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where v is the unit cell volume. The values obtained for 
CdF2 and PbF2 are given in Table I. The values are not 
very different than those found for the alkaline-earth 
halides where almost certainly the net charges are the 
full ionic values.11 A crude estimate of the distortion 
effects on the basis of the shell model shows (1) the 
greater effective charge for PbF2 reflects not so much 
greater ionicity but the greater polarizability of the 

I. INTRODUCTION 

RECENT experimental studies of lattice dynamics, 
much of it in the form of inelastic slow-neutron 

scattering,1'2 have made abundantly clear certain short
comings in what may be termed the rigid-ion model of 
a crystal lattice which evolved from the work of Born 
and others.3""""5 This model, in which nonpolarizable ions 
interact through long-range electrostatic and short-
range repulsive forces, explains reasonably well many 
properties of simple ionic crystals (e.g., cohesive 
energies, elastic constants, Debye temperatures), but 
is quite inadequate in discussing dielectric properties 
and the detailed dispersion relations of (particularly) 
longitudinal modes. Of the various attempts to intro
duce the feature of polarizability correctly into lattice 
dynamics (complicated by the fact that in addition to 
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Research Office, Durham, North Carolina under Contract 
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field. 
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4 E. W. Kellerman, Phil. Trans. Roy. Soc. (London) A238, 513 
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Pb2+ ion as compared to the Cd2+ ion; (2) the net ion 
charges must be about 90% of the full ionic values in 
both cases. This latter conclusion is probably consistent 
with the observation that the lattice energies of CdF2 

and PbF2 differ by less than 10% from that calculated 
using a Madelung attractive potential with full ionic 
charges.12 

12 D. C. F. Morris, J. Inorg. Nucl. Chem. 4, 8 (1957). 

being electrically polarizable, ions are also mechanically 
polarized by the motions of their neighbors6), the shell 
model, introduced in various forms by several 
workers7"10 and developed and formalized by Cochran11 

and Cowley,12,13 has received the most attention re
cently. Although the theory has limitations, it is 
physically appealing and even in its simplest form does 
much to alleviate the discrepancies noted above in 
simple ionic structures (Nal, KBr)14 as well as more 
homopolar ones (Ge, GaAs).15,16 

Materials having the fluorite structure, only modestly 
more complicated than the rock-salt or diamond struc
tures mentioned above, are numerous, and experimental 
data, much of it recent, on the elastic and optical 
properties of fluorite (CaF2) and structurally related 

6 B . Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950). 
7 J. Yamashita and J. Kurosawa, J. Phys. Soc. Japan 10, 610 
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Fiz. 32, 520 (1957) [English transl.: Soviet Phys.—JETP 32, 
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9 B. J. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958). 
10 J. E. Hanlon and A. W. Lawson, Phys. Rev. 113, 472 (1959). 
11W. Cochran, Advan. Phys. 9, 387 (1960). 
12 R. A. Cowley, Proc. Roy. Soc. (London) A268, 109 (1962). 
13 R. A. Cowley, Proc. Roy. Soc. (London) A268, 121 (1962). 
14 R. A. Cowley, W. Cochran, A. D. B. Woods, and B. N. 

Brockhouse, Phys. Rev. 131, 1030 (1963). 
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compounds are available.17-23 The lattice dynamics of 
fluorite has also been discussed in the rigid-ion approxi
mation.24-27 However, it seems profitable at this time 
to re-attempt to correlate existing data, particularly 
noting to what extent whatever discrepancies that 
exist can be reconciled by extending the model to one 
involving dipoles arising from polarizable shells. This 
will be referred to as the dipole shell model (DSM). 

II. THEORY 

In the shell model each constituent ion of a crystal is 
represented as a spherical core made up of the nucleus 
and inner electrons and a rigid spherical shell of outer 
electrons coupled together by an isotropic force propor
tional to their relative displacement. Although both the 
shell and core retain their spherical symmetry when 
displaced, a dipole moment is generated by their 
relative displacement. Equations of motion can be 
written within the framework of Born-von Karman 
theory for both the amplitude of the displacement of 
the Kth ion, UX(K)> 

co2mU= ( R + Z e Z ) U + ( T + Z e Y ) W , (1) 

and for the relative displacement of the /cth shell from 
its core, WX(K), 

0 = ( f * + Y e Z ) U + ( § + YeY)W. (2) 

