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Free Energy of an Anharmonic Crystal* 
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The perturbation techniques of statistical physics have been applied to obtain two formulas for the free 
energy of an anharmonic crystal. One involves an integration over the coupling constant and the other in
volves the exact Green's function; both are exact parallels of the fermion case. The anharmonic crystal 
differs from the interacting fermions in the structure of the phonon interaction, the effect of which on the 
perturbation series is carefully considered. The stationary property of the free energy with respect to the 
variation of the proper self-energy is proved. Expressions for the internal energy and entropy are also 
derived. 

1. INTRODUCTION where the harmonic Hamiltonian is 

TH E perturbation techniques of quantum-field 
theory have been applied to the problem of lattice 

dynamics.1 The lattice Hamiltonian is expanded in 
powers of displacements from equilibrium positions of 
the ions; the harmonic part is analyzed in terms of free 
phonons and the anharmonic terms constitute the inter
action between phonons and are treated as perturbation. 
Now in the case of fermions or bosons interacting 
through a two-body potential, the free energy is first 
obtained as a series in terms of the unperturbed propa
gators, which can then be resummed as a series in terms 
of the full propagators, known as the Luttinger-Ward2 

formula. The phonons in an anharmonic crystal are 
different in that their interaction does not conserve the 
number of particles. This makes it impossible to relate 
the full phonon propagator to the unperturbed one by 
a self-energy part. Therefore, one is forced to expand 
the perturbation series in terms of some other Green's 
function of the unperturbed system,3 namely that of the 
ionic displacements, rather than that of the phonon 
creation and annihilation operators [see Eq. (5) below]. 
Here, we address ourselves to the problem of partially 
summing the series for the free energy in terms of the 
unperturbed Green's functions to yield a series in terms 
of the full Green's functions. We find it possible to 
derive two expressions for the free energy, one involving 
an integral over the coupling constant and the other 
being an exact parallel of the Luttinger-Ward formula. 
The stationary property of the free energy with respect 
to variation of the proper self-energy part also holds. 
As an application, we derive the expressions for the 
internal energy and the entropy. 

2. THE PROPER SELF-ENERGY PART 
AND THE FREE ENERGY 

We start with the Hamiltonian for the anharmonic 
crystal,3 

H=H0+H1, (1) 

* Supported by the U. S. Office of Naval Research. 
1 See the review articles by R. A. Cowley, Advan. Phys. 12, 

421 (1963); and A. A. Maradudin (to be published). 
2 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960). 
3 A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962). 

# o = 4 E Q ha>Q(AQA_Q-BQB_Q), (2) 

and the anharmonic part is 

# i = l t \ n T, V<»KQi' • 'Qn)AQl. • -AQn. (3) 
n=3 Ql,'",Qn 

Q denotes a four-vector (q,j) as the phonon wave vector 
reduced to the first Brillouin zone and the mode of 
polarization; — ()=(—q, j); co denotes the phonon fre
quency; A and B are given in terms of phonon creation 
and annihilation operators as 

AQ=aQ+a^, 

BQ=a_-Qf—aQ. 

We introduce a power of the coupling constant Xn 

into the V(n) term in the anharmonic perturbation to 
characterize the structure of that term which has n 
operators A. I t is merely a convenient formal device and 
has nothing to do with the usual parameter of smallness4 

e, which is the ratio of the mean ionic displacement to 
the lattice parameter. The V{n) term is of order en~2. In 
the final results, we shall put X equal to unity. 

We define the proper self-energy part via the thermo
dynamic Green's function 

DQQ,(T-T') = {TAQ(T)IQS(T')), | T - T ' | < J 8 , (5) 

where the Heisenberg representation is used: 

A(T) = exp(Hr)A exp( - f iY) . (6) 

T is the ordering operator and 1//3 is the product of 
Boltzmann constant and the temperature. I t is straight
forward to obtain the equation of motion by differ
entiating D twice,5 

d 2 #QQ' (T- r ' ) / c> r 2 

= -2hcoQ8(T-T')SQ,Q,+(ho>QyDQQ>(T-T') 

+ ho>Q(Tl81(T)Mr)~]AQt{T')), (7) 

4 L. van Hove, N. M. Hugenholtz and L. P. Howland, Quantum 
Theory of Many-Particle Systems (W. A. Benjamin, Inc., New York, 
1961). 

