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I. INTRODUCTION 

A MOD EL for the Fermi surface of the chromium-
group metals was proposed in 1962 by Lomer.1 

This model was not the result of ab initio electronic-
structure calculations for these elements. I t was deduced 
from the energy bands for iron which had been deter
mined theoretically by Wood2 using the augmented-
plane-wave (APW) method. Also available for considera
tion at that time was a tight-binding calculation for Cr 
by Asdente and Friedel3 in which only the d bands were 
considered. Prior to this, there was work done on W 
by Manning and Chodorow4 using the cellular method. 

The Lomer model has met with varying degrees of 
success in comparisons with experimental results. In 
the original paper the larger pieces of the surface (holes 
at H, electrons at T) were discussed qualitatively, and 
the antiferromagnetic state of Cr was considered. In a 
brief note two years later, Lomer5 corrected the model 
such that it was consistent with the requirements im-

* Contribution No. 1674. Work was performed in the Ames 
Laboratory of the U. S. Atomic Energy Commission, 

1 W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962). 
2 J. H. Wood, Phys. Rev. 126, 517 (1962). 
3 M. Asdente and J. Friedel, Phys. Rev. 124, 384 (1961). 
4 M. F. Manning and M. I. Chodorow, Phys. Rev. 56, 787 (1939) 
5 W. M. Lomer, Proc. Phys. Soc. (London) 84, 327 (1964). 

gestion in the solution of the Eqs. (16). C. V. Briscoe 
and E. N. Mitchell from the Department of Physics, 
U.N.C., and D. S. Rodbell from the General Electric 
Research Laboratories made helpful comments concern
ing the measurements and the manuscript. Further, we 
are greatly indebted to B. Sestak and Z. Tahal for 
growing the single crystals and to J. Caslavsky, B. 
Heinrich, J. Hejduk and M. Simanova, all from the 
Institute of Physics, Prague, Czechoslovakia, for help 
with the sample preparation. 

posed by crystal symmetry. Here again the qualitative 
features of the larger pieces of the surface were discussed. 

In 1963 Brandt and Rayne6 reported de Haas-van 
Alphen data for the three metals. However, these fre
quencies corresponded to very small pieces of the surface 
not well defined in the model (holes at N and either 
electrons or hole pockets along TH). Nevertheless, it 
was observed that the results for Mo and W were quite 
similar to each other and different from those for Cr. 
Further low-field measurements on W by Sparlin and 
Marcus7 '8 have been interpreted by these authors as 
suggesting that the electron surface at T has the shape 
of a child's jack with knobs at the end of each arm. 
Additional de Haas-van Alphen data for W has been 
reported by Girvan,9 which lends further support to the 
general features of the larger pieces of the Lomer model. 
The size-effect experiments by Walsh10 have pointed out 
the separation of the electron and hole regions along 
TH, attributed to spin-orbit coupling. 

6 G. B. Brandt and J. A. Rayne, Phys. Rev. 132, 1945 (1963). 
7 D. M. Sparlin and J. A. Marcus, Bull. Am. Phys. Soc. 8, 258 

