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The spin-wave thermal conductivity of ferromagnetic insulators with magnetic scattering is investigated. 
The role of magnon-magnon interactions is clarified. The magnetoelastic coupling is treated by the Green-
function technique. 

I. INTRODUCTION 

IN an insulator at low temperatures with ferro- or 
ferrimagnetic properties, heat conduction by spin 

waves is as important as heat conduction by phonons. 
In ferromagnetic metals, the heat transport by spin 
waves also plays a role. The situation in metals requires 
an analysis different from the one given here, because 
of the electronic contribution to the heat transport, 
and the mutual scattering of spin waves and electrons. 
There is ample experimental evidence for spin-wave 
(magnon) heat conduction in insulators.1-3 The theory 
of this phenomenon has led to a controversy ex­
pressed in a few papers dealing with this subject.4-6 

Therefore, in Sec. I l l , we set out to resolve this con­
troversy, the essence of which is as follows: 

A first team of authors4-5 showed by solving the 
linearized Boltzmann equation that the interaction of 
spin waves with one another will result in a reduction 
of the heat flux carried by spin waves. Thus magnon-
magnon interaction itself leads to thermal resistance. 

The other group6 argued that, as a result of Peierls' 
theorem,7 spin-wave interactions cannot alter a steadily 
drifting spin-wave distribution which carries a heat 
current but which in other aspects is thermodynam-
ically stable. Hence the thermal resistance due to these 
interactions should be zero. 

Anticipating the results of our analysis, we arrive 
at the following conclusion: The two treatments of 
the problem have different ranges of validity. A steadily 
drifting distribution may indeed exist in principle, in 
accord with Callaway and Boyd.6 However, dynamical 
conditions rarely permit the establishment of such a 
distribution. 

The possibility of this distribution does not basically 
depend on the presence of magnetic anisotropy or on 
external field, which create an energy gap in the spin-
wave spectrum, as asserted in Ref. 6. Rather is it due 
to a kind of condensation phenomenon, analogous to 
Bose-Einstein condensation. 

1 D. Douthett and S. A. Friedberg, Phys. Rev. 121,1662 (1961). 
2 B. Luthi, J. Phys. Chem. Solids 23, 35 (1962). 
3 R. L. Douglass, Phys. Rev. 129, 1132 (1963).# 
4 A. Quattropani, Physik Kondensierten Materie 1, 125 (1963). 
8 A. Quattropani and W. Baltensperger, Helv. Phys. Acta 34, 

780 (1961). 
6 J. Callaway and R. Boyd, Phys. Rev. 134, A1655 (1964). 
7 See, for example, R. E. Peierls, Quantum Theory of Solids 

(Oxford University Press, London, 1956), 2nd ed., p. 42. 

The drifting distribution, however, carries a very 
small heat current and is only established when the 
mean free path of mutual spin-wave interactions is 
short compared to the sample dimensions or some other 
scattering distance. 

Consequently, when discussing spin-wave heat con­
duction, one has to distinguish between two regimes: 
The first regime is characterized by 

lss<d 

and the second regime by the opposite limit. /ss is the 
magnon-magnon scattering free path, while I is the 
actual mean free path of magnons determined by the 
cooperation of all scattering mechanisms. 

The estimate given in Sec. IV (see Table I) demon­
strates that in garnets the magnon-magnon scattering 
mean free path is so large that the spin waves cannot 
possibly reach thermal equilibrium in samples of 
ordinary dimensions at low temperatures, i.e., temper­
atures for which the phonon thermal conductivity is 
small compared with the magnon contribution. In 
some other classes of materials, which have a high 
Debye temperature but a low Curie temperature, the 
magnon-magnon scattering becomes important in the 
temperature range close to the Curie point. 

The long scattering free path indicates that for 
thermal-conduction phenomena, boundary and impu­
rity scattering play a more important role than the 
magnon-magnon scattering. For this reason, the theory 
of magnon thermal conductivity including impurity 
scattering (regime 1) will be given. Estimates8 of the 
magnon-phonon relaxation time at 10°K are rS3,~10~6 

sec. 
The heat current in regime 2 is practically zero unless 

there is an energy gap in the magnon spectrum. Further, 
there is no proportionality between heat current and 
temperature gradient. It is difficult to prove that the 
heat current in this limit can be calculated using the 
linearized Boltzmann equation, as will be explained in 
Sec. III. 

In some cases, the transition region between regimes 1 
and 2 may be reached in experiments. Then the thermal 
conductivity by spin waves will be found smaller than 
the theoretical prediction, which is based on the 
regime-I calculation. 

8 K. P. Sinha and U. N. Upadhyaya, Phys. Rev. 127,432 (1962). 
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The magnon-magnon scattering free path is propor­
tional to k~2 (&=magnon wave vector). Therefore those 
spin waves carrying the most heat (high k values) have 
the shortest free paths, and would necessitate a transi­
tion-region treatment. We estimated their share of the 
heat flow and found it to be small. 