5 A. A. Abriskosov, L. P. Gorkov and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963), Chap. 3. 
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with boundary conditions 

D(T- T') = D(T~ T'+P) , T<T' 

and 

dD(T-r,)/dr= 6D(T- r'+/3)/dr, r < r ' . (8) 

The proper self-energy part M is defined by 

= - * < r [ 5 1 ( r ) r g g ( r ) ^ t ( r / ) > . (9) 

Hence, we have the Dyson equation in term of the 
Green's function in the harmonic crystal: 

DQQ^(T-T')=(TAQ(T)1Q,(T'))O, (10) 

the subscript denoting averaging over the canonical 
ensemble of the harmonic system H0. Taking the Fourier 
components, we get 

we have 

where 

+ E DQQ^iiUrjMQ^iUrdDQzQ'tiUn) ( 1 1 ) 
Q1Q2 

DQQ>(iion) = firl I dr exp(iho)nT)DQQ^T) , (12) 

on)-PI 
Jo 

MQQ>(iun)^$ \ dr exp(ihunT)MQQ>(T), (13) 

and 

co» = 2mr/fc/3, n integer. (14) 

The term "proper self-energy par t" is adopted merely 
because of the analogy between (11) and the usual 
Dyson equation. I t is somewhat misleading because, 
strictly speaking, it is not the proper self-energy of the 
phonon in the anharmonic field, which, in fact, cannot 
be defined. 

For the perturbation expansion starting from Ho, we 
need to work in the interaction representation 

iJ(r) = exp(ff0rM e x p ( - # 0 r ) , (15) 

and use the development operator 

H S( /3)=rexp - / Hi(T)dr\. 

The free energy is given by 

F = F 0 - r 1 l n ( S ( ^ ) ) o . 

(16) 

(17) 

F0 is the free energy in the harmonic approximation 
and F depends on X through S. 

Since 

d§> 

2X Q \Jo 
'(r)SGS) ( , 18) 

— = — Z ( T [ rfr[tfi(r)A(r)W(r)S03)) / 
d\ 2X/3 Q \ Jo ' J 

<S03)>o. (19) 

The expression inside the summation sign is just the 
perturbation expression5 for 

/ ' 
J 0 

dr lim < r [ ^ 1 ( r ) , 5 G ( r ) ] l Q + ( r ' ) ) . 
T'~>T—0 

Hence, by the definition of the proper self-energy part 
[Eq. (9)], we have 

dF 1 ft r? 
- / dr dr'Z-
$ J 0 ^0 QQ' 

MQQ,(T-T')DQ,Q(T'-T). 

(20) 

Integrating over the coupling constant, we get 

L^X 
F- r 1 ( 

--Fo-p-1 — Z MQQ>(ian)DQ.Q(ian), (21) 
Jo X QQ'n 

where M and D depend on X. This is analogous to the 
formula for interacting fermions.2 A similar result was 
obtained by Marinchuck and Moskalenko6 including 
only cubic and quartic anharmonic terms. They intro
duced a coupling constant which multiplies the whole 
anharmonic perturbation and hence there appeared 
factors 1/n, which are automatically included in our 
formalism. 

3. THE LUTTINGER-WARD FORMULA 
FOR THE FREE ENERGY 

The derivation of the Luttinger-Ward expression for 
the free energy of the system of interacting phonons 
follows closely that in Ref. 2 for the fermions interacting 
through two-body potentials. The only difference is in 
the counting of Feynman diagrams since the phonon 
interaction has a very different structure. 