(1963). 
8 D. M. Sparlin and J. A. Marcus, Bull. Am. Phys. Soc. 9, 

250 (1964). 
9 R . F. Girvan, M.S. thesis, Iowa State University, 1964 

(unpublished). 
10 W. M. Walsh, Jr., and C. C. Grimes, Phys. Rev. Letters 13, 

523 (1964). 
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The Fermi surfaces of chromium, molybdenum, and tungsten were calculated using linear-variation 
functions consisting of 19 augmented plane waves (APW). The muffin-tin potential was constructed from a 
superposition of atomic potentials centered on the lattice sites. The atomic orbitals were solutions of the 
Hartree-Fock-Slater self-consistent field. Constant-energy surfaces throughout the Brillouin zone and the 
volume contained by each of the regions were determined. The Fermi surface was selected from these energy 
surfaces by the requirement of equal hole and electron volumes. The density of states at the Fermi energy was 
determined from the slope of the volume-vs-energy curve. The Fermi surfaces of Mo and W were found 
to be almost identical and similar to the model postulated by Lomer for the Cr-group metals. The Fermi 
surface of Cr, however, differs from the other two by the disappearance of the hole pockets around N and 
a shrinking of the knobs on the electron jack. A quantitative comparison between experimental results and 
the Fermi surface of Mo is presented. 
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In light of the general qualitative success of this 
model, it was decided to perform ab initio calculations 
of the Fermi surfaces for the chromium group, in the 
hope of obtaining quantitative information which 
could be compared with experiment. In these calcula
tions no a priori consideration was given to the antifer-
romagnetic state of Cr, nor to the relativsitic effects 
which should yield small corrections in W. In all three 
metals the Fermi surfaces were computed in the same 
manner, using the APW method. These calculations 
were programmed such that constant-energy surfaces 
could be traced out in the Brillouin zone. The volumes 
contained by the various pieces of surface were deter
mined, and the Fermi energy chosen by the require
ment of equal hole and electron volumes. A discussion 
of the methods employed is given in the following 
sections. 

THEORY 

Hartree-Fock-Slater Self-Consistent-Field 
Calculation 

The potential was constructed from a superposition 
of atomic potentials centered on the lattice sites. The 
atomic potentials were found from Hartree-Fock-Slater 
(HFS) self-consistent-field calculations similar to those 
described in detail by Herman and Skillman11 (HS). 
Although the program established for these calculations 
was different in some details from the one published by 
HS it provided no additional information. This aspect 
of the project served only as an independent check of 
their results. Agreement was established for the Cr-
group metals out to the fourth figure in all of the 
eigenvalues. 

In performing these calculations, however, it was 
found to be more convenient to use a logarithmic scale. 
Because the distance between radial nodes increases 
rapidly for a given orbital, it is necessary to use an 
expanding scale of some sort. HS chose to periodically 
increase the increment size. This can be avoided by 
using # = l n r as the independent variable. By simul
taneously changing the dependent variable from R 
to rlj2R, we obtain a radial equation containing no first 
derivative. This has been pointed out by Hartree.12 

A different method for the numerical integration of 
the radial equation was used. The method commonly 
employed is due to Hartree and consists of comparing 
inward and outward integrations of the radial equation 
(for a trial eigenvalue) in the region of the outermost 
inflection point. This technique assures that the solu
tions have the proper behavior at the two boundaries. 
The trial eigenvalue is adjusted on the basis of the 
mismatch in logarithmic derivatives at the joining 
point. The method for this is developed from perturba-

11 F. Herman and S. Skillman, Atomic Structure Calculations 
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963). 

12 D. R. Hartree, Calculation of Atomic Structures (John Wiley 
& Sons, Inc., New York, 1957). 

tion theory and involves an integration over the radial 
coordinates. A method is presented in the Appendix 
which eliminates the need for this joining point and 
hence avoids the problems associated with making the 
function continuous at this point. In addition, the 
corrections to the eigenvalue are given by an algebraic 
expression which can be easily evaluated after each 
sweep over the range of the radial coordinate. 

The result of the HFS calculations is a tabular record 
of the self-consistent potential and the atomic orbitals 
with corresponding eigenvalues. In the construction of 
the muffin-tin potential, the only information needed 
is the total electronic charge density which one obtains 
from the orbitals. 

The crystal potential was constructed by superposing 
atomic potentials centered on neighboring lattice sites. 
In the Slater free-electron approximation the average 
exchange potential is proportional to p1/3, where p 
is the total electronic charge density. This requires 
that the superposing be done in two steps. The ordinary 
electrostatic potential given by the solution of Poisson's 
equation, using the charge density p, is superposed to 
give the electrostatic contribution to the crystal 
potential. The charge density itself is then independently 
superposed to approximate the crystal charge density. 
The p1/3 exchange potential is then computed using this 
superposed charge density. The resulting contribution 
is added point by point to the crystal electrostatic 
potential to yield the total crystal potential. 

