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The s-d exchange model used successfully by Kondo to explain the resistance minimum in dilute magnetic 
alloys is employed to calculate the change in the electronic specific heat. For an unmagnetized system, the 
first anomalous effects, which depend on the sharpness of the Fermi surface, occur in third-order perturbation 
theory. The perturbation expansion for the thermodynamic potential is used to calculate the equilibrium 
properties of the system. The temperature and impurity-concentration dependence of the anomalous term in 
the specific heat is found to be cT ln7\ The magnitude of the coefficient of this term is too small to render it 
observable in metals. 

INTRODUCTION 

IN a recent paper, Kondo1 has used the interactions 
of electrons with magnetic impurities to explain the 

resistance minimum found in a number of dilute mag
netic alloys. Singular Fermi-surface effects first appear 
in third-order perturbation for the scattering probability 
of the electrons. Kondo chose the s-d exchange model 
introduced and used by Zener,2 Kasuya,3 and Yosida,4 

and showed that the scattering probability was loga
rithmically singular as the temperature approached 
zero, for electron energies close to the Fermi energy, in 
accord with the experimental data. 

There are several transport phenomena which will be 
affected by the logarithmic singularity in the electron 
lifetime. However, there is another class of phenomena 
which will be more sensitive to the shift in the electron 
density of states at the Fermi surface. Two such ex
amples are the electronic specific heat and tunneling. 
In this paper we calculate the shift of the specific heat 
to third order in the s-d exchange integral. No singular 
effects due to the sharpness of the Fermi surface arise in 
second order. In Sec. 1 we calculate the shift of the ther
modynamic potential, assuming the temperature to be 
high enough so that the system will not be magnetically 
ordered, and the spin states to be degenerate. 

The second-order correction to the specific heat is 
calculated in Sec. 2. Only a small correction to the 
density of states occurs in this order. An approximation 
to the correct noninteracting distribution function is 
made in the Appendix. In Sec. 4, using this simplified 
distribution function, we calculate the third-order cor
rection to the specific heat. The new term which appears 
varies as cT lnT, where c is the impurity concentration 
and T the temperature. The coefficient of this term is 
such as to make it unobservable in metals. 

* Work supported in part by a DuPont research grant. 
t A portion of this work was completed during the summer of 

1964 while the author was at Bell Telephone Laboratories, 
Murray Hill, New Jersey. 
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1. Shift of the Thermodynamic Potential 

In this section we calculate the thermodynamic 
potential to third order in the coupling constant. The 
Hamiltonian we choose is identical with that given by 
Kondo.1 The Hamiltonian for noninteracting electrons is 

# o = L t{k)ck>(T*ckt<T 
k,cr 

( l . l ) 

where the noninteracting electron spectrum is taken to 
be( f t= l ) 

e(k) = k2/2m. 

The various magnetic states of the impurities are taken 
to be degenerate, when the crystal field splitting etc. is 
neglected. The interaction term is 

J 
Hf= E e^-^'^i(c\^ck,-c\^ck,)Snz 

N n.k.k' 

+ c\'tCklSn_+C*k>lCtfSn+] • (1.2) 

The system has N atoms in it. Rn is the position vector 
and Sn the spin operator of the ^th impurity atom. Sn+ 
and Sn- are the usual spin-raising and lowering operators. 

»J n±== *J n rc^ t^O ny • 

As Kondo points out, / , the value of the direct exchange 
interaction between the localized and conduction elec
trons, can be either positive or negative. 

Bloch and DeDominicis5 have shown that the shift 
of the thermodynamic potential may be obtained from 
the linked diagram expansion for the ground-state 
energy. I t is obtained by associating the appropriate 
unperturbed distribution functions with the particle and 
hole lines of the diagrams. The ground-state energy 
shift to third order is given by 

AU=(0\H'\0)+X, 
(0\H'\i)(i\H'\0) 

Eo—Ei 

(0\H'\i){i\H'\j)(j\H'\0) 
+ Z , (1.3) 

U (E0-Ei)(E0—Ej) 

6 C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958). 
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where |0) represents the ground state, a rilled Fermi 
sea, and E0 is its energy in the presence of the Hamil-
tonian H0. The kets | i) and | j) are excited-state con
figurations with Ei and Ej the energies of those particular 
configurations. Since H' has no diagonal matrix elements 
in the unmagnetized state, there is no contribution to 
the first-order shift in energy. 