II. THERMAL CONDUCTIVITY OF THE 
FREE-MAGNON GAS 

The same boundary conditions are adopted for the 
medium as in the phonon heat-conduction problem 
(cf. Ref. 9). The plane boundaries at x— — a and x=a, 
perpendicular to the x axis are considered as black 
bodies which emit and absorb magnons according to 
Planck's law. The boundaries are kept at temperatures 
T\ and T2, respectively. The energy e(k), which 
appears in Eq. (II.2), of Ref. 9 is now taken, appropriate 
to spin waves, 

e(k) = ak2. (2.1) 

Anisotropy and external and demagnetizing fields are 
dropped because their effect on the dominant spin-wave 
modes is slight above liquid-helium temperature. (At 
liquid-helium temperature, important magnetoresist-
ance effects arise which can be treated easily, including 
the Zeeman term AiHext in (2.1). Also in some highly 
anisotropic substances, the magnetic anisotropy energy 
may be as high as 10-100°K times Boltzmann's 
constant. Our calculations do not apply for such 
materials.) 

The heat flux of the free-magnon gas is given by 

Q=Q+-Q~, (2.2) 

where Q+ and Q~ are the fluxes in the positive and 
negative x directions, respectively. I t is 

<2+=12 /d*kfk(-a)e(k)vx(k), (2.3) 

and Q~ is given by a similar expression involving fk{a), 
the distribution function of incoming spin waves at 
the other boundary. The magnon velocity is denoted by 
v(k). I t is £2= (27r)~3F, where V is the volume of the 
sample. The latter is taken as unity; hence £2= (2-7r)~3 

with the dimensions of (length)3. 
We use 

vx(k) = (2a/*)* cos/3, 0 = <£ ( M , (2.4) 
and 

Kn= I k«fk«(ak2)dk = -(—J /(n+D/a-i. (2.5) 

9 P. Erdos, Phys. Rev. 138, A1200 (1965). The idea of consider­
ing the currents entering through the boundaries, to determine the 
conductivity of the medium through the interaction with scatter­
ing centers was first introduced by R. Landauer (International 
Conference on the Electronic Properties of Metals at Low Tem­
peratures, 1958, Geneva, New York, and Conference on Statistical 
Mechanics and Irreversibility, Queen Mary College, London, 
1960). 

Jn is defined and tabulated in Ref. 9, footnote 9, and 
is a number of order 1-10. Thus we obtain 

Q+= {2^a2/h)\{kBT1/a)U2 (2.6) 
and 

Q= (vtot/tyJJi&BTi/a)*- (kBT2/ayi. (2.7) 

For AT=(T1-T2)<^T=^(T1+T2), this expression 
reduces to 

Q= (3TtiJ2kBa/h) {kBT/a)2AT= 0A62CvAT, (2.8) 

where the specific heat of spin waves 

C= STJz,MB(kBT/aY'2, (2.9) 

and their average velocity 

M * V 2 = (2/*) {Jzj2kBTa/Jij2)112 (2.10) 

has been inserted. The thermal conductivity of the 
free-spin-wave gas between the two boundaries at a 
distance 2a apart hence becomes 

K= Q/2aAT= 0A62Cv(2a). (2.11) 

This formula represents the analog of (II.7) of Ref. 9, 
derived for phonons, and it is reminiscent of the gas-
kinetic result, where 2a plays the role of the mean free 
path of spin waves. 

The actual distribution function of spin waves is 
given by (II.8) of Ref. 9, where the index s is to be 
omitted, and e is given by (2.1). 

Let us determine the equivalent drifting distribution, as 
defined in Sec. II, Ref. 9. This is a Bose distribution 
with constant drift velocity. To this end, we determine 
the momentum P (in the x direction), associated with 
the magnon assembly. 

P = « Iffim cos/3/0 (e) = §7r£W* I J - ( J 

fkBT\2AT 
= 07iA( ) — . (2.12) 

According to the definition of the equivalent drifting 
distribution, we should construct a thermodynamically 
stable magnon distribution function with the same total 
energy E and momentum P as found above for the 
actual distribution function. In contrast to the case of 
phonons, for spin waves, this endeavor is confronted 
with some difficulties, which are explained in the next 
section. These difficulties are precisely the same ones 
which led to the controversy mentioned in the previous 
section. 

III. DRIFTING BOSE GAS WITH QUADRATIC 
DISPERSION LAW 

In contrast to a material Boson gas with quadratic 
dispersion law the rest mass of spin waves—and 
consequently their chemical potential—is zero. In this 
respect spin waves resemble phonons. The resemblance 
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does not carry further, however, because phonons have 
a linear, and magnons a quadratic, dispersion law. 
These properties lead to an important peculiarity of 
the spin-wave gas, and indeed of any Bose system with 
zero rest mass and a quadratic dispersion law. 

This peculiarity can immediately be manifested if 
one writes down the distribution function / k of such a 
gas, distributed homogeneously in space, and drifting 
with an average velocity ^ a s a whole.10 

fk=[zxvl3(ak2-X'hk)-l']~1, (3=l/kBT. (3.1) 

I t appears that for any nonzero value of the drift 
velocity X there exists a sphere in k space, whose 
equation is 

ak2-X>hk=0 (3.2) 

of diameter h\/a, touching the origin, such that for 
every k inside this sphere the distribution function 
becomes negative. 