The method of superposing the radial functions 
should be discussed. Starting with the function (it 
might be the electrostatic potential or the charge 
density) on a particular site, we consider the contribu
tions from the same function centered on neighboring 
sites. I t we limit ourselves to constructing a spherically 
symmetric potential, then the contributions from 
neighboring centers will depend only on the distance 
from the origin to the site. There will, in general, be 
several equidistant neighbors, and hence these can all 
be taken into account simultaneously by an appropriate 
factor. 

A procedure for determining the contribution from 
the function %M centered on a lattice site a distance 
Rn from the origin was given by Lowdin13 and is known 
as the alpha summation method. This method is very 
general and allows the construction of a nonspherically 
symmetric potential. By retaining only the lowest 
order term in the spherical-harmonic expansion, the 
resulting expression is simply 

X{r,Rn) = / tX(i)dt. (1) 
2rRn J \r-Rn\ 

This gives the spherically symmetric contribution at r 
due to the function %(0 centered at Rn. Thus the super-

13 P. O. Lowdin, Advan. Phys. 5, 1 (1956). 
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position consists of summing these contributions from 
all the lattice sites in the vicinity of the origin. 

The resulting potential, it is hoped, will be slowly 
varying in the region between atomic sites because of 
the overlapping of the functions from adjoining neigh
bors. Of course, it will not be exactly constant; but in 
many cases it is meaningful to spherically average the 
potential in this outer region and replace it by a constant 
value. This was the procedure followed in these cal
culations. This constant was then subtracted from the 
spherically-symmetric potential inside the Slater sphere 
so that the potential in the outer region could be taken 
as zero. The resulting potential was used in construct
ing the APW matrix elements as discussed in the 
following section. 

APW Method 

The APW method has certainly been established as 
an important tool in the calculation of electronic prop
erties of crystals. In order to avoid listing the impres
sive array of theoretical results already produced by 
this method, only the recent results by Mattheiss14 will 
be cited. One can easily trace the abundant literature 
by starting with this reference. For the most recent 
results the reader is referred to the Progress Reports of 
the Solid State and Molecular Theory Group at MIT. 
All of this work has been motivated by J. C. Slater who 
was responsible for the original formulation of the 
method in 1937.15 

The method takes full advantage of the muffiin-tin 
form of the potential and constructs a basis function 
from plane waves and from atomic orbitals in the 
spherically-symmetric potential. The APW for an 
electronic state k consists of a plane wave in the outer 
region and a summation of atomic orbitals inside the 
Slater sphere. The coefficients in the atomic-orbital 
expansion are chosen such that the functions in each 
region are continuous on the Slater sphere. The result
ing APW, however, has a kink due to a discontinuity 
in the slope. This is taken into account by including 
appropriate surface integrals in the matrix elements. 
These integrals give the contribution to the kinetic 
energy due to the kink in the wave function. The re
sulting matrix elements are given here for one atom in 
the unit cell of volume U: 

/ 47T^2iif|fcy-ifc»|^)\ 
(H-E)i^ (ki-kj-En dij J 

\ Q \kj-kil J 

+ E (2l+l)Pi(krkJ)ji(kiR) 

Xji(kiR)[pLi,(R7E)/m(RiE)3; (2) 

R is the radius of the Slater sphere and can be any 

14 L. F. Mattheiss, Phys. Rev. 134, A970 (1964). 
15 J. C. Slater, Phys. Rev. 51, 846 (1937). 

TABLE I. Some parameters and results 
of APW calculation. 

Cr Mo W 

Lattice constant 5.4512 5.9468 5.9810 
Slater-sphere radius 2.34 2.46 2.46 
Fermi energy 0.647 0.542 0.548 
Density of states G(E) 0.0895 0.0695 0.0673 
Electronic-specific-heat 

coefficient (cal/mole°K2) 3.00(-4) 3.04(-4) 2.98(-4) 

value (less than half of the interatomic spacing) such 
that the potential in the region outside the sphere is 
nearly constant. The radii used in this calculation are 
listed in Table I. The I summation was truncated at 
/=10 . The Legendre polynominals Pi(Z) were cal
culated from the recurrence relation 

lPi(Z)= (ll-^ZP^Z)- ( / - l )Pz_ 2 (Z) , (Z>2) (3) 

starting with P0(Z) = 1 and Pi(Z) = Z. The spherical 
Bessel functions were computed from the recurrence 
relation 

