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Statistical Mechanics of Irreversible Processes and the Principle of 
Minimum Entropy Production* 
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The transport properties of a system of N weakly interacting subsystems are derived using as the basic 
statistical assumption a principle of minimum entropy production. This replaces the assumption of "local 
equilibrium" where each subsystem is assumed to be described by a canonical distribution at the initial time. 

1. INTRODUCTION 

THE purpose of the statistical mechanics is to 
provide a description of a dynamical system in 

terms of a less-than-maximal set of observations. Con
sider a dynamical system consisting of an assembly of 
N subsystems whose Hajpailtonians are 3Cr • -3Cjy and 
which are weakly coupled by means of the interactions 
WfxiJ i<J=l—iV"-1 Let 5i(«\a=l--k, be a set of 
extensive commuting operators of the ith. subsystem' 
In the weak coupling limit one obtains a useful sta
tistical-mechanical description of the system in terms 
of the quantities 

cz(a) = E ^ c«) (i.D 

by maximizing an entropy expression subject only to 
the constraint that the ensemble averages (&a)) take 
prescribed values. One is thus led to the familiar 
canonical density 

p=exp~{E »(aWa)}/Ti exp- { £ M<«>ff<«>} (1.2) 

which describes the system at equilibrium. It is well 
known that the description in terms of the quantities 
(1.1) cannot treat transport processes within the sys
tem. For this, one needs a more detailed description. 

This may be accomplished by augmenting the 
description of the system with the quantities ^ a \ 
Maximization of the entropy expression under the con
straint that the ($i(a)) as well as (CF^) take prescribed 
values then leads to a "local equilibrium ensemble" 
density 
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1 We assume that 3C# has no diagonal matrix elements. 
2 R. Kubo, Lectures in Theoretical Physics (Interscience Pub

lishers, Inc., New York, 1959), Vol. I, p. 120. 
3 H. Mori, I. Oppenheim, and J. Ross, Studies in Statistical 

It is possible to give an alternative procedure to that 
just described. Rather than prescribing the values of 
<3v(a)) and ($<«>) one instead chooses (d^i{a)/dt) and 
(&ia)), where 

d5iM/dt=ilW>$iW]i. (1.5) 

It is this procedure which will be developed here. In 
doing this we will need to use the master equation of 
the system, which we discuss in the next section. 

2. THE MASTER EQUATION 

In the representation in which the set of operators 
$i{a) are diagonal we may label a typical state of the 
system as 

with (2.1) 
{fW*\f)={fiWa)mh,r, 

where /»• is a set of quantum numbers for the ith 
subsystem. 

At time t the average value of SFt-
(a) is given by the 

ensemble average, 

<5^>>* = Trp«5Va) 

-z(f\p(t)\fxm^\f) 
f 

= E T r { p « | / > < / | } T r { ^ ) | / ) { / | } (2.2) 
/ 

- E T r { ^ ^ | / ) < / i T r { p ( 0 | / ) { / | } } 
/ 

P=eX P -{Z M(«)cJ(«) + £ £ M.(a)g:.(«)_©} (L3) w h e r e 

which in conjunction with the Liouville equation of the 
system 

dp{t)/dt= -i[3C,p(0] (1.4) 

provides a means of treating transport processes within 
the system. This is the theory of irreversible processes 
which has been developed by Kubo,2 Mori,3 and others. 

sTr(r(*)SF<<«>, 

cr(0-EI/X/ |Trp( / ) | /></ | sP{p( / )} . 