We start with the examination of the perturbation 
series for the phonon Green's function, Eq. (5). The 
rules for constructing the Feynman diagrams and 
establishing the contribution of a single term corre
sponding to a diagram in terms of the harmonic Green's 
function, Eq. (10), are given in Ref. 3. We shall con
sider only the counting procedure for a diagram to 
determine the numerical factor to the contribution of 
the diagram. Take an unlabeled diagram with v vertices. 

6 A. E. Marinchuk and V. A. Moskalenko, Fiz. Tver. Tela 5, 
575 (1963) [English transl.: Soviet Phys.—Solid State 5, 418 
(1963)]. 
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All the terms which this diagram represents come from 

(TAQ{T)AQ.KT')U Mr'Vr'^y . (22) 

The numerical factor is then, apart from (—/?)", 1/vl 
times the number of different terms which this diagram 
represents. Suppose there are r different kinds of vertices. 
(joining different numbers of phonon lines), the ith 
kind having mi in number such that 

There are 

E mi—v. 

rl/IIWl 

(23) 

ways of picking out such a combination of vertices from 
(22). In each combination there are 

different arrangements of vertices of the same kinds, 
which correspond to distinct terms in the contraction 
of Eq. (22) but to the same diagram topologically. To 
each arrangement of v vertices, there are still a number 
of ways of contracting equivalent operators which 
belong to the same vertex, V(n)(Qv • 'Qn)AQl- • -AQn. 
This is precisely the number of ways of labeling the 
momenta carried by the phonon lines in the diagram. 
In conclusion, the number of different terms correspond
ing to the same diagram is v ! times the number of ways 
of labeling momenta in the diagram, and the numerical 
factor we have sought for is just the number of ways of 
labeling the momenta. 

I t is easy to see that the proper self-energy part 
defined by Eq. (9) is given by all the diagrams for the 
Green's function (with the two end lines removed) which 
cannot be separated into two parts by cutting a single 
propagator. Now we can perform partial summation 
and see that M, the proper self-energy part, is given by 
the sum of all skeleton diagrams, i.e., those with no 
self-energy insertions—with each line, however, now 
representing the anharmonic Green's function D(T). 

We are now in a position to investigate the perturba
tion expansion for the free energy, given by5 

F = Fo-p-^&iP)- l)o connected . (24) 

The subscript "connected" means that only connected 
vacuum-fluctuation diagrams are included. Consider a 
diagram with m phonon lines \_Dm{j)~\. This represents 
terms of order X2m. We can count the number of terms 
which contribute to the same unlabeled diagram by 
cutting each line and counting the contributions to the 
resulting proper or improper self-energy diagram. There 
are m ways of cutting the free-energy diagram and for 

FIG. 1. Semicircular contours 
Ti and T2 with radii tending to 
infinity. 

each cut there are two distinct self-energy terms. If we 
count all possible (proper or improper) self-energy dia
grams which can be joined up by a phonon line to give 
the free-energy diagram, we have counted each con
tribution to the free energy 2m times over. This factor 
l/2m is guaranteed by the coupling-constant integration 
as in Eq. (21). The integrand in the coupling-constant 
integral obtained in this way by summing over all 
diagrams is MiD(0) where Mi is the improper self-energy 
part. Since MiD(0)=MD, we recover Eq. (21) by dia
grammatic considerations. We shall illustrate the count
ing by an example in the Appendix. 

Let Yf be —1/ft times the sum of all connected skele
ton free-energy diagrams. Each diagram is evaluated 
as before except that a line now represents the an
harmonic Green's function D(iun). I t is well known that 
unlike the case for the proper self-energy part, F ' does 
not give the free energy. We shall show that Y gives the 
free energy, where 
F = F 0 + ( 2 ^ ) - 1 L n Tr[>{l-DW(«on)-M(iw„)} 

+M(ico n)-D(ico n)]+F / . (25) 

For convenience, we sometimes represent MQQ^(icon) by 
the matrix M(ia)n). Tr denotes the trace. 