2 ( * - i ) 
jt(Z) = i ^ ( Z ) - i z _ 2 ( Z ) . (4) 

The standard method for calculating these functions is 
to start with two arbitrary values J'L(Z) and J'L-I(Z) 
where L is large enough that JL (Z) is in the asymptotic 
region. After determining the functions ji{Z) from 
l=L down to / = 0 with the recurrence relation, the 
normalization can be fixed by computing any of the 
lower order functions explicitly. This method avoids 
the loss in accuracy resulting from repeatedly subtract
ing numbers which are almost equal. Finally, the 
logarithmic derivatives of the radial functions can be 
determined from outward integrations of the radial 
equation, using finite-difference approximations similar 
to those described in Appendix A. 

The secular determinant resulting from the linear 
variation function using APW's gives the dispersion 
relation E (k) for the conduction electrons. I t should be 
noticed that the energy appears both explicitly and 
implicitly in these matrix elements. Hence the eigen
value problem necessarily involves finding the roots of 
the secular equation numerically. Having specified the 
quantum numbers of the crystalline state (k), it is 
necessary to examine the determinant as a function of 
energy and find the roots. For a given value of energy 
it is necessary to perform an outward integration of the 
radial equation for each value of I. This requires ex
tensive computing, and so in this work it was decided 
to fix the energy parameter and solve the resulting 
eigenvalue problem for the constant-energy surfaces. 
In this way the integrations could be performed once 
and for all, and only the algebra associated with the 
other terms in the matrix elements had to be repeated 
each time. This does not represent a great saving of 
computer^time, but it does yield important information 

file:///kj-kil
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FIG. 1. Brillouin zone for body-centered 
cubic-crystal lattice. 

about the energy surfaces near the Fermi surface. Of 
course one does not know the Fermi energy a priori. 
However, the requirement that electron and hole 
volumes be equal is sufficient to determine the Fermi 
energy. This aspect of the calculations will be discussed 
in more detail later in the paper. It might be mentioned 
for the sake of completeness that the secular deter
minants were solved by the method of triangularzation. 
This amounts to getting zeros under the main diagonal 
by adding and subtracting multiples of the rows. 
A few systematic attempts at this will lead one to the 
expression 

Dv=dv-Z (5) 

where / is the minimum value of v or jx. This gives the 
rule for transforming the original matrix elements d^ 
into the triangularized form. The value of the deter
minant is then wDu. 

Lattices 

The crystal structure for the chromium group metals 
is bodycentered cubic. The lattice constants16 are 
listed in Table I.17 This structure and the associated 

p 

p 
r -7j 

FIG. 2. 1/48 zone showing coordinate systems used 
in tracing energy contours. 

16 International Tables for X-ray Crystallography (Kynoch 
Press, Birmingham, England, 1962), Vol. III. 

17 Units are such that e2 = 2, m = \ and h = 2ir. Thus energies are 
in rydbergs and distances in Borh radii. 

reciprocal lattice are reviewed by Jones.18 The Brillouin 
zone is shown in Fig. 1. The 1/48 zone is outlined by 
the points of high symmetry TPNH. The coordinates 
of these points are indicated on the figure in units of 
2ir/d. In this calculation the set of 19 reciprocal lattice 
vectors nearest the origin were used for all points 
throughout the zone. This is a slight disadvantage to the 
points near the P, N> and H. By increasing the basis set 
to 26 lattice vectors, one can include all those vectors 
for which j Jfc-+-JBT | <4:w/d with k anywhere in the 1/48 
zone. This probably would have been better, but the 
calculations were much too extensive to repeat for this 
reason alone. 

In the Lomer model the Fermi surface is located 
along the TH axis and at the point N. Anticipating this, 
two coordinate systems for tracing out the energy 
contours were established: cylindrical coordinates with 
TH as the azimuthal axis and angles measured from 
the TNH, and spherical coordinates centered at N with 
NP as the azimuthal axis and angles measured from 
the plane NTP. These coordinate systems in the 1/48 
zone are shown in Fig. 2. 