Here P is a projection on p (/) obeying 

P{P[pV)}}-P{p<t)}-

We will assume that at /=0 

p(0) = pip2- • -pN 
and 

Pi=Z\f<XM<fi\Pi\fi) 

(2.3) 

(2.4) 

(2.5) 

Mechanics (North-Holland Publishing Company, Amsterdam, 
1962), Vol. 1, p. 271 ff. 
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which leads to specific we write the Hamiltonian as 

* ( 0 )=' ( 0 ) - . (2"6) ac-avHac,, 
Making use of the Liouville equation 

where 5Cj is the interaction between subsystems, and 
J P ( 0 M = - ; [ X P ( 0 ] , (2.7) 

X2 determines the macroscopic relaxation time of the 
one may derive a dynamical equation for a(t). This is4 system. We then may take the limit 

da(t)/dt=- drP{l5C,G(t-r){LSCMr)l}]} , (2.8) X - > 0 , 

X2T= const. 
where the operator valued functional G(t) is given . 
by the series expansion Equation (2.12) then becomes, to the lowest order in X, 

G{t){A)=A-i{\-P){[M,A~]}t 

•A . (2.9) 
Xe-<3C»r[X3C/,ff(r-*<»)>ocor. (2.13) 

:A-i(l-P)m,A-])t <<*.<.>/*>« rdT TrTXae, ff-<-n 

+ •••• (2.9) 

For the average value of 5Va) we obtain 
In writing Eq. (2.13) we have also made the usual 

{d$i a)/dt) assumption that the integrand vanishes sufficiently 
ni rapidly for r large. We may write a in the exponential 

= / dTTilX,3i^lG(T){[3C,<T(l-T)~}}. (2.10) form 
J 0 a(T-+<») = f-x, (2.14) 

We define the coarse-grained time derivative where X is a positive Hermitian operator. Then, using 
the identity 

(d5iM/dt) = —I (d5/dt),dT (2.11) D4,eB]= / rf«eB«r*B[il)B>B (2.15) 
TJQ J Q 

and write 

(d$i^/dt) 

= T~l j dtj dr Tr[5C,^^>]G(r){[0C,(r(/-r)]} 
Jo Jo 

Eq. (2.13) becomes 

(d$iM/dt)= / Jr / & Tren V[X3Cr,3C] 
•/ o ^ o 

X ^ - ^ « C o r [ X g C j r ) g : . ( « ) ] 6 r - « C o r # ( 2 . 1 6 ) 

/ Jr Tr£i5C,^i^Gi^il^T-1 / rffcr(0]} It i s readily shown that the integrand of Eq. (2.16) is 
Jo Jo an even function of the time. This enables us to extend 

the region of integration from — oo to <*>. 

• / . 

dTTrr3Q,$MlG(T)ir3C a(T— T)~])(1 — T/T) The fluxes are derived from the quantities 9 :/a) by 
means of the relations 

(2.12) 

where the coarse-grained density <r is given by 

S(t)=(l/t)[*(T)dT. 
Jo 

^,-<«V*=Z A[3etf,SFi<»>>£ 3i/a) • (2.17) 
i i 

This leads to the expression 

/

OO /»1 

dr \ dz Tre-Xe'X(dX./dt)er'Xgiii«> (r) 
-oo J 0 

(2.18) 

At this point we wish to consider what we shall call a 
"stationary" process, namely, the case where a(t) ap- .,, 
proaches a limiting value as t becomes large. For a /<r..(«)\— _(a..M\ (2 \9) 
closed system such as we are describing here this is %3 

possible only in the limit that the interactions between T h e p r o perty (2.19) is restricted to operators $><«> 
subsystems become vanishingly small. We may then which satisfy 
allow T in Eq. (2.12) to become large without exceeding 
the macroscopic relaxation times of the system. To be </| (S^+f f / 0 0 ) | /> = </' I (^t

(a)+^a) | / ' ) (2.20) 

«R. Zwanzig, Zofciw *» Theoretical Physics (Interscience f o r s t a t e s /> / ' of t h e s a m e t o t a l e n e rgy« We assume 
Publishers, Inc., New York, 1961), Vol. Ill, p. 106. this to be true. 
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3, DETERMINATION OF X 
It can be shown that (2.16) vanishes if 3C is a function 

of "constants of the motion," 3r;(Q:), 

which leads to 

d(R/dt= -HY, Hiia)d$iM/dt. (3.8) 