The diagrams corresponding to the four terms of the 
second-order shift in energy are shown in Fig. 1. 
Figure 1(d) shows the time-reversed diagram of Fig. 
1(c). By applying the designation time reversal to a 
diagram, we mean that the direction of the arrows on 
the lines are reversed, interchanging particles and holes. 
In writing the single-particle distribution functions in 
the expressions for the shift of the thermodynamic 
potential, we will not distinguish between the spin up f\ 
and the spin down f\ distribution functions. In the un
magnetized state, both distribution functions are identi
cal. The second-order shift in the thermodynamic 
potential is 

J2 _ ( 1 - / 0 / 

N2 n,k,k' e—e 

Xl2Mn*+(S+Mn)(S-Mn+l) 

+ (S-Mn)(S+Mn+l)l. (1.4) 

The primes on the distribution functions and single-
particle energies indicate to which momentum they 
refer: f==f(k), f=f(k'), etc., Mn is the z component of 
the spin of the nth atom, and 5 is its maximum value. 

The first of the two terms in the first bracket is the 
contribution of the diagrams shown in Fig. 2, the second 
is of the contribution of the time-reversed diagrams. 
The diagrams of Fig. 2 are given in an order which 
corresponds to that of the terms in (1.5). The total 0 up 
to third order is the sum of (1.4) and (1.5) added to the 
contribution of the unperturbed term 

P ( 1 - / 0 / Jz 

Q = fl<°5-2—5(5+1)E + 2 — 5 ( 5 + 1 ) 
N2 e'-e N* 

^ r / ( i - / 0 ( i - / " ) ( i - / ) / 7 " 1 , N 

x E + . (1.6) 
L (e'-€)(€"_€) (e_c')(€_6")J 

We do not retain those terms which vanish in the un
magnetized state, i.e., those proportional to an odd 
power of Mn* 

The first term in the bracket is the contribution of 
Figs. 1(a) and (b), the second term is that of 1(c) and 
the last comes from 1(d). 

There are 16 diagrams which contribute to the third-
order shift in energy. Eight of these are shown in Fig. 2. 
The other eight are the time-reversed diagrams of those 
shown in Fig. 2. We have not included some of those 
terms which vanish in the unmagnetized state, i.e., 
terms which involve impurities at different sites. The 
contribution of each of the diagrams can be written 
down quite directly. The only point which perhaps 
should be mentioned is the sign of the product of matrix 
elements which arises when contractions are made in the 
matrix elements. Because of the contractions made, all 
the terms shown in Fig. 2 have the same positive sign. 
We illustrate by extracting the combination of electron 
operators which leads to Fig. 2(a). 

(0|ckt*Ck"tt;k"t*Ck'tCk't*Ckt|0) = / t ( l — / t 0 ( l ~ / t ' 0 -

In contrast, all the time-reversed diagrams have matrix 
elements which lead to a negative sign when the electron 
contractions are made. As an example, let us consider 
the time-reversed diagram to Fig. 2(a). The electron 
operators enter the matrix element as 

( o | ^ ' t % t ^ t % ' ^ k t % ' t | o ) = - ( i - / t ) / t 7 t / / . 