Constant-Energy Contours 

The procedure for tracing out the constant-energy 
surfaces will be discussed. Along TH for instance, the 
polar angle between the planes TPH and TNH was 
divided into four equal intervals. Then for a particular 
plane the z coordinate was specified, and the secular 
determinant was examined as a function of the radial 
coordinate to determine the roots. These roots were 
located by searching for a change of sign and then using 
repeated linear interpolations. The roots represent the 
intersection of the energy surface with the plane. A 
similar procedure was carried out at the symmetry 
point N where the azimuthal angle between the planes 
NPT and NTH was also divided into four intervals. 

RESULTS AND DISCUSSION 

Fermi Energy and Density of States 

The volume contained by each of the pieces of surface 
for a particular value of the energy were numerically 
determined from the tabular data. The assignment of 
electrons and holes to the various regions was deter
mined on the basis of whether the volume increased or 
decreased with an increase in the energy. In Fig. 3 
these volumes are plotted as a function of the energy 
for the three metals. The Fermi energy is determined by 
the requirement of equal hole and electron volumes. The 
results are given in Table I. 

The density of states at the Fermi energy can be 
determined from Fig. 3. The definition of the density of 

18 H. Jones, The Theory of Brillouin Zones and Electronic States 
in Crystals (Interscience Publishers, Inc., New York, 1960). 
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MOLYBDENUM 

FIG. 3. Hole and electron 
volumes contained by en
ergy surfaces. 
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states is 
G{E)=(X/4**)dVk/dE, (6) 

where G(E)dE is the number of electrons per unit 
volume of the crystal (the factor of 2 for spin degeneracy 
is already included) with energy in the range E to 
E+dE. dVk is the volume in reciprocal space between 
the constant energy surfaces E and E+dE. dVk/dE 
is therefore the slope of the volume-versus-energy 
curve. Thus 

dVk/dE=4&l(dve/dE)- (dvh/dE)']. (7) 

The v corresponds to volume in the 1/48 zone; subscripts 
refer to electrons and holes. The minus sign is needed 
because an increase in energy results in a decrease in 
the hole volume. The values of G(E) determined from 
Fig. 3 are given in Table I. The low-temperature 
electronic-specific-heat coefficient is related to this by 

7 = ( ^ / 3 ) ( ^ 2 / P ) G ( £ ) , (8) 

where k is the Boltzmann constant and p is molar 
density. The predicted specific-heat coefficients are 
listed in Table I. 

Fermi Surfaces 

The energy surfaces calculated for the middle set of 
points in each of the curves in Fig. 3 are shown in 
Figs. 4, 5, and 6. One notices immediately that the 
surfaces for Mo and W are quite similar and exhibit 

the qualitative features of the Lomer model (see Fig. 7). 
Cr differs from these by the absence of the hole pockets 
at N and by a reduction in the size of the knobs on the 
electron jack. The pockets along YH are found to con
tain electrons. A quantitative comparison between 
these surfaces and experimental results will now be 
considered. Because Cr is complicated by the magnetic 
state and W is heavy enough for relativistic effects to 
be important, the characteristics of the Fermi surface 
of Mo will be emphasized. 

The de Haas-van Alphen frequencies can be predicted 
from extremal areas of the Fermi surface using the On-
sager relation f=KA0 where K=ch/2ire=374c.l(6). 
This gives / in G with A o measured in atomic units. 
The various extremal orbits are shown in Figs. 8 and 9. 
The corresponding de Haas-van Alphen frequencies 

MOLYBDENUM 

P N 

FIG. 5. Intersection of molybdenum Fermi 
surface with 1/48 zone faces. 

CHROMIUM 
TUNGSTEN 

FIG. 4. Intersection of chromium Fermi surface 
with 1/48 zone faces. 