The appearance of negative occupation numbers is, 
of course, a warning, which indicates that something is 
wrong. But it is premature, and even incorrect to 
conclude4 that a drifting distribution cannot exist. 
A more careful analysis is required. 

Consider a system of Bose-type elementary excita­
tions with a quadratic dispersion law in a crystal of 
cube shape of volume V=L? (or periodic boundary 
conditions). The available levels in reciprocal lattice 
space are given by 

ki=(2ir/L)ni, w,-=0, 1, •••,iV, i = # , y, z, 

where N is the total number of spin sites. Assume that 
the total energy EQ, momentum Po is not changed in 
the processes which occur, due to the sufficiently weak 
interaction among the excitations. [The interactions 
with the lattice (umklapp processes, etc.) are also 
assumed to be negligible.] The interactions will then 
create a thermal equilibrium, characterized by max­
imum entropy S, subject to the auxiliary conditions 

F 2 ^Po-^Lk/k=0. 
(3.3) 

The number of particles must not remain constant. 
I t is irrelevant whether or not P 0 actually represents 
the momentum of the system: its conservation follows 
from the conservation of quasimomentum k in the 
individual processes of interaction. 

Anticipating trouble, we introduce a new variable 
ak through 

/k=tfk2 , (3.4) 

to make sure that no negative occupation numbers 
occur. In the usual way, the entropy 

5 / * u = 2 : k [ ( / k + l ) l n ( / k + l ) - / k l n / k ] 

of a noninteracting Bose gas is extremized with respect 
to the aky using Lagrangian multipliers p, — XP: 

(d/dak) (S/kB-0Fi+l& • F2) = 0 , 

which gives 

ak ln [ (a k
2 + l)/ak

2~}-Pekak+pX' hkak= 0. 

The two solutions hereof are 

<*k2=/k= [exp/3(ek-* • *k) - 1 ] " 1 

and 
for € k >|a . -*k | (3.5) 

/ k = 0 for ek<\X-hk\. 

I t is important to note that the principle of maximum 
entropy has been applied in a coordinate system in 
which the crystal is at rest, and not in a coordinate 
system drifting with the Boson gas, because the problem 
lacks Galilean invariance. The excitations are referred 
to the lattice, which defines a preferred coordinate 
system. There is no a priori reason to believe that any 
extremum principle is available in a coordinate system 
drifting with respect to the lattice. I t should also be 
noted that there is no room to introduce any nonzero 
chemical potential. 

This distribution function should be discerned from 
that which describes the magnon gas in a moving 
reference frame Rf. Suppose that R' moves with velocity 
X with respect to the frame R, in which the body and 
the magnon gas are at stationary thermal equilibrium. 
The distribution function in Rf is obtained by the 
application of the Doppler transformation formulas for 
the wave vector and frequency to the magnons in 
plane-wave states. Hence 

and 

e' — hoo' — fia) 

I t follows 

1 — 
o)/k cos/3 

k ' = k 

\ek-X-fik\ = \ek>-X-fik'\. 

10 Cf. L. D. Landau and E. M. Lifshitz, Statistical Physics 
(Pergamon Press, Ltd., London, 1958), p. 205. 

/ k / = (exp/3| €*-a , -*k , | - l ) - 1 . 

The solution (3.5) seemingly depends only on the 
two parameters P and X, and therefore should be 
determined uniquely by E and P. However, the 
dependence of p and X on E and P is very complicated, 
and therefore one cannot immediately decide whether 
or not the diameter of the sphere bounding the unoc­
cupied states exceeds 2w/L or not. In the former case, 
there actually exist unoccupied states / k = 0 ; in the 
latter case, there are no such states. 

With reference to Fig. 1, let us denote the radius of 
the unoccupied sphere in wave-vector space by r, and 
the coordinate of the first occupied state by qo. The drift 
velocity is assumed parallel to kx. In Fig. 1(a), QQ is 
shown by a filled-in square. 

We wish to show, by scrutinizing the variational 
principle in more detail, that the actual maximum of the 
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B* 
FIG. 1. Cross-sectional dia­

grams of k-space occupancy of 
the magnon assembly. The 
filled-in circles represent oc­
cupied states, the open circles 
empty states. The other sym­
bols are explained in the text. 

(b) 

entropy S is reached when q^—lir/L, i.e., the diameter 
of the unoccupied sphere is smaller than the first recip­
rocal lattice vector. Hence, there may exist metastable 
distributions such that there is a sphere of unoccupied 
state touching the origin, but the interaction among the 
spin waves will relax this distribution toward a distribu­
tion with no unoccupied states close to the origin 
[Fig. 1(b)]. _ 

To see this, first assume that the contrary is true: 
the state kz is empty, whereas the states km and kn are 
filled. If by the interaction a spin wave is created in 
state ki and two destroyed in km and kn, conserving 
energy and momentum: 

ki2=kj+kn
2, k*=km+kn , 

then the change of entropy becomes 

fdS dS dS \ 
kB-^S^kB-H — 5/z+ 5fm Bfn =/3a(kJ+kn' 

\df dfm dfn J 
) 

fdS dS dS 

W T dfm" df 

-Xh(km+kn) = -f3aki2+l-hki>0 

where the derivatives are taken setting / equal to the 
equilibrium distribution function (/z=0), and 8fi 
= - « / « = - « / » = l . 