Since one of the contractions must be made by bringing 
an electron operator past another single electron opera
tor with which it anticommutes, the result is always 
negative. The third-order shift in thermodynamic po
tential is 

2. Second-Order Correction to the Specific Heat 

The second-order shift in the specific heat can be 
calculated directly from (1.6), since the entropy is 
given by 

S=-dto/dT. (2.1) 

The specific heat is then 

C=T(dS/dT)=-T(d2iydT2). (2.2) 

Since several of the integrals as written in (1.6) are 
divergent, we should mention some salient points about 
the coupling function / . The exchange integrals which 
occur are actually functions of the momenta summed 
over. For example, in the second-order term of (1.6) we 
should have 72(k,k'). As Kasuya3 points out, / can be 
approximated as a function of the magnitude of the 
vector difference |k—k' | , by a function which is con-

/ / y / / i - / i-/" U-/)/7" \ 
\N/ \ (e'-e)(e"-e) (e-eOCe-e")/ 

XlMJ-(Mn+l)(S-Mn)(S+Mn+l)+Mn(S-Mn)(S+Mn+l)+Mn(S~Mn)(S+Mn+l) 

+ (Mn-l)(S+Mn)(S-Mn+l)-Mn*-Mn(S+Mn)(S-Mn+l)-Mn(S+Mn)(S-M „+!)]. (1.5) 



A 1196 S T A N L E Y E N G E L S B E R G 
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FIG. 1. Second-order diagrams for the normal-state energy. 
The values of the momentum and spin are indicated alongside the 
particle and hole lines. 

stant out to the first reciprocal lattice vector and then 
drops rapidly to zero. Since we are interested only in the 
Fermi-surface effects which may give rise to logarithmic 
singularities, we will take 7(k,k') to be a constant for 
energies e(k) and e(k') less than an energy M greater 
than the Fermi energy. That is, 

/ (k ,k ' ) = J for 0 < € ( k ) < M + M o , 0 < e ( k O < M + j u n 
= 0 otherwise, (2.3) 

where MO is the Fermi energy at zero temperature. This 

FIG. 2. Fourth-order diagrams for the normal-state energy. The 
values next to the wavy lines indicate the z component of the 
impurity spin in the intermediate states. 

approximation will certainly give Fermi-surface effects 
correctly, but contributions which depend on regions far 
from the Fermi surface will be only roughly approxi
mated. The second-order shift in entropy is 

AS™=-dAtt™/dT 

J2 1 df 
= 2~cS(S+ 1 ) E ~ : (2.4) 

where c is the impurity concentration. We convert the 
sums in (2.4) to principal value integrals. 

1 df / ( 2 w ) 3 / 2 F \ 2 fM+™ 

k,k> e'-edT 

/(2m)zl2V\2 rM+ti° df CM+^ e112 

= ( J / dee^—P de' 
\ 4TT2 / Jo dT Jo e ' - e 4 T T 2 

(N(o)vy 

Mo 

/ de e1'2 2 ( M o + ^ ) 1 / 2 - e^2 In 
'o dT\-

eW+ino+M)1'2 

e^-ifXo+M) 1/2J _] ' 

We have introduced the energy density of states for electrons of one spin at the Fermi surface 

iV(0) = (2w)3/W , 2/(27r)2 . 

(2.5) 

(2.6) 

We can see from (2.5) that there are no singular effects in second order from the sharpness of the Fermi surface. 
The derivative of the Fermi function / will put e at the Fermi surface. The integrand is then perfectly regular. 
We may use the usual techniques to obtain the leading term of the specific heat, keeping only the terms of (2.5) 
linear in the temperature. In calculating dtt/dT, the chemical potential is held fixed. In fact, it is unnecessary to 
retain the temperature-dependent terms of the chemical potential which appear in the Fermi function. When 
we define a new variable of integration in (2.5) 

X=(6 — fJL0)/kT, 

the integral becomes 

„ 1 df 
k,k> e'-edT 

(N(0)V)2 rM'kT df 
k / dx~xiixo+kTx)1'2] 2 ( M o + M ) 1 ' 2 

Ho J-no/kT dx 

Mo' 
3/2 

2\l 

r /M-no\ - (AT (0)F) 2 r /M-n0\ 
k*T\ Oio+Jf)1 '2 ' 