For a lattice with n atoms per unit cell U and W are 
3n vectors and m, Z, and Y are 3nX3n diagonal matrices 
specifying the mass, ionic charge, and shell charge, 
respectively. The matrices of the interaction coefficients 
are also of order 3^X3^ and are divided into long-range 
electrostatic interactions 6 and short-range interactions 
between dipoles YKWX(K), between dipoles and dis
placements, and between the displacements themselves, 
and represented by the matrices S, T, and R, respec
tively. Equations (1) and (2) are just a set of coupled 
equations of motion for the displacements and dipole 
moments, and as such have a quantum-mechanical 
justification.12 Elimination of W between Eqs. (1) and 
(2) leads to a single set of 3n equations 

(M' -co 2 m)U=0, (3) 
17 D. R. Huffman and M. H. Norwood, Phys. Rev. 117, 709 
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18 D. Gerlich, Phys. Rev. 135, A1331 (1964); 136, A1366 (1964). 
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20 A. V. R. Warrier and R. S. Krishnan, Naturwiss. 51, 81 
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21 D. Cribier, B. Farnoux, and B. Jacrot, Phys. Letters 1, 187 

(1962). 
22 D. McWilliams and D. W. Lynch, Phys. Rev. 130, 2248 

(1963). 
23 A. Kahan, H. G. Lipson, and E. V. Loewenstein, Proceedings 

of the International Conference on the Physics of Semiconductors 
(Dunod Cie, Paris, 1964), p. 1067. 

24 R. Srinivasan, Proc. Phys. Soc. (London) 72, 566 (1958). 
26 D. Cribier, Ann. Phys. 4, 333 (1959). 
26 S. Ganesan and R. Srinivasan, Can. J. Phys. 40, 74 (1961). 
27 T. Shimanouchi, M. Tsuboi, and T. Miyazawa, J , Chem. 

Phys. 35, 1597 (1961). 

which determine the 3n eigen-frequencies co(q). Explicit 
solutions of (3) are in general quite complex. However, 
if the crystal is "diagonally cubic," i.e., if each atom 
occupies an equilibrium position with tetrahedral 
symmetry or higher, considerable simplification results 
from the fact that in the limit as | q | —> 0, the electro
static interaction can be specified by an electric field 
which is the same at each lattice point in the crystal and 
is given by the sum of the macroscopic field E ^ and 
the Lorentz field E L = 4TTP/3.5 Further, Eq. (3) factors 
into 3nXn equations separately describing the longi
tudinal and transverse modes. Cochran14 has shown that 
under these conditions the interaction matrix is given by 

M r ' = R , W-Z^Z , [47r (e e +2) /9^] , (4) 

for transverse modes and 

M L ' = R'<0>+Z'tfZ'[87r(6.+ 2)/9vC J , (5) 

for longitudinal modes. The effective short-range force 
constants (q=0) are 

R'(o) = R(o)_X(0)[S(o)]-if(o)*j (6) 

where Z' is a diagonal matrix of the effective charges 

Z ^ Z s - T ^ C s ^ Y c , (7) 

(the subscript c denotes a column vector). 8 is a square 
matrix with each element equal to unity and ee and v 
denote the high-frequency (electronic) dielectric con
stant and unit-cell volume, respectively. The difference 
in the expressions for the longitudinal and transverse 
frequencies arises from the fact that the longitudinal 
motion is accompanied by a macroscopic field — 47rP 
which is not present for a similar transverse motion.5'28 

While the above discussion is adequate for dealing 
with long-wavelength optical modes, the low-frequency 
behavior of the acoustic modes and thus the evaluation 
of elastic constants is obtained by expansion of Eqs. (1) 
and (2) as a power series in q (the method of "long 
waves").6 This procedure has been carried through in 
general form by Cowley.13 Since the treatment of 
necessity becomes somewhat involved, the additional 
material necessary for the evaluation of the fluorite 
elastic constants in the DSM approximation is relegated 
to the Appendix. 