FIG. 6. Intersection of tungsten Fermi 
surface with 1/48 zone faces. 
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FIG. 7. Lomer model for chromium-group metals. 

are listed in Table II. Without detailed angular de
pendence of these frequencies it is difficult to compare 
all of them with experiment. For instance, the holes at 
N and the electron pockets along TH should have com
plicated angular dependence because of the different 
possible orientations of each in the Brillouin zone. There 
are the equivalent of 6 hole pockets and 6 electron 
pockets in the first zone (Fig. 1). However, Brandt and 
Rayne6 have reported a large number of frequencies for 
Mo ranging from 5.03 to 8.00(6) G. Most of these can 
apparently be associated with the small electron pockets 
along TH. The larger frequencies reported approach the 
magnitude predicted for the 7i(100) orbit around the 
necks of the jack. They also report two frequencies 
at 24.2 and 25.8(6) G for the (110) direction. These 
fall in the range of frequencies predicted for the holes 
at N. In fact, the extremal area of the hole pockets in 
the plane NPH [which corresponds to one of the (110) 
frequencies] yields the frequency 24.1(6) G. For 
completeness, the NPT cross section yields 30.6(6) 
and TNH yields 16.5(6) G. 

A further comparison can be made with the de 

FIG. 8. Orbits on molybdenum electron jack. (A)-7i (111); 
(B)-/i(110) (C)-/i(100); (D)-/,(100), (E)-7,(100); (F)-74(110); 
(G)-7B(111). 

Haas-van Alphen measurements on Mo communicated 
by Girvan.19 In the (111) direction he has preliminary 
results which indicate frequencies at 5.7, 25.5, 31.6, 
37.2, 91 and 110(6) G. The first of these could be 
assigned to the electron pockets along TH. The next 
three are in the range predicted for the holes at N. 
Of course, the frequencies from orbits on the knobs of 
the jack (orbit 7s) are expected to be about 35 (6) G. 
Thus, the higher frequencies from the holes at N and 
the ones from the knobs are the of same magnitude. 
Considering the two larger frequencies, the value 91 (6) 
G could be associated with either the orbit 7 i ( l l l ) 
or 75(111). The latter was not determined exactly, but 
is probably a little larger than 7i( l l l ) which yields a 
frequency of 72.3(6) G. The experimental value 110(6) 
G agrees closely with the theoretical value for the hole 
orbit #(111). 

Girvan also reports the following possible frequencies 
in the (100) direction: 5.43, 10.8, 24.0, 33.3, and 165(6) 
G. The smallest value is gain attributed to the elec-

FIG. 9. Orbits on molybdenum hole 
octahedron. H-H(100); I-H(llO); 
Jhff(lll). 

tron pockets along TH. The next frequency 10.8(6) G 
is either a harmonic or might be associated with the 
neck orbit 72(100). The intermediate values are of the 
same order of magnitude as the predicted frequencies 
for the holes at N or for the knob orbit 73(100). The 
largest frequency agrees closely with the predicted 
value 168(6) G for the holes at H. 

From the above discussion it is concluded that the 
large orbits on the electron jack and the hole octahedron 
are easily identified and agree quantitatively with the 
experimental results of Girvan. Also it is likely that the 
smaller frequencies reported by Brandt and Rayne are 
due to orbits on the electron pockets along TH. The 
frequencies of the orbits on the hole pockets at N 
range from about 16 to 32(6) G, but the frequencies 
from the knobs on the jack should overlap the upper 
portion of this range. Only the availability of the 

19 R. F. Girvan (private communication). I am grateful to 
Mr. Girvan for informing me of these results prior to publication. 
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TABLE II. Predicted de Haas-van Alphen 
frequencies (G). 

Electron jack 

Hole octahedron 

Holes at N 

Electron pockets TH 

Orbit 

/i(100) 
72(100) 
/3(100) 
/i(HO) 
74(110) 
/ i ( l l l ) 
/B(1H) 

ff(in) 
7/(110) 
#(100) 

All directions 

Not calculated-
magnitude as 

Frequency 

227. X106 

11.3 
33.6 

154. 
64.7 -* 76.4 
72.3 

Not measured 

108 
130 
168 

16.5-> 32.3 

—Same order of 
/a (100). 

experimentally determined angular dependence of the 
frequencies would clarify this assignment of orbits. 