Since 8S>0, unless /=0, it follows that in a true 
equilibrium there are no empty states close to the 
origin. It follows 

qo+r=2ir/L. 

Since r>w/L, the drift velocity can never exceed the 
value 

\o= 2wa/hL. 

If the sample is arbitrarily large, X0 and also the heat 
flow will be arbitrarily small. Of course, in a sample of 
any dimension, the above estimate must be supple­
mented by the remark that only spin waves with wave­
lengths smaller than their free path may be considered 
as realistic. 

We can therefore make the following qualitative 
picture of what would happen in a heat-conduction 
experiment in a material with strong magnon-magnon 
interaction. As a temperature difference is applied to 

the sample, spin waves will tend to decay into long-
wavelength modes, i.e., they will crowd into the low-
momentum states. However, since the interaction cross 
section decreases with decreasing spin-wave momentum, 
the final result will be a spin-wave distribution which is 
displaced towards smaller k values, the amount of 
displacement becoming less, as k decreases. The value 
of the corresponding thermal conductivity cannot be 
estimated on the basis of the linearized Boltzmann 
equation, because the deviations from equilibrium may 
be exceedingly large. 

An interesting consequence of the shift of the distri­
bution to low-momentum values in the presence of a 
temperature difference would be a decrease in the 
saturation magnetization. The latter is proportional to 
the total number of spin waves, which increases in the 
relaxation process. 

It should again be emphasized that, in actual fact, 
the magnon-magnon interaction is so weak in the region 
of magnon thermal conductivity that the above relaxa­
tion process, and thereby its influence on thermal 
conductivity, is completely negligible. 

IV. ESTIMATE OF THE MAGNON-MAGNON 
RELAXATION TIME 

In the theory of thermal conductivity by spin waves 
the magnitude of the magnon-magnon relaxation time 
plays a decisive role, as discussed in Sec. III. 

The magnon-magnon relaxation time T^ and the 
associated mean free path h—^ru (vk= absolute value 
of the magnon-group velocity) may be readily*estimated 
on the basis of the differential cross-section formula 

o-kk'~(rok2kf2cos2d, (4.1) 

derived by Dyson.11 In this formula 6 is the angle 
between k and k', and 

<ro=V2/8wSi, (4.2) 

where V is the volume of the unit cell, S the^spin 
attached to a lattice point, and all spins are alike, ow 
gives the cross section for the scattering of two spin 

1 1 F. Dyson, Phys. Rev. 102,1230 (1956). 
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waves with wave vectors k and k' into all other direc­
tions. I t is convenient to express ao with the help of the 
saturation magnetization M, per unit volume. I t is 

cro= (1/8TT) (1/52) G* B/M8¥ , (4.3) 

where fiB is the Bohr magneton, and 

5 = 1 , * , i (4.4) 

for simple, body-centered and face-centered cubic 
lattices, respectively. 

The reciprocal relaxation time of a spin wave with 
wave vector k is given by 

-=SlvkLwf(k')d*k'. (4.5) 
Tk J 

Using the equilibrium Bose distribution function 
f°(ek) for the spin waves, and (4.1) for the scattering 
cross section, the integral is easily evaluated, and gives 

1 2TT / * B Z V ' 2 

— = /3/2^GTo£2^[ J 
Tk 3 \ a / 

= 0.6X10~3 khJ . (4.6) 
\MsdJ \ a I 

The free path of a spin wave of wave vector k is then 

4 = l.67XlO*(Ms5/!iB)2k-2(kBT/a)-V2 

= 2.19X1017&-2r~5 '2. (4.7) 

The last member in this and subsequent equations 
indicates typical values in cgs units, calculated for 
yttrium iron garnet (YIG) with Jlf s=200 G, a=0 .83 
X10~2 8ergcm2 . 

If we define the average squared wave vector of the 
thermal equilibrium spin-wave system by 

(P)„=i/a=(l/aKE/N), (4.8) 

where E^lir^Jz^aikBT/aY12 is the total energy and 
N=2TrttJi/2(kBT/a)zf2 the total number of spin waves, 
then 

(k2)&v=0.77kBT/a. (4.9) 

Inserting this value in (4.7) we obtain the mean free 
path 

iss==2.l7XlO*(Msd/ixB)2(kBT/a)-7l2 

= 1.71X105r-7 '2 . (4.10) 

Averaging l / r* (4.6) over the equilibrium distribution 
gives, with the definition f = ((r^av)"""1 

f = 0 . 80X10W*) (Msd/fXByikBT/a)-4 

= 0.624 2 ^ . (4.11) 

The numerical coefficients in l8a and f have only an 
order of magnitude significance, because they depend 
on the way averages are taken. Table I shows a few 
representative values. 

TABLE I. Mean free path of spin waves in yttrium iron garnet 
limited by magnon-magnon scattering only. 