The fluorite lattice consists of three interpenetrating 
fee lattices, one of divalent positive ions M2+ and two 
of nonequivalent negative ions Xf, X2~, each with a 
spacing 2r0. (The ions will be denoted in the dynamical 
matrices by K= 1,2,3. Of course variants on this struc
ture are also possible, e.g., T h 0 2 and K 2 0 both have 
the fluorite structure where the K = 1 particle is, in the 
first instance, a tetravalent positive ion and in the 

28 Shimanouchi et al. (Ref. 27) in their treatment consider only 
short-range forces acting between ions and thus are led to predict 
a degeneracy between longitudinal and transverse branches as 
q —> 0. This result is correct bnly for modes which do not have a 
dipole moment associated with them at q = 0. In the case of 
fluorite it is true for the Raman active mode but not the infrared 
active modes. 
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second a divalent negative ion.) Each M2+ is surrounded 
by four Xf and four X<r at alternate corners of a 
regular cube at a distance of ro=y/3ro/2. Each X~ has 
in turn a regular octahedral arrangement of (X2~y X{~) 
ions at a distance r$. Notice that although the structure 
is diagonally cubic, the X~ sites do not have inversion 
symmetry, a fact which is consequently felt in the 
elastic constants. The unit-cell volume is 2r0

3. 
In most of what is to follow, the assumption will be 

made that all of the short-range forces act through the 
shells. In addition to being physically plausible, these 
assumptions have withstood experimental comparison 
quite well.14,16 In this case the interaction coefficients 
are related by R = T and §>=R+5xy8KK>k(K), where &(/c) 
is the elastic spring constant coupling the Kth shell to 
its core.29 Only one set of short-range coefficients then 
appear and they may be generated from the same set of 
short-range potentials which are introduced in treating 
the rigid-ion model. Following Srinivasan's treatment 
of the rigid-ion problem,24 the central potentials <f>i(r') 
between (M—X) nearest neighbors and <t>2(r) between 
(X— X) nearest neighbors are assumed. The cohesive 
energy per unit cell is 

^o=iaMZ1Z2e
2/r+Scl>1(r

,)+6cl>2(r), (8) 

where the Madelung constant « M = 5.818 is referred to 
the (X— X) separation. The R matrix is then specified 
in terms of the derivatives 

(aVi /a / 2 ) r o -=^ 1 (e 2 /2») , 

(dWdr%=.42(e 2 / 2 iO; 

( l / r ' ) (30 1 / a / ) r o - = 51(eV2»), 

(l/r)(ato/ar)„=:S4(«y2t>). (9) 

The complete R matrix is given in the Appendix. These 
four derivatives are not independent but at equilibrium 
are subject to the requirement 

-( t )Z IZ*«ir+Si+S«=0 ) (10) 

obtained by minimizing Eq. (8) with respect to r. A 
further useful relation involves the compressibility /3, 

= I C ^ i + ^ 4 2 - ( D Z A a M ] (e2/2^o) 
= i [ ( ^ 1 + 2 5 1 ) + Ui+2Bd]{*/2vr9). 

Consider the solutions of Eq. (3), specifically 

M11'—mid? Mu 
M12 Mn'—m^j? 

Mv. M2 Mti—m^? 

(11) 

0 , (12) 

subject to the restriction £ K / MKK>' = 0 imposed by 
translational invariance. The eigenvalues and eigen
vectors are easily shown to be 

o u 2 = 0 ; UX=U2=UZ; (13) 
29 A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys. 

Rev. 119, 980 (1960). 

corresponding to the limiting acoustic mode. For the 
optic (Fiu) modes, 

co0
2 =* — Mu ( w i + 2m2)/mim2; 

U2=UZ=- (m1/2m2)Ux, (14a) 

where Eqs. (4) and (5) are used for the transverse and 
longitudinal branches, respectively, 

COLO2= - (l//*o)DRi*'+ ($ire*/9v) (ee+2)ee^(Z1
,Z2^ , 

O>TO2 = - (1 /MO)[12I2 ' - (4^ 2 /%) (ee+2) {Z{Z2^ , 

/xo=Wim2/(wi+2w2). (14b) 

For the Raman active (F2g) modes, 

o>R2=(M22'-M2/)(l/fn2)) U!=0; U2+Uz=0; 

= (R22'-R2*')(l/fJLR); HR = m2. (15) 

The transverse and longitudinal Raman modes are 
degenerate because the opposite motions of the X~ ions 
result in a cancellation of the macroscopic dielectric 
polarization. Cochran11 has shown generally that the 
shell model is compatible with the Lyddane-Sachs-
Teller relation, which for a single optically active 
mode is 

es/ee= (O>LOAOTO)2 , (16) 

where es is the static dielectric constant. This result 
may be combined with Eqs. (14) to yield a convenient 
expression relating the effective charges to experimental 
quantities 