Consider differentiation of Eq. (25) with respect to an 
element MQ1Q2(iconi). Take Y' first. A connected skeleton 
free-energy diagram (F diagram) with m phonon lines 
may be formed by closing one or more proper self-energy 
diagrams (M diagrams) with a line Z)(icon). If we count 
all possible M diagrams, we know the contribution is 
2m times that for the F diagram. Take any one of the 
M diagrams and close it with D. If this M diagram can 
be obtained from the F diagram by cutting any one of j 
equivalent lines, then the contribution of this M diagram 
closed by D is (i) j times that of the F diagram if the 
transpose of the M diagram is distinct and (ii) 2 j times 
if the transpose is the same as the original M diagram. 
Hence cutting any of the j lines of the F diagram gives 
us half the contribution of the sum of the M diagram 
and its transpose or half the contribution of the M 
diagram if the transpose is the same. To differentiate 
Y' with respect to MQ^^ioon), we differentiate each 
phonon line in an F diagram and by the above reasoning 
we get half of the M diagrams closed by the derivative 
of D with respect to MQ1Q2(iooni), i.e., 

dY' dD(i0)n) 
^ - (2/3)"1 E TrM(ico.) . (26) 

dMQlQi(iconi) dMQlQ2(io)n) 
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Now it is not difficult to show that By Eq. (20), we have 

dY/dMQlQ%(ianJ = 0. (27) p=y. (29) 

By the virtue,of this stationary property, for dF/dX we I t i s p o s s i b l e t o r e l a c e t h e S l i m m a t i 0 n over n in 
need only differentiate the explicit factors of X in Y . E q ^ ( 2 5 ) b y a n a p p r o p r i a t e i n t e g r a l o v e r contours I \ 
For an ^ d i a g r a m with m lines, there is a factor X2-. a n d ^ s h o w n i n F i g^ ^ w h e r e t h e s e m i c i r c u l a r a r c s a r e 

From similar reasonings as above, t a k e n t Q i n f i n k y a n d t h e s t r a i g h t _ l i n e p o r t i o n s n e a r the 

dY/d\= - (X/3)-1 L n TrM(won) • D(iw„). (28) imaginary axis: 

F=(2p)-A — * l n [ e x p ( ^ ) - l ] T r D(f) + — / # l n [ l - e x p ( ^ f ) ] T r D(f) 
L2ir iJr i I df J 27riJr2 I df J 

1 /• hfi -i 
/ # ; -Tr{M(f)-D(f)} + F . (30) 

2iri J n+rj 1 — exp(— *0f ) J 

Note that this expression involves only the full Green's function D and nowhere involves the harmonic approxi
mation Dw. 

4. THE INTERNAL ENERGY AND THE ENTROPY 

As a simple application of Eq. (25), we shall derive an expression for the internal energy and hence the entropy. 
The internal energy is given by 

E=d(0F)/W. (3D 
By the stationary property 

dF/dM=0, (32) 

we can neglect the dependence of M on p. An F diagram in /3F' with v vertices has a factor /3". Hence 

d(pY')/dp= -hZn Tr{M(w„) • dV{io>n)/d$}+Ef, (33) 
where we keep in mind that in dD/d/3, M is kept constant, and Ef is —1//5 times the sum of all skeleton F diagrams 
for which the contributions are evaluated as in Yf except that for a diagram with v vertices there is now a factor 
v. The internal energy is 

E = £ o - i £ » T r [ { D < ° > ( t u „ ) ^ (34) 

I t is simple to show in terms of an associated Green's function, 

CQQ.{T-T') = {TBQ{T)AQ,\T')), (35) 

that we have 
PldDQQf (o)(ico„)/d/3] = {ihuJCQQ*<°>(ion)-1 }DQQ> <°>(icow). (36) 

Whence, 
E ^ o + ^ j ^ E n T r f t - t t o ^ ^ ^ (37) 

Or, in terms of contour integrals, 

L 

fr1+r2 " l - e x p ( - * 0 f ) 
E=m~i\— f # T r { ^ C ( f ) - M ( f ) . D ( f ) } ] + £ / . 