T (°K) 

U. (cm) 
T (sec) 

1 

1.71X106 
0.624 

4 

1.34 X10» 
2.44X10-8 

16 

10.4 
0.952 X10-6 

100 

1.71X10-2 
0.624X10-8 

400 

1.34 X10-* 
2.44X10-" 

V. REVIEW OF PREVIOUS THERMAL-
CONDUCTIVITY CALCULATIONS 

At this point, it is of interest to review the calculations 
of Ref. 4. 

The basic reason why its results are not of general 
validity but describe only one class of substances is 

> because there is only one parameter of the dimension of 
a length which appears in the theory, namely, the 
lattice parameter. I t is important to consider also the 

L ratio of the magnon-magnon scattering length to the 
> total magnon free path. (In a pure sample the latter 
5 may be set equal to the length of the sample.) 

The distribution functions are drastically different, 
according to whether lss/fe>l or / S S /Z«1. 

In the former case, the distribution does not have the 
time in passing through the sample to decay into a 

) collection of low-momentum magnons. Then an 
equivalent drifting distribution may be defined by the 
following artifice to avoid divergent integrals: One 

1 introduces into the dispersion relation a small positive 
parameter 8 subject only to the restriction 

) 8>h2\2/4a. (5.1) 

> (This is the essence of the method of Callaway and 
: Boyd.6) The equivalent distribution function is set 
> up as 

1 
/*•*= , (5.2) 

e/3(afc2_X.fck+6)_ j 

) which is always positive. The free parameters fi and a 
are determined from the condition Etme—Eeq and 

*• Ptrue= Peq. The exact value of the cutoff parameter 8 
? is of little importance, since E e q and P e q depend only 

weakly on 5 as long as the drift velocity is small com-
' pared with the average thermal velocity of the magnons. 

The results obtained with this equivalent drifting distri­
bution therefore represent very good approximations. 

We may also write 

[
^/3(afc2+5) -j 

1 — — - M k + 0 ( ( 3 t . k ) 2 ) , (5.3) 
where the dominant term is the one linear in k. 

Hence, if the true distribution function is written as 

) fk^fk0Ll+ai(T)ki+bij(T)kikj+ • • • ] , (5.4) 

i the dominant term in the expansion will also be the one 
I linear in k\ because /* is only slightly different from 
7 fkeq- Hence the linear terms di(T)ki cannot be dropped 

as in Ref. 4. 
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A k 

v^[ FIG. 2. Definition of the 
r \j0*% variables used in the calcula-
yS\J <f tion of the magnon collision 
0 \<^ operator. 

In the opposite limit of lss/l<Kl, the series develop­
ment of Quattropani is correct since the drift term, 
linear in k, is no longer dominant and may be dropped. 
Whether or not the other terms are small and the 
expansion converges sufficiently well can only be 
judged by comparison of the results with experiment. 

VI. CALCULATION OF THE MAGNON THERMAL 
CONDUCTIVITY IN THE PRESENCE OF 

IMPURITY SCATTERING 

As explained in the previous sections, the distribution 
function can be split into an equivalent drifting distribu­
tion plus a correction by the introduction of an artificial 
cutoff parameter. The dependence of the results on the 
cutoff parameter is in general, difficult to establish. 

Instead, we split the distribution function into a 
free-magnon distribution, plus a small correction due 
to impurities. 

We write the magnon distribution function as a 
sum of three terms 

/ k = / . ° + ^ k + / k 1 (6.1) 
with 

/ &
0 = { e x p [ € ( ^ ) A 5 r ] - l } - S e(k) = ak2, 

<P^fk°(T)Zfk°(T)+l2Le(k)/kBT^ATS(0), (6.2) 

Here S(/3) = sgn cos/3. The free-magnon distribution 
under the boundary conditions explained in Sec. I I 
is represented by fk°+<Pk, and fk

l is the unknown 
correction to the distribution function due to the 
scattering. The collision operator Lk{f} represents the 
change in the number of magnons with wave vector k 
per unit volume and unit time due to impurity scatter­
ing. I t may be expressed by the scattering amplitude 
gk(6) which depends on the angle 6 between k and k', 
and on k, through 

Lk{f}=mj (Jk-fc)\gk(0)\*\vk\dto'. (6.3) 

(The factor \vk\ appears because the square of the 
scattering amplitude—which is the differential scatter­
ing cross section da/dtt—is usually referred to unit 
incident flux instead of one particle, as here required.) 
N is the number of scattering centers per unit volume. 

The scattering amplitude, produced by magnetic 
point defects, has been calculated by Callaway and 
Boyd6 for simple, body-centered and face-centered 
cubic lattices for nearest-neighbor exchange interac­
tions. They found that up to the second order in k only 
s- and p-w&ve scattering occurs, and the scattering 

amplitude is given by 

gk(0)=(d+b cosd)k2, 
where 

d= - (F/4x) ( / ' / / ) (1 -S'/S), (6.4) 
and 

b= ( F / 4 T T ) 2 ( 1 - J'S'/JS). 