( e s - ee) = - (47re2/9fl) (ee+2)*(Z1'Z2'/^o2), (17) 

which is identical to the expression given by Szigeti6 

for lattices with diatomic unit cells except for the 
appropriate redefinition of the reduced mass /*0. This 
same set of manipulations yields also 

^i2 / == — MoWTo2(€ s+2/e e+2). (18) 

One further useful relationship (valid for central forces 
only) can be obtained by using Eqs. (18) and (A5) to 
rewrite the right-hand side of Eq. (11) to read 

/3 \12 ro / l \ e e + 2 / 

Mocoro VRU>R 

(1 —To) (1 — 7R)) 

(19) 

Equation (19) is similar to the relation between com
pressibility and TO frequency given by Szigeti6 for 
diatomic lattices, but it is more general in that it makes 
allowances for the effect of distortion polarization on 
the short-range forces, an effect which was not con
sidered by Szigeti.30 

III. COMPARISONS AND DISCUSSION 

The expressions [Eqs. (A9)] for the two elastic con
stants together with the equilibrium condition (10) are 
not sufficient to evaluate the four parameters specifying 
the R matrix. Srinivasan's procedure of assuming 

30 W. Cochran, Phil. Mag. 4, 1082 (1959). 
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TABLE I. Short-range force constants and cohesive energies of 
the alkaline-earth fluorides. Ai, B\ and A2, B2 are the short-range 
force constants between the metal-fluorine and fluorine-fluorine 
ions, respectively. n\ and n2 are the exponents for an assumed 
inverse rn potential. 

fo (A) at 0°K 
e2/v (104 dyn cm"1) 

At 
Bx 
ni 

A2 

B2 

fl2 

UQ&\c (kcal mol-1) 
#expt 

C a F 2 

2.722» 
0.572* 

33.1 
- 3 . 7 5 

7.83 
1.30 

- 0 . 1 3 
(9) 
621 
617a 

SrF 2 

2.890b 

0.478b 

34.2 
- 3 . 8 1 

7.97 
0.61 

- 0 . 0 6 
(9) 
585 
584<* 

B a F 2 

3.088° 
0.391° 

37.9 
- 3 . 9 7 

8.55 
- 0 . 6 6 

0.10 
(6) 
555 
549d 

a Reference 17. 
b Reference 18. 
0 Estimated from room-temperature data in Ref. 18. 
d Reference 31. 

<t>z=Cr~m and fixing the value of n^ is appropriate, since 
as will be verified, the fluorine-fluorine interaction is 
much smaller than the metal-fluorine repulsion. For 
CaF2 and SrF2, $2 is repulsive and ^ 2=9 is used as 
suggested by Pauling's systematics.5 Because of the 
increased distance $2 is attractive in BaF2 which 
suggests the use of a van der Waals-type ^2=6 potential 
for this case. By using the full formal charges (i.e., + 2 
and —1 for the metal and fluoride ions, respectively) 
and the measured values for Cu and Cu the force 
constants given in Table I are obtained.31 Also given are 
the values of n\ necessary for an inverse rn dependence 
for <£i. Using this form of the short-range potentials, 
it is possible by use of Eq. (8) to calculate the cohesive 

T A B L E I I . Some quanti t ies relating to the effective charges and 
elastic properties of the alkaline-earth fluorides. T h e values of a>, 
e, a, F , k, and RW are input da t a for calculating the effective 
charge Z', the compressibility @, and the Cauchy deviation 
A = Ci2—C44 for bo th the rigid-ion (RI ) and dipole shell model 
(DSM) . 

COTO ( c m - 1 ) a 

COR ( c m _ 1 ) b 

e*a 

€ea 

a(F~) (A»)o 
a(M*+) (A3)c 

Y(F-) 
Y(M2+)d 

k(F-) (10* dyn c n r 1 ) 
k(M*+) (10* dyn c n r 1 ) 
i?i2(0) (104 dyn cm"1) 
Z2 (calc) 
Z2' (obs) 
fro*) (10-12 cm2 dyn"1) 
/3(RI)//3(obs) 
(3 (DSM ) / £ (obs) 
A R I (1011 dyn cm2) 
A D S M 

A O B S 

CaF2 

257 
321 

6.76 
2.04 
1.04 
0.47 

-2 .35 
- 8 . 7 
123 

3780 
-9 .76 

(-0.833) 
-0.833 

1.05e 

1.100 
1.012 
0.54 
2.50 
2.0e 

a Reference 19. c Reference 33. 
b Reference 20. d Reference 9. 