Y-I-KI J n+r. 1 — exp( — *0f) J 

(38) 

Finally, the entropy is 

S=k$(E-F) 

= 5 0 - (*/2/S)E» Tr[«fcoll/9C<»(«o„) • M(«o») • D(«o»)+ ln{ l - D»>(iw») • M ( w „ ) } ] + £ / ? ( £ ' - F ' ) , (39) 

= - — / # TrC(f) / < 2 r l n [ e x p ( W ) - l ] T r D(f) 
2L2TriJri+T2 1 —exp(—fc/3f) 2-wi J Vx I df 

f ^ l n [ l - e x p ( ^ ) ] T r j D ( r ) j l + ^ ( £ ' - F ' ) . (40) 
2mJrt I 9f J J 



FREE E N E R G Y OF A N H A R M O N I C C R Y S T A L A 1193 

ACKNOWLEDGMENTS 

I am indebted to Dr. A. A. Maradudin for many help
ful discussions and encouragement, to Dr. R. A. Cowley 
and Dr. L. Dworin for stimulating discussions, and to 
Professor W. Kohn for a reading of the manuscript. 

APPENDIX 

Consider a free-energy diagram [Fig. 2(a)] which 
represents some terms from 

-r'^<r{/>H>/ 
with two F (3) vertices and one F (4) vertex. Let us first 
get the numerical factor directly. In the cube of Hh 

there are 3 terms of the form V^V^V^. Now for 
vertex X in Fig. 2(a), there are 3 ways of choosing an 
operator to contract with one from Z and the remaining 
two operators from X can contract with two from Y in 
2 ways. For vertex F, there are 4!/(2!X2!) ways of 
picking two operators to contract with X and leaving 
two to contract with Z. The vertex Z is counted the 
same way as X. Hence the numerical factor is 

1 4! 
—X3X3X2X X2X3=108. (Al) 
3! 2!X2! 

To follow the method of counting in Sec. 3, we first 
note that the possible M diagrams which can be closed 
to form Fig. 2(a) are given in Figs. 2(b), 2(c), and 2(d). 
The numerical factor for Fig. 2(b) is just the number 
of ways of labeling momenta in the figure, which is, 
following the same reason as in the preceding paragraph 

4! 
3X2X X2X3-216. (A2) 

2!X2! 

D J !)• \ 
(a) (b) ( c ) (d) 

FIG. 2. Free-energy and self-energy diagrams. 

Now consider (c). For vertex X, there are 3 ways of 
choosing an A operator to be the free one, and then 
2 ways of choosing one for the contraction XZ, leaving 
one for XY. For vertex Z, there are 3 ways of choosing 
an A for XZ, leaving two for YZ which can be formed 
in 2 ways. In vertex F, the 4 operators are separated in 
4!/(l!l!2!) ways for YZ, XY and the free end. The 
numerical factor for (c) is 

4! 
3X2X3X2X =432. (A3) 

11X11X2! 

The numerical factor for Fig. 2(d) is the same as for 
Fig. 2(c). 

When we count all the self-energy diagrams (b), (c), 
and (d), we have counted the contributions to the F 
diagram (a) ten times over. The sum of all self-energy 
terms divided by 10 does give the correct factor (Al). 

Furthermore, note that there is only one line in (a) 
which we can cut to give (b). (A2) verifies the assertion 
that since (b) is the same as its transpose, the contribu
tion of this M diagram closed by a line gives twice that 
to the F diagram. The transpose of (c) is (d) and either 
can be formed from (a) by cutting any one of four lines. 
Thus, the M diagram (c) when closed by a line gives 
four times the contribution to the F diagram. Equation 
(26) can be verified for these diagrams. 