Here S and Sr are the spins, / and / ' the nearest-
neighbor exchange integrals of the magnetic atoms and 
the isolated magnetic defects, respectively. V is the 
volume of the unit cell. Certain complicated structure-
dependent corrections, which are small when no res­
onance scattering occurs, have been omitted. 

The collision operator now takes the form 

Lk{f}=ttN / {fk-fk<){d2+b2 cos20+2db cos0)2akb 

Xsin/3W/3'd0, (6.5) 
where cos0 is given by 

cos0= cos/3 cos/3'+sin/5 sin/3' cos0. (6.6) 

The angles /3, /3' and </> are defined in Fig. 2. Using 
(6.1), (6.2), and (6.6), the collision operator (6.5) may 
be evaluated: 

Lk{f} = Lk{f}+Lk{<p}+Lk{f), 
with 

Lk{ <p) = 8Tma2k7fk°(fk°+1) (AT/2kBT2) 

X[{d2+\b2)S($)-2db cos/3], 
and 

U{f} = 8 7 r ^ a 2 ^ ( y ; l ( f t x ) [ ^ + ^ 2 ] 

1 rT 

— / fk
l{$\%)[A2+b2 cos2/3 cos2/3' 

2 h 
+ib2 sin2/3 $in2l3'+2db cos/3 cos/3']sin/3'd/3' . 

Here we explicitly noted the dependence of fk
x on k, 

/3, and x. The Boltzmann equation to be solved is now 

-ak cos^dfk^^/dx^Ul^+Lkif}. (6.7) 

The structure of the collision operator suggests that the 
unknown function fkl(0,%) consists both of an odd and 
an even component with respect to reflections on the 
plane /3= Jx. Therefore it is not possible to annul the 
integral appearing in Lk{f1} for x = 0 , as when solving 
the corresponding equation for phonons. For this 
reason we consider s- and p-w&ve scattering separately. 

VII. S- AND P-WAVE SCATTERING. 
FINAL RESULTS 

A. S-Wave Scattering 

Pure s-wave scattering is characterized by 

6 = 0 
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in the expression (6.4) for the scattering amplitude. 
The Boltzmann equation (6.7) then reduces to 

— cos/3 (dfk
l($,x)/dx) 

Appendix A (A10), and we obtain 

X jf^GS,*)-
1 r -f 
2 Jo 

fW,x)sW'dp • (7.1) 

This equation is of the same form as the corresponding 
equation [Ref. 9, Eq. (III.7)] for phonon heat transport 
except for a different k dependence. Hence the exact 
distribution function may be found for #=0 by the 
same method as used there. It is 

tf(fi,0) = S(fi)at*fk*(fh*+1) (AT/2kBT>) 
Xl^{-&KQNtP&a/\cQap\ } - l ] . (7.2) 

The heat flow which, by symmetry, is in the x 
direction, is given by 

c=e°+ei, (7.3) 

where Q° is the contribution of fk°+ <pk, whereas Q1 is 
the contribution from /k1. The contribution of fk° 
vanishes, hence 

> / • Q°=2 vktXe(k)<pkd*k 

= 27rl2a3-
AT 

kBT2h 
fwfMi ?+i)S(p)co$psmpdpdk. (7.4) 

The heat flow Q1, due to the change fk
l in the distribu­

tion function by the presence of impurities is 

Ql = &!vktXe{k)fkKmdzk 

AT r r ( Bk* } n 
= 2itoc? / W/*°+l) exp 4-1 

kBT2hJ L I cos/3 J J 

with 

| cos/31 

XS(p)cosPsinpdpdk (7.5) 

B=8MNd2a. (7.6) 

Adding the two contributions, and making use of 
S(/3)cos/3= | cos/31 the total heat flow is 

AT r12 r°° 
e=27r^3

T—— / / *7/*°(/*°+i) 
' i f l Jo kBhT2. 

Xexpj — 
BW 

cosp sw&dpdk. (7.7) 

In the strong-impurity-concentration limit, the result 
of integration over the wave vector may be taken from 

/•ir/2 

^ 0 

Q= 27rQafr1kBAT12.3SB~1 / cos2^ sinfidp 

2T 
= 12.38—QafriksATB-1 

3 

= 0.104akB AT/Nd2ah. (7.8) 

The thermal conductivity K is deduced from Q= icAT/a; 

K=0.m(akB/Nd%). (7.9) 

We recall that d is the s-wave magnetic scattering 
amplitude determined by the exchange integrals and 
spins of magnetic defects, as given by (6.4). N is the 
impurity concentration, 2a is the distance of the 
boundaries, and a is the constant which appears in the 
spin-wave dispersion relation e—ak2. 

This result, of course, also holds if the scattering is 
of other than magnetic-point-defect origin, as long as it 
is isotropic and the scattering amplitude depends 
quadratically on the wave vector k. 

It is interesting to note that the spin-wave thermal 
conductivity does not show any size effect (in contrast 
to the phonon thermal conductivity). Neither does it 
depend on temperature in the limit of high-impurity 
concentration N. It is inversely proportional to the 
impurity concentration, again different from the 
phonon conductivity. 