(txo+kTxynn 
(jio+Myi*+(no+kTx) 

Guo+AO^-w 1/2 

(jio+Myi*-(H>+kTx) 

1/2.-1 

1/2| J 

dxx2 \-0[ 
, dx o 

= —w\N(0)V)WTa/2>ixo, (2.7) 
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where we have denoted the constant 

iGuo+M^'S+Mo1'2 

~ ( 
1 + — ) + l n 

Mo/ M (vLo+Myit-vo112 

For a cutoff M taken of the order of magnitude of the 
Fermi energy, a is of the order of magnitude of one. The 
second-order shift in specific heat is obtained by using 
(2.2), (2.4), (2.7): 

A C ( 2 ) = _ (27r*/3)(J*/N)acS(S+ 1)[(7V(0) V)2/fio]k2T, 

or equivalently 

AC<2yC0=AC<2yf7rW(0)F£2r 
= -KJ2/»o2)aczS(S+l), (2.8) 

where Co is the free-electron contribution to the specific 
heat. The expression for the chemical potential at zero 
temperature 

M 0-( l /2m)(3x 2p) 2 / 3 , (2.9) 

is used in (2.8) to eliminate the number density of 
electrons 

p=zN/V. (2.10) 

3. Third-Order Correction to the Specific Heat 

In the following calculation of third-order effects, we 
will only be interested in those leading terms involving 
logarithmic singularities. We will not retain those terms 
which only shift the linear term of the specific heat. The 
third-order shift in the thermodynamic potential is 
included in (1.6). 

jz f-2ff'+ff" 
AQ(V = 2—cS(S+l) E — , (3.1) 

N2 *•*'•*" ( € ' - e ) ( e " - e ) 

where we have summed over the impurity sites. To find 
which of the terms of (3.1) can give singular effects we 
can take the zero-temperature limit. In this case 

/(e) = l : 
= 0: 

€ < / X 0 

€>JL10. 

Both the first and the third terms can be seen to have 
finite principal-value integrals. The only end points of 
those integrals where the denominator vanishes is at 
zero energy. The zero phase space available there 
eliminates that as a possible singular contribution. Only 
the second term of (3.1) gives rise to a singular effect. 

P ff 
A Q < » « - 4 — c 5 ( 5 + l ) E 

TV2 ( e ' _ € ) ( € " - e ) 

(3.2) 

At zero temperature the singularity arises since the 
denominator vanishes when both e and e are at their 
Fermi-energy end points. In (3.2) the integration over 
e" will be restricted by the coupling function / . The 
resulting value of the integral will depend explicitly on 
the functional dependence of / on e". Since the actual 
behavior of J is not well known we will, for simplicity, 
choose the model given in (2.3). The result we will obtain 
could then vary by as much as an order of magnitude 
for different models. The singular term of (3.2) will 
depend on the behavior of the Fermi function near the 
Fermi energy. Replacing the Fermi function by an 
approximate single-particle distribution function will 
not alter our limit of accuracy at this stage. However, 
it will have the advantage of affording an analytic 
rather than numerical evaluation. In the Appendix we 
obtain the distribution function we will use in calcu
lating (3.2). 

The integral over k" is identical with that performed 
in (2.5) 

h(e) = Z(ef-e)-1 = N(0)V^ 
/•iif-huo 

•o-1'2 / 
Jo 

rf«" «"!/*(«"-O"1 

,1 /2 

Cuo+M)1'2 In 
2 

G u o + l O ^ + e 1 ' 2 

(no+M)1'*-*'* 
(3.3) 

Using (A14) we may perform the integral over kf 

g ( « ) = E / V - « ) - 1 

r e 1 / e \ ^ 2 
l / e \ 1 / 2 / £ 

-2N(0)V\ + ( - ) ln(e 1 / 2+(Mo-f /2) 1 / 2 )+-
L2fi0 2 V o / £\MO^ :B"'(B In 

1 / 2 + ( M O + { / 2 ) 1 ' 2 | 

V+OH-Z/D11* 

2 £ W \ 2/ 
In 

€ 

2 £ W V 2/ 
In 

< & ) . 