SrF2 

217 
285 

6.6 
2.07 
1.04 
0.86 

-2 .35 
- 9 . 9 
123 

2680 
-8 .48 
-0.869 
-0.875 

1.325f 

1.076 
1.003 
0.60 
1.88 
1.44f 

e Reference 17. 
f Reference 18. 

B a F 2 

184 
244 

7.2 
2.16 
1.04 
1.55 

- 2 . 3 5 
- 1 1 . 3 
123 

1890 
- 7 . 8 2 
- 0 . 8 9 6 
- 0 . 8 9 6 

1.600f 

1.178 
1.106 
1.02 
1.81 
1.94f 

31 H . J . Harr ies and D . F . C. Morris , Acta Cryst . 12, 657 (1959). 

energies. The comparison with experimental cohesive 
energies is. quite good. Since Madelung energy is -^90% 
of the total, the conclusions to be drawn are (1) the ions 
retain essentially their full formal charge, (2) at least 
insofar as can be determined from the cohesive energies, 
the.approximations made in deriving the R matrix from 
the elastic constants are adequate. 

The use of Eq. (17) in conjunction with other data 
collected in Table II permits the evaluation of the 
observed effective charges Z'(obs) (by definition 
Zi= — 2Z2). [It should be emphasized that in contrast 
to the Z parameter introduced by Cribier25 (see also 
footnote 32), the effective charges Zf have much more 
precise physical significance which has been discussed 
in some detail by Szigeti.6] In order to reduce the 
number of adjustable parameters which occur in 
Eq. (A6) for Z'(calc), use is made of the following 
approximate relation between the shell charges and 
the sheh-core coupling constants29: 

« to=pr (*)«?/* « , 
where the electronic polarizabilities a(/c) of the ions 
may be obtained from independent sources.23 Further 
it is assumed that the shell charges for the positive ions 
are the same as those deduced by Dick and Overhauser9 

for the isoelectronic rare gases. In this manner only 
one adjustable parameter, the fluoride shell charge, is 
retained for the three lattices, and it was fixed by 
equating the calculated and observed effective charges 
for CaF2. (The value F2= — 2.35 is reasonable and 
rather closer to the values suggested by Havinga34 than 
to those of Dick and Overhauser.) The agreement be
tween the observed effective charges and the ones 
calculated in this manner for SrF2 and BaF2 is quite 
good. 

The next step is then to investigate whether the 
model which gives good agreement with the observed 
effective charge improves the situation with respect to 
effective force constants as well. Perhaps the best 
single measure of this is obtained through the use of 
Eq. (19). If overlap polarization were not important 
in the high-frequency modes, the rigid-ion limit of 
Eq. (19) (70=722 = 0) should give the compressibility 
and, in fact, the 10 to 20% discrepancy (see Table II) 
is about what is observed in the application of the 
analogous second Szigeti relation in the alkali halides.6 

32 A few comments are in order concerning the comparison of the 
present work with tha t which has previously appeared. Aside from 
the inaccuracies which occur in Srinivasan's (Ref. 24) Coulomb 
sums, his expression (21) for [xy xy~\ ([xx,yy2 in our notation) 
should contain the term 4^4 2/V0 ra ther than 2A2/ro. Cribier's (Ref. 
25) expressions for the elastic constants aside from the error noted 
by Ganesan and Srinivasan (Ref. 26) differ from those given above 
only by a few percent in the numerical values of the Coulomb 
terms, upon the restriction Z2 = c w / 6 (which follows by imposing 
the Cauchy condition for central forces). T h e major inconsistency 
of Cribier's t rea tment which is also adopted by Ganesan and 
Srinivasan, is to ignore this restraint and to t rea t Z as an adjust
able parameter . 