In the limit of weak impurity scattering, the angular 
integration has to be carried out first. By the same 
method as applied in Ref. 9, Eq. (V10), we find 

AT r 
<2 = 7rOa3— / ^ 7 / , ° ( / , ° + l ) ( l - ^ 4 ) ^ 

T2 Jo 

/kBT\2r llJ9/2/kBT\2 -i 
= ^Jb/2nakBATl — J 1 f J B . (7.10) 

Inserting the numerical values and the definition of By 

the heat flow is given by 

Q=0A10kBAT(kBT/a)2ll-2.28Nd2a(kBT/a)22. (7.11) 

In this limit, the usual Independent thermal conduc­
tivity is diminished by a T6-dependent term, which is 
proportional to the impurity concentration. 

B. P-Wave Scattering 

In the case of pure p-w&ve scattering, the Boltzmann 
equation (7.7) can be solved in the same way as for 
pure .?-wave scattering: In all results the square of the 
$-wave scattering amplitude d2 has to be replaced by 
one-third of the square of the p-w&ve scattering 
amplitude \b2. 

A solution in the case of combined s- and p-wave 
scattering (including the interference terms) has not 
been worked out. 
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Y*^ +- * 
FIG. 3. Energy versus wave vector k for phonons ep, magnons 

em in a ferromagnetic insulator (dashed lines). The splitting at e0 
is due to t h e m a g n e t o e l a s t i c coupling, and gives rise to 
elastomagnons, whose dispersion relation is denoted by the solid 
lines 1 and 2. 

C. Thermal Conductivity of Antiferromagnetic 
Spin Waves 

Antiferromagnetic spin waves have a linear dispersion 
relation of the form 

e=a |& | . 

Consequently, their contribution to the thermal conduc­
tivity is determined by the same expressions as for 
phonons, with due replacement of the scattering cross 
section for phonons by that for antiferromagnetic 
spin waves. 

VIII. INFLUENCE OF THE MAGNETOELASTIC 
COUPLING ON HEAT CONDUCTION 

In a ferrodielectric, heat is predominantly conducted 
by magnons at low temperatures and by phonons at 
high temperatures. In Fig. 3, the broken lines show the 
magnon and phonon branches of the excitation spec­
trum. (The phonon branch is triply degenerate.) In the 
region below the intersection eo, the magnon branch has 
the lower energy, and has therefore a higher population 
than the phonon branch. Above €o the situation is 
reversed. 

The point of intersection is determined by equating 
the magnon energy 

em=ak2 (8.1) 

and the phonon energy 

ep=chk; (8.2) 
hence it is given by 

e0=c2h2/a. (8.3) 

Typically, for yttrium iron garnet and transverse 
phonons 

e 0=12X10- 1 6erg. 

This value should be compared with the thermal 
average energies of magnons and phonons, 

em=0.77kBT= 1.06X10-16r erg (8.4) 
and 

ep=0.27kBT= 0.373 X 10~16r erg, (8.5) 

calculated with a Debye spectrum. The transition 
region from magnon to phonon conductivity thus may 
very roughly be marked off by those two temperatures 

for which em=eo and €p=€o. For yttrium iron garnet 
this region is 11-33°K. 

I t is well known12 that magnetoelastic coupling lifts 
the degeneracy of the two excitation branches at eo and 
produces a gap A. The true elementary excitations are 
elastomagnons whose dispersion relation is shown by 
the solid lines 1 and 2 of Fig. 3. 

I t follows that the thermal properties of the body in 
the transition region are not determined by independent 
contributions from magnons and phonons, but from 
elastomagnons. In most cases, the elastomagnetic 
coupling (i.e., the gap) is small compared to eo. The 
separate phonon and magnon picture is then still 
adequate if, in addition, the damping of both types of 
excitation is small. 

The magnetoelastic coupling may affect the thermal 
conductivity even at temperatures below or above the 
transition region. For example, suppose that the 
phonons are strongly damped (for instance, through 
isotope scattering), whereas the magnons may be 
considered undamped. Then, by virtue of the magneto­
elastic coupling, magnons will continuously transform 
into phonons of the same wave vector. Hence there will 
be a damping introduced into the magnon system, too, 
which has to be taken into account in the calculation of 
the mean free path and thermal conductivity. This 
effect will be small if the magnetoelastic interaction has 
a strongly resonant character, because only magnons 
of one particular energy eo may be damped by the 
phonons. However, if the resonance is broadened by 
virtue of strong phonon damping, then the effect may 
be large enough to be of importance. 

All that has been stated about the damping of 
magnons through phonons also remains valid for the 
reverse process, and the results apply equally to phonon 
thermal conductivity. 

In Sees. IX, X, XI , and X I I we derive all the proper­
ties of the magnetoelastic coupling which we need for 
the estimation of their influence on thermal properties. 
They are also of importance for ultrasonic attenuation 
and related phenomena. 