^ ^ E ^<a> (3.1) 

We shall assume that 3C differs but little from the 
canonical distribution 3Co 

#o=EM ( a )9 : ( a ) , 
a 

and thus write 3C as 

5C— 5Co~r(H. j 

(3.2) 

(3.2') 

Equation (2.18) then gives for the fluxes, 

<&/">> = * [ drE(5« ( «,^ ( a ) ( r ) )0*i ( f l ) -W ( «)- (3.9) 

These are the linear relations connecting the fluxes 
(3ijia)) to the affinities 0*yw-/*/p)) through the 
kinetic coefficients 

where (R expresses a small deviation from the canonical 
distribution and is responsible for the transport prop
erties of the system. Writing Eq. (2.16) to lowest order 
in (R, we obtain 

» / . ^ 4 dr(Si^\Snia)(r)) 
(3.10) 

= £«*«>. 

(d$iM/dl) = \ \ dr(d&/di,$i^ (r)), (3.3) 

where 

(A Mr))^ j dz Tie~^ez^Ae~z^B(r) 

~(B,A(-~r)) 

dA/di=-i\XWhA.^ 

j[ (T) = e^Q7A e~4^°r. 

We have not, as yet, indicated how the operator (ft is 
to be chosen. We first make the assumption, alluded to 
in Sec. 1, that the values of the quantities (d^iM/dt) 
are prescribed in advance. With these constraints we 
then require that the quantity 

' / . 
(d(5l/dt)= | / dr(dGi/dt,(d(R/dt)(r)) (3.4) 

J -.-co 

should be an extremum. Introducing the Lagrange 
multipliers m(a\ we must then demand that 

dr{ (d (dM/dt) y (d(R/dt) (r))+ ((d6l/df) ,8 (d(R/dt) (r)) 

+ 2 E E ( « M M ) ^ ( f l ) ^ ( a ) ( r ) ) } (3.5) 

should vanish. Using the symmetry property 

((d(R/dt)Md®M)(T)) 
= (3 (dGi/dt), (d<R/dt) ( - r ) ) , (3.6) 

we have 

dr{(d(d6i/dt)f(d(R/dt)(T)) 

+ ( a ( i ( R / ^ ) , E E ^ ( a ) ^ C a ) ( r ) ) } = 0 (3.7) 

It is still necessary to specify the values of the 
"constants of motion" for the total system. For this we 
have at our disposal the operator 3Co(9:(a)), which 
through the relations 

<£<«>>= lim I*"1 1 TmMZ^dr 
T^° Jo 

(3.11) 
= Tr{cr(r-*°o)$F<«>} 

= Tr^~(3C(rf(R)5:(a) 

gives the values of the ($(a)). It is natural to require 
that if 61 vanishes the values (3.11) should reduce to 
those given by the canonical density (1.2). We thus 
have 

^ C o - E / ^ ^ - e , (3.12) 
a 

where © is a constant. 

4. CONCLUSION 

The condition (3.5) which determines d(R/dt is the 
essential statistical assumption of the theory. It will be 
recognized as a principle of minimum entropy produc
tion (MEP) and plays a role similar, in the present 
theory, to that of the principle of maximum entropy in 
the statistical mechanics of equilibrium states. In 
earlier treatments this principle is a derived result, 
the essential statistical assumption being that the 
process proceeds from an initial state of "local equi
librium." We have instead taken MEP as our funda
mental statistical assumption and have thus avoided 
specifying the distribution of states at an initial time. 
Thus the affinities have been introduced in a natural 
way as Lagrange multipliers for the fluxes in much the 
same way as intensive variables appear as a result of 
constraints placed on the extensive variables in equi
librium statistical mechanics. This is appropriate in as 
much as the fluxes are fundamental quantities in irre
versible phenomena. 