fcl • / t \ 2> 

21 V w 
(3.4) 
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The integral in (3.2) can now be expressed as 

/=E-(e '-e)(e"-e) 

••00 

= 7V(0)FMO-1 / 2 / de e^f(e)g(e)h(e) 
Jo 

+11 
--N(0)Vu<rinl f " de e1l*g(e)h(e)+ f ' de e"4—-\(e)h(e) 

The part of I arising from the sharpness of the Fermi surface may be extracted by rewriting (3.5) as 

r ro ro , i ^ 

(3.5) 

I=N(0)Vfi0-
1>* de eV2g{e)h{e)- \ dee1'H-+ 

We may take the limit of £ or the temperature going to 
zero in the first term of (3.6) without obtaining any 
singular term. 

1/2 

limg(e) = N(0)V\ 2 - 2 ( —) 

^° L W 
ln^'s+Mo1 '2) 

+ 
/ € v l / 2 

( - ) ln(e- "Mo) 

In the other two terms of (3.6) we make the change of 
variables #=£/£ . When we expand the integrand for 
small £/juo the singular term comes from g 

The most singular term of the integral is 

i=+MW)V)zK?M Hno/0 
+oi(e/no')\nwm, (3.7) 

where we have defined 

J = ln 
(Mo+^)1/2+Mo1/2 

( M O + ^ ) 1 / 2 - M O 1 / 2 I 

- | ( 2 - ( M O / M ) ) ( 1 + ( M / M O ) ) 1 / 2 . (3.8) 

The value of b depends on the model we have chosen for 
/ . For the cutoff M equal to juo, b is of the order of 
magnitude of one. Using (A9), (2.6), (2.9), (2.10), (3,2), 
and (3.7), we obtain the shift of the thermodynamic 
potential 

A&v = _ (81/16) (J/fx0yz2cS(S+1) 

XN(0)Vbk2T2 ln(fjL0/6kT). (3.9) 

The most singular contribution to the third-order shift 
in entropy is 

ASM = + (81/8)(//Mo)332^0S'+1) 
XN(0)Vbk2T ln(iao/6kT). (3.10) 

The corresponding singular part of the specific heat may 
be compared to the specific heat of the free electrons 
(All) 

AC(3>/C0=(27/16)(J/iuo)3z2c 
XS(S+l)bln(»0/6kT). (3.11) 

! )«(«)*(«)+ f d'e e^---^g(e)h(e)j . (3.6) 

Although the temperature dependence of (3.11), lnT, is 
very interesting, there is little hope of observing the 
effect experimentally in those metals which show a 
resistance minimum. In this case perturbation theory 
works too well. The coefficient of the log term is of the 
order of 

(J/noYc^ (0.02)3(10~3)«10-8. 

We use the concentration c=10~3 because when im
purity concentrations are much greater than this, mag
netic ordering has started at the temperatures of the 
resistance minimum.6 Since there is a very large con
tribution to the specific heat from the magnetic ordering 
itself, the contribution (3.11) will be overwhelmed before 
we get to temperatures at which these electron-scatter
ing effects can give rise to a shift of as much as one part 
in a million. 

CONCLUSIONS AND DISCUSSION 

The mechanism through which magnetic impurities 
give rise to observable anomalies in transport properties 
may also be used to calculate anomalous equilibrium 
properties. In transport properties the s-d exchange 
interaction perturbs the electron lifetime in a singular 
way. This mechanism leads to the same type of singular 
behavior of the electron density of states close to the 
Fermi surface. In order to obtain singular effects on 
either property, the impurity spin states must be de
generate and the Fermi surface sharp. Magnetic fields 
quench the singular behavior. When the splitting of the 
spin states is of the order of the temperature times 
Boltzmann's constant, a logarithmic behavior is com
pletely quenched. 