33 L. Pauling, Proc. Roy. Soc. (London) A114, 181 (1927). 
34 E . E . Havinga, Phys . Rev . 119, 1193 (1960). 
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Note however that for CaF2 and SrF2 this discrepancy 
is nearly removed when the shell-model corrections are 
introduced and is reduced by a factor of 2 for BaF2.35 

One further important comparison may be made 
with the data at hand, namely the deviation from the 
Cauchy relation Cu — Cu> There are, broadly speaking, 
two possible contributing causes to its failure: (a) the 
assumed form of the short-range potential is in
appropriate, and (b) the "internal strain" contribution. 
In the first category belong both noncentral two-body 
interactions and the more "drastic" many-body 
quantum-mechanical interactions. The (in most cases 
rather small) deviations which occur in the alkali 
halides are ascribed to these causes.5 Internal-strain 
contributions occur only in lattices in which all particles 
do not occupy equilibrium positions with inversion 
symmetry. In the present case certain shear stresses 
produce a component of "strain" which does not 
change the macroscopic dimension of the material, but 
instead involves the translation of the fluoride lattices 
relative to the metal ion lattice. This so-called internal 
strain affects only the elastic constant Cu, causing a 
deviation even within the central-force approximation. 
I t is this contribution which is given by Eq. (Al l ) . 
However, as other workers have observed, it does not 
seem possible to account for more than about one-third 
of the observed deviation on the basis of the internal-
strain contribution of a rigid-ion model with central 
forces.36-37 The situation changes in the shell-model 
approximation, however. Inspection of Eq. (All) for 
C12—C44 reveals that the first term in the bracket 
represents essentially the rigid-ion contribution, whereas 
the second term represents the shell-model correction 
and might be supposed to be smaller by a factor of 
^k2v/Aie2^10 than the leading term. This reasoning 
is in fact incorrect because of a near cancellation 
between the repulsive and Coulombic portions of the 
numerator of the rigid-ion term. The result is a sub
stantial shell-polarization correction which brings the 
calculated deviation up to the required magnitude, as 
can be seen in Table II . I t therefore appears likely that 
the deviations from the Cauchy relation due to non-
central forces may be no larger than for the alkali 
halides, and that the major effect is one involving the 

electronic polarization accompanying the relative 
motion of the constituent sublattices. 

IV. SUMMARY 

A calculation of the long-wavelength (q=0) optical-
mode frequencies, dielectric properties, and elastic 
constants of the fluorite lattice is performed within the 
framework of a simple dipole shell model. The concept 
of effective charge appears naturally and equations 
analogous to the two Szigeti relations for lattices with 
diatomic unit cells are developed. These relations are 
then tested for the alkaline-earth fluorides, with the 
result that certain key troublesome features which 
have occurred in previous treatments in the rigid-ion 
approximation (e.g., the anomalously low "charge" 
parameter of Cribier25 and Ganesan and Srinivasan,26 

the large deviation from the Cauchy relation Cu=Cu) 
tend, to resolve themselves in a satisfactory manner. 
Finally it should be stated that the underlying philoso
phy has been to show that a minimal number of reason
able shell-model parameters produce significant im
provements in the agreement with observations. Any 
further adjustments of the parameters will surely be 
more meaningful at such a time when more detailed 
information of the type provided by inelastic neutron 
scattering becomes available. 
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APPENDIX: I. THE SHORT-RANGE 
INTERACTION 

The elements of the R matrix are defined in terms of 
the short-range potential <&<-B\ 

RX»(KK)=-Z ldWRHk,l,K,)/dxdy'] 
v 

Xexpi{q . [ r aV) - r ( / f c ) ]} . (Al) 

In the notation introduced in Eq. (9) 

and 

t(4i+2J3i) -MAi+lBOZCsCyC.-iSxSyS,] 
- f (A1+2Bi)£CzCyC.+iSJSyS,l UAi+2B0+(A2+2B2) 

l-UAi+2B1)ZCxCyCz-iSxSvSzl -A2C2x-B£C2y+C2zl 

I (Ai+2Bi) ZCxCyCM+iSxSyS,] 
—A2C2x—B2[C2y-\-C2z~] 
UAi+2B1)+(A2+2B2) 

(e*/v) (A2) 

0 -UAi-Bi)Z-S£yC,+iCxCySd 
-l{A1-B1)l-SxSyCz-iCxCyS2~] 0 

\.-l(A1-Bi)l-SxSyC,+iC9CyS,'] 0 

" 3 X**-1 ~~~-tj\) L~—^x^y^sz l^sx^sy^zJi 

0 
0 

(e*/v). (A3) 

35 Some of the discrepancy here and elsewhere may result from the use of low-temperature elastic constants together with room-
temperature dielectric constants and mode frequencies. 

