C. LeCraw, and E. G. Spencer, Phys. Rev. 
117, 955 (1960). 

19 M. Sparks, Ferromagnetic-Relaxation Theory (McGraw-Hill 
Book Company, Inc., New York, 1964). 

I wish to thank R. M. Wilcox for pointing out that 
the reality and non-negative character of the roots of the 
relaxation-time matrix could be demonstrated very 
simply. 

APPENDIX 

We first show that the roots r of the relaxation-time 
matrix must be real and non-negative. Substituting 
Eq. (15) iirto Eq. (14), multiplying by ay*, summing on 
j , and using the definitions of Cy and Ay, one obtains 

r(\EiaiA^i\2) 
=4 H+.+' Wwp(<l>fi) | E t a*((R^-3ety) f2, (Al) 

where 
A3CiS=X<--<3Ci>. 

From Eq. (Al) it follows at once that r is real and non-
negative. (Since all r are real, the a< of Eq. (15) must be 
real to match the initial conditions.) 

Any zero root of the relaxation-time matrix gives rise 
to a constant term in the expression for A0i(t). That 
such a term must be zero is seen as follows. By the 
above discussion, Eq. (14) goes to 

Z^ /Af t (oo) = 0 (y= i ,2, • " , » ) , (A2) 

as 2-->oo, where Aft(oo) designates the possibly non-
vanishing limiting value of A£$). By Eq. (17), only 
n—\ equations of the set (A2) are independent. An 
additional equation derives from the conservation of 
energy of the n systems, in the form 

£<C<Aft(/H0. . . (A3) 

Equation (20) is the standard thermodynamic expres­
sion, written to terms linear in the A&, but also follows 
immediately from Eqs. (7), (8), (12), and 

E*<0|p(Ok>3C*=E*p(0^)^. (A4) 

Equation (A4) expresses conservation of energy and fol­
lows from the Pauli equation (1). Thus there are n inde­
pendent homogeneous equations, which over determine 
the n variables AjS^oo), showing that A0i(oo) = O. 