The perturbation of the electron's equilibrium prop
erties due to magnetic impurities is too small to be ob
servable. I t is simple to understand why a perturbation 
can observably affect transport properties and leave 
equilibrium properties essentially unaltered. As the 
temperature goes to zero, the major mechanism for 
high temperature resistivity, scattering from phonons, 
vanishes rapidly and a small temperature-independent 
residual resistance from impurities combines with a 
small but effective term which varies logarithmically 

6 M. P. Sarachik, Phys. Rev. 137, A659 (1965). 
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with the temperature. In the case of equilibrium prop
erties such as the specific heat, the perturbation is of 
the density of states at the Fermi surface which does 
not vanish at zero temperature. The fact that we are 
doing perturbation theory in a very small quantity 
J/IXQ makes the third-order singular term unobservable 
in the case of metals. Stated in another way, for trans
port coefficients we are perturbing from zero, for equi
librium properties we are perturbing from one. 

Although this calculation does not predict an ob
servable specific-heat excess due to magnetic impurities 
above their ordering temperature, such an excess is in 
fact observed. Experiments by Frank, Manchester, and 
Martin7 on dilute systems of Cu-Fe show that although 
the excess resistivity can be well described by a In T 
term down to about 5°K indicating negligible internal 
magnetic fields, there is an excess specific heat of the 
same order of magnitude as the electronic specific heat. 
The excess is fitted quite accurately by a function of 
the form 

AC^cT\n2T 

down to about 1°K. The order of magnitude of the 
effect shows that one will have to go outside the realm 
of perturbation theory in order to explain this interest
ing anomaly. 

In recent papers, Suhl8 and Kondo9 have shown that 
an infinite summation of terms replaces the logarithmic 
singularity in the scattering probability by a resonant 
scattering away from the Fermi surface. When | / / /x | 
X>lri.(li/kT)<&l, the lowest order logarithmic term oc
curring in perturbation theory gives the dominant be
havior of the resistivity. The temperatures at which the 
anomalous behavior in the specific heat occur are 
sufficiently high for perturbation theory to be an ade
quate representation of the infinite summation. How
ever, as we have shown the s-d exchange used as a 
perturbation does not explain the experimental results. 
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APPENDIX 

Approximate Single-Particle Distribution Function 

As mentioned in Sec. 3, if we were to use the true 
Fermi distribution function in (1.6), the integrals would 

7 J. P. Frank, F. D. Manchester, and D. L. Martin, Proc. Roy. 
Soc. (London) A263, 494 (1961). 

8 H . Suhl, Phys. Rev. 138, A515 (1965). 
9 J. Kondo (to be published). 

be extremely difficult. We will use a much simpler form 
for the distribution, which has the same general prop
erties as the true one and can be expected to give the 
Fermi-surface effects correctly. The functional form we 
choose for the distribution function is 

jf(€) = l : 0 < € < a £ - £ , 

€ 

= a—: a £ - £ < e < a £ , (Al) 

= 0: a £ < c 

The form chosen in (Al) is similar to the choice made 
by Koppe10 and Wolfarth11 in calculations of the effect 
of exchange on the specific heat with Coulomb inter
actions present. 

First we determine the condition on a which ensures 
the constancy of the number of electrons 

(2w)3'2 r 
zN=T,f= V / dee^fie) 

k,c 2TT2 J 

= [(2m)3/2/27r2]F(a?)3/2 

x[!-|(?M)+AaM)2+---]. (A2) 
We may solve (A2) iteratively for a£, using (2.9) 
and (2.10). 

a£=A*o+i{-(l/48)(£VMo)+0(£VMo2). (A3) 

Since the width of the Fermi surface £ is proportional to 
kT, we neglect terms of order £(£/MO)2 in (A3). 