The size-effect data of Walsh et al.,20 on W provide a 
further comparison with the theoretical results. The 
extremal dimensions of the jack and the octahedron 
are listed in Table III.21 Since Mo and W have essentially 
the same Fermi surfaces if relativistic effects are 
neglected, one can presumably see from this table the 
changes in the surface caused by these effects. As 
Walsh10 has pointed out, the jack and octahedron must 
be split apart along TH by the spin-orbit coupling. 

Another experimental result which can be predicted 
is the low temperature electronic-specific-heat coefficient 
y. This was discussed in a previous section of the paper. 

TABLE IV. Electron specific heat coefficient 
7(10-4cal/mole°K2). 

Cr Mo W 

Present work 
Manning and Chodorow 

(Ref. 4) 
Horowitz and Daunt 

(Ref. 22) 
Gupta, Cheng, and Beck 

(Ref. 23) 
White and Woods 

(Ref. 24) 
Kirillin, Sheindlin, and 

Chekhovskoi (Ref. 25) 
Shimizu, Takahashi, and 

Katsuki (Ref. 26) 
Clusius and Franzosini 

(Ref. 27) 

3.00 

3.76 

3.60 

3.7 -3.8 

3.6 

3.04 

5.1 ±0.4 

5.24 

5.05-5.25 

2.98 

4.8 

1.8 ±0.7 

2.88 

10.1 

1.8 -5.0 

The theoretical values are presented in Table IV with 
a variety of experimental results.22"27 

As a final comparison with experiment, those prop
erties which depend on the surface area of the Fermi 
surface were predicted for Mo. The surface area of the 
jack was determined in a rather crude fashion. There
fore all values are quoted to only two significant figures. 
The results are given in Table V. Fawcett and Griffiths28 

have experimentally examined the anomalous skin 
effect for the Cr-group metals. The quantity measured 
is (1/2) where 2 is the surface conductance. By using 
(l/2)~3 for (23) they were able to calculate the surface 
area 5 using 

5=(6V3TTVAA 2 ) (S) 3 . (9) 

The above approximation in the averaging procedure 
is known to underestimate S for anisotropic surfaces. 
The experimentally determined value for Mo is 1.74 
a.u. as compared to our value of 6.7 a.u. Using the 

TABLE III . k vectors of Fermi surface. TABLE V. Surface area of Mo and related parameters. 

W (expt)a W (theory)b Mo (hteory)0 

Electron jack 
(100) 
(HO) 
(111) 

Hole octahedron 
(100) 
(HO) 
(111) 

Holes at N 
along NP 
along NT 
along TH 

0.587 

0.219 

0.411 
0.316 
0.265 

0.613 
0.270 
0.248 

0.428 
0.317 
0.264 

» Walsh et al. 
t> Matheiss (Ref. 21) APW calculation. 
0 Present work. 

0.608 
0.257 
0.232 

0.445 
0.332 
0.282 

0.195 
0.141 
0.100 

20 W. M. Walsh, Jr., and C. C. Grimes, Phys. Rev. Letters 13, 
523 (1964). 

21 L. F. Mattheiss and R. E. Watson, Phys. Rev. Letters 13, 
526 (1964). 

Electron jack 
Hole octahedron 
Electron pockets (6) 
Holes at N (6) 

Total surface area 

3.2 
1.6 
0.4 
1.5 

6.7 atomic units (a. u.) 
7.6X107 cm/sec 
7.4X1014 esu 

22 M. Horowitz and J. G. Daunt, Phys. Rev. 91, 1099 (1953). 
23 K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Radium 

23, 721 (1962). 
24 G. K. White and S. B. Woods, Phil. Trans. Roy. Soc. London 

215A,35 (1959). 
25 V. A. Kirillin, A. E. Sheindlin and V. Ya. Chekhovskoi, 

Chem. Abstr. 57, 1632 F (1962). 
26 M. Shimizu, T. Takahashi and A. Katsuki, J. Phys. Soc. 