36 J. R. Reitz, R. N. Seitz, and R. W. Genberg, J. Phys. Chem. Solids 19, 73 (1961). 
37 A. K. Rajogopal, J. Phys. Chem. Solids 23, 317 (1962). 
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Here Cx = co$wroqx, C2X
=zcos2wroqx, and Sx, etc., are 

the analogous sines. The remaining portions of the 
matrix are determined by obvious symmetry relations. 

Since it is generally true (and as will be verified in 
the present instance) the dominant terms in the S(0) 

matrix are the diagonal terms k(ic) coupling the cores 
and shells, here and in most of what follows the 
approximation 

is used since it results in considerable algebraic simpli
fication with little loss of rigor. The R' matrix [Eq. (6)] 
is then easily evaluated. Two of the resulting relations 
which will be referred to again are 

i V ^ i 2 ( 0 ) = [l+2£i2(0){ (l/*i)+ (1/2*2)}]= (1-To), 
(^22 , -^23 / ) / (^22 ( 0 ) -^23 ( 0 ) ) = C l - ( ^ 2 2 ( 0 ) ~ i ? 2 3 ( 0 ) ) / * 2 ] 

= (1-7*) . (A5) 

Similarly, evaluation of Eq. (7) gives for the effective 
charges 

Z / -Z 2 =^ i2 ( 0 ) C- (Fi/ftO+ (F2A2)] 

Z / = - 2 Z 2
/ . (A6) 

APPENDIX II: THE ELASTIC CONSTANTS 

The following expressions13 are needed in connection 
with the evaluation of the elastic constants: 

[>ft7X]= (1/&A;) E (R7x(2)+Ze7x(2)Z)a/3 

(ay,p\)=- (l/4a*v) E ( F ^ C M ^ ] " ^ 

+ C7<1)[S^]-1Cx^)^. (A7) 

The notation refers to a power-series expansion, 
A=A<°>+f Ex Ax

(1)gx+f Zx,7A7x
(2)<z7gx+- • •. The pre

viously undefined quantities 

Fx^ = Rxa)+zex
(1)Z-TW(s^)-1Cx (1 ) 

Cxa) = Tx(1)+Yex(1)Z (A8) 

M(o)=R(o)_ T(0)(S(0))""1T(0) 

are derivable from the R matrix and the assumption 
that all forces act through the shells, with the exception 
of the Coulomb coefficients Cx(1) and G7x

(2). These were 
evaluated by Srinivasan24 using Ewald's method. The 
more precise values given here were derived from 
Cowley's13 values for the CsCl and ZnS structures. The 
relation is similar to that which exists for the Madelung 
constants CLM (CaF2) = aM (CsCl)+2<XM (ZnS). 

Of the three independent cubic elastic coefficients 
two depend only upon rigid-ion interactions and not 
on the polarizabilities. 

C n - [ * * , * * > [ H ^ i + 2 £ i ) + ^ 2 
-3.05120Z1Z2](^2/2^o), 

Ci2= 2[%y,xy]— [xx,yy~\ = [_\ {A x- BY) 

+3.46510Z1Z2](e
2/2w0). (A9) 

The remaining constant is given by 

C44= [xxyyy~\-\- {ocy.xy) 
lxx,yy-2=LUAi+2B1)+B2 

+ 1.52560Z1Z2](e
2/2^0), (A10) 

where the last relation follows, as it must for central 
forces, from the use of Eq. (10). Thus Cu and Cu, which 
should obey the Cauchy relation C12~Cu for a crystal 
with inversion symmetry and central forces, differ in this 
model by an amount 

C12— Cu= — (ap,a$) 

^(l(A1-B1)a-yR) + 15M7Z1(Z2-yRY2)J 

" I Z(A1+2B1)+3(A2+2B2)'](l-yR) 

2[(^1-51)+15.087Z1F2]21 / e2 \ 
+ - ( J. (All) 

3 k2(v/e2). \ \6vrJ 
Note that the formal correspondence of the dipole shell 
model with the rigid-ion model can be made by letting 
the shell-core coupling constants £(«)—» <*>. Thus all 
the expressions given here apply for the rigid-ion model 
in this limit.32 
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