The thermodynamic potential of the noninteracting 
system is 

o ( 0 ) = 2 E ( € P - / 0 / p 
V 

+2kT £ UP I n / , + ( l - / p ) l n ( l - / „ ) ] . (A4) 
V 

The distribution function (3.1) depends upon two 
parameters. One of them a was determined in (A3) by 
fixing the density of the system. The second £ will be 
chosen by minimizing 12(0). The first term of (A4) is the 
energy of the noninteracting electrons 

U^ = 2ZePfP=iN(0)V^o2 

+ A ^ ( 0 ) n 2 + 0 ( £ V M o ) , (A5) 

where we have used the distribution function (Al), the 
expansion (A3) for a£ and introduced the density of 
states N(0) given in (2.6). The entropy of the system 
enters Q(0), 

5 = - 2 * E [ / p l n / p + ( l - / , ) I n ( l - / p ) ] 

= kN(0m+O(?/tf), (A6) 

10 H. Koppe, Z. Naturforsch. 2a, 429 (1947). 
11 E. Wolfarth, Phil. Mag. 41, 534 (1950). 
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using the distribution function (Al). The thermo
dynamic potential of the noninteracting system is then 

2^ = iN(0)Vfjio2+^N(0)Ve-^N-N(0)V^kT. (A7) 

The minimum Q(0) is at that value of £ for which 

dG<°ydf=0, (A8) 

& = 6 M \ (A9) 

C=T(dS/dT) (A10) 

may be calculated from the expression (A6) obtained 
for the entropy. The result is 

namely, 

The specific heat 

C0/V=6N(Q)k2T. (All) 

We now can see the damage done by our choice of the 
distribution function. The exact result for the term in 
the free-electron specific heat linear in temperature is12 

Co/V=%T2N(0)k2T. (A12) 

Thus our crude form for the distribution function re-

12 F. Seitz, Modern Theory of Solids (McGraw-Hill Book 
Company, Inc., New York, 1940), p. 150. 

places 7r2 by 32. This approximation is certainly sufficient 
for our purposes. 

We can rewrite the distribution function (Al) using 
(A3) and the energy variable measured relative to the 
Fermi energy: 

e=€-/zo+(l/48)(f2//*o) = €-M, (M3) 

/ ( i ) = l : - M o + ( l / 4 8 ) ( e W < 6 < - ! £ , 

= 0: 

- iKKif, 

frKi. (A14) 

From (A9), (A13), and (A14), we may obtain the de
pendence of the Fermi energy on temperature for the 
noninteracting system 

M = MoCl-(l/48)(?o2/Mo2)] = Mo[l-!(^r/Mo)2] . (A15) 

Once again we may compare with the exact result13 

/i=,*oi:i-(*yi2)(ftzy„o)s] (M6) 

and find that 7r2 has been replaced by 32. 
13 F. Seitz, Ref. 12, p. 149. 
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The heat capacities of two independently prepared specimens of a-Mn have been measured between 1.75 
and 4.2°K. The coefficient of the contribution linear in T is found to be (30.6±1.5)X10~4 cal/mole(°K)2. 
This value is in reasonable agreement with that determined by Booth, Hoare, and Murphy from measure
ments made in the liquid-hydrogen range. 

INTRODUCTION 

PUBLISHED reports1-6 of measurements of the heat 
capacity of a-manganese at low temperatures have 
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yielded conflicting values for the electronic heat capacity 
and the Debye theta. I t now appears that at least some 
of the discrepancies are attributable to the contami
nation of a-Mn with other phases.1 The present work7 

is a report of the helium-temperature heat capacities of 
two separate specimens prepared independently by 
different procedures and known to be in the alpha phase. 
The two results agree and are consistent with the heat-
capacity data of Booth, Hoare, and Murphy,xobtained 
between 11 and 20°K using Mn specimens of known 
crystal structure. 

7 The data presented here constitute a section of the PhD 
thesis of G. L. Guthrie (Carnegie Institute of Technology, 1957). 
A preliminary report appeared in abstract form QPhys. Rev. 98, 
1181 (1955)]. 