Japan 17, 1740 (1962). 
27 K. Clusius and P. Franzosini, Gazz. Chim. Ital. 93, 221 (1963). 
28 E. Fawcett and D. Griffiths, J. Phys. Chem. Solids 23, 1631 

(1962). 
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theoretical values for S and 7, two additional physical 
quantities can be calculated29: 

*/</)= (e«S)/(6»*A), (10) 

(l/v)=«6ky)/<FS). (11) 

a is the dc conductivity, {/) is the electron mean free 
path, and v is the electron velocity at the Fermi surface. 
These results are also listed in Table V although they 
are not readily compared with experiment. 

APPENDIX 

An algorithm for the numerical of the radial Schrod-
inger equation is discussed in this Appendix. This 
equation takes the form 

Y"{x) = g{x)Y(x) (Al) 

where Y — rll2R and x=\nr. Here 

g(x) = #*£\+V(e*)l+(l+i)* (A2) 
with \=—E. By writing the Taylor series expansion 
at r, it is easy to show that 

Ym- 2 Y3-+ Y^= A 2 F / ' + (A*/12) F /» . (A3) 

Differentiating this twice and dropping the highest 
order term, the fourth derivative can be expressed in 
terms of second derivatives at neighboring points. 
Using the original differential equation to eliminate 
the second derivative we find 

AJYi+1+BjYi+CiY^1^0} (A4) 
where 

4,-= 1 - ^ / 1 2 ) 6 * 1 , 

Bj=-2-(5A2/12)GjJ (A5) 

C ^ l - t A V l ^ G , - ! . 

The differential equation is thus replaced by a 
tridiagonal system of linear equations with coefficients 
which depend on the eigenvalue and the potential. We 
approach the solution of this set of equations by taking 

1 (A6) 
Yi+BY^Yf. 

The philosophy is to assume that the true solution X 
and Yj differ from a trial solution (indicated by a star) 
only by the small quantities 8X and 8Yj. This neces
sitates a reasonable initial guess for the wave function 
and eigenvalue. Since in general X* and Yj* will not 
satisfy the difference equation, we write 

AfYHf+BfYf+CfYj-f^Qj. (A7) 

29 A. B. Pippard, Rept. Progr. Phys. 23, 176 (1960). 

Qj is called the residual; it will approach zero as X* 
and Yj* approach the correct solution. Using (A5) 
and (A6) it is not difficult to show that (A7) becomes 

AjdYj^+BjdYj+CjdYj^+DjdX^Qj, (A8) 
where 

D,= - (A2/12)e2x(e2AYj+1*+10Yj*+e-2AYj-1*). (A9) 

We assume a solution in the form 

8Yj=E38Yj+1+Fj8\+Gj. (A10) 

Repeated substitution into (A8) yields 

Ej=—Aj/Rj, 

Fj^-iDj+CjFj^/Rj, (All) 

Gj= (Qj— CJGJ-I)/RJ , 
with 

Rj=Bj+CjEj-i. (A12) 

The solution at each stage of the iteration then 
follows after the boundary conditions are specified. 
The inner boundary condition at x —> — co allows us 
to set 

E!=eV2, JFI = 0 and Gi= F i * - £ i F 2 * . (A13) 

From repeated application of (All) we can then deter
mine EJ,FJ and Gj corresponding to a grid point in the 
outer tail region of the wave function. In this region the 
WKB approximation is valid, and it is not difficult 
to show from a comparison of (A 10) and the asymptotic 
form of the wave function that 

«X= (Yj^-Gj^-aj)/(Fj^-bjaj), (A14) 
where 

aj=Yj* e x p ( A v V ) , 

bj=Aexp(-2xj)/(2y/gj). 

Here / corresponds to the grid point at the outer 
boundary and xj is the value of x at that point. Having 
determined 8\ from (A14), we set 8Yj=0 in order to 
specify the normalization. Then repeated application 
of (A10) yields the corrections to the trial wave function. 

This algorithm has been found to converge after only 
a few iterations in most instances. However, it is usually 
necessary to do some preliminary calculations before 
using this method. I t should be obvious that the trial 
function must have the same number of nodes desired 
for a particular orbital. Hence, the same procedure sug
gested by Hartree and used by HS for counting nodes 
and getting an approximate eigenfunction and eigen
value is recommended. This is particularly important 
for the higher orbitals where the eigenvalues get very 
close together. 