IX. DETERMINATION OF THE ENERGY 
SPECTRUM OF ELASTOMAGNONS 

The Hamiltonian of the magnon-phonon system in a 
ferrodielectric in second-quantized form is 

3C=5Co+3Cint, (9.1) 

3Co= £ efc™aktak+L e f c s^k ,%8 , (9.2) 

ak and 6ks being the destruction operators of magnons 
and phonons, respectively, of wave vector k and polar­
ization index s. We have €km=ak2, €k»v^cshk. For a 
cubic Heisenberg ferromagnet a~2hJSa2, where / 
is the exchange integral between neighboring spins S, 

12 E. A. Turov and Yu P. Irkin, Phys. Metals Metallog. 
(U.S.S.R.) (English transl.) 3, 15 (1956). 
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and a is the lattice constant. cs is the sound velocity, the 
subscript 5 refers to the polarization. I t is assumed that 
at the temperatures under consideration, the relevant 
k's are considerably inside the first Brillouin zone. 

To obtain 3Cint, we note the well-known fact that 
elastic deformation changes the magnetization of a 
ferrodielectrie medium, and vice versa. Hence there 
exists a magnon-phonon interaction. Phenomenolog-
ically this interaction may be written as follows13: 

f f dMrdMr j 
3Cint= / d*x\vikimMiMkuim+ymiki- ; — u i m \ , (9.3) 

dXi dXk 

with the strain tensor 

Uik = ^(dUi/dxk+duk/d%i), 

Ui (x,t) is the vector of elastic displacement at the point 
x at time t, Mi(x,f) is the vector of magnetization per 
unit volume, jikim and jikim are the tensors of magneto-
elastic coupling, to be specified later. 

The expression (9.3) is the most general magneto-
elastic Hamiltonian, which is (a) linear in the strain 
tensor, (b) not higher than of the second order in the 
magnetization and its gradient. Experience shows that 
this Hamiltonian is adequate to describe all magneto-
elastic phenomena. 

The derivation of this formula on the atomic scale 
has been successfully achieved,14 although the calcula­
tion of the magnetoelastic tensors from first principles 
has only been done for a few substances and with 
limited success. 

We note merely that the first term of (9.3) arises 
from the strain dependence of the magnetic anisotropy 
energy. Microscopically, this dependence is largely 
due to the fact that the crystalline potential at the site 
of the magnetic ion is modulated by the lattice distor­
tion. On the other hand, this potential acts on the spin of 
the magnetic ion via spin-orbit coupling. In a few 
instances, where the anisotropic exchange or the dipole-
dipole interaction between the magnetic ions is impor­
tant, it is the strain dependence of the latter, which 
gives rise to the first term in (9.3). 

The second term of (9.3) reflects the strain depend­
ence of the inhomogeneous magnetization, and is 
microscopically due to the strain dependence of the 
exchange interaction. Elastic waves modulate the 
interatomic distance and, therefore, also modulate the 
exchange constants, which are determined by the 
overlap of the wave functions of neighboring ions. 

I t may easily be verified that only the first term gives 
rise to first-order processes (i.e., involving one magnon 
and one phonon at a time). Hence, the second term will 
be dropped. 

13 A. I. Akhiezer, V. G. Baryakhtar, and M. I. Kaganov, Usp. 
Fiz. Nauk 71, 533 (1960) [English transl.: Soviet Phys.— 
Uspekhi 3, 567 (1961)]. 

14 J. Kanamori, in Magnetism, edited by G. T. Rado and H. Suhl, 
(Academic Press Inc., New York, 1963), Vol. I, p. 127. 

i. y 

FIG. 4. Coordinate system (x,y,z) which defines the direction 
of saturation magnetization Mo, the direction of propagation k of 
the magnetoelastic wave, and the longitudinal (/) and two trans­
verse (t\,h) directions of phonon polarization, as well as the 
angle 0. 

Although second-order processes have a lower 
probability of occurrence than first-order processes 
(they depend on the second power of the density of 
magnons, rather than on the first), this may be compen­
sated by the larger phase-space volume available for 
the former, as well as by the fact that the exchange 
interaction (and its strain dependence) is more impor­
tant than the spin-orbit interaction. Therefore, only if 
we consider resonance phenomena, is it safe to drop 
the second term in (9.3), which has a nonresonant 
character. 

For an isotropic medium 

hence 
7imikMiMm=yQM28ik+ yiMiMk; (9.4) 

3Cint= / d^yoM^u+yiMiMku%k). (9.5) 

Yo and Yi are the magnetostriction constants. 
We write M = M0—m, M0 is the saturation magnet­

ization, parallel to the z axis, m is the deviation from 
Mo due to spin waves, and introduce the Holstein-
Primakoff15 spin-wave operators16 ak through 

and 
my=i(fjiMo)112 E k O k ( O e * , r - o k t ( * y - i k , r ] , (9.6) 

mz= —/* Ekk' aktak/e* (k '-k) , r. 

ji is the magnetic moment of the atom. 
The operator of elastic displacement u (t,t) at a point 

r in the medium is expressed by the phonon operators 
bks (s—longitudinal I, transverse ti, transverse fe), as 

u(t,t) = hZks(2peksP)-V* 

XeklbUt)eik'r+bksKt)e-ik'r'}. (9.7) 

p is the density of the medium and ekS the unit vector 
of polarization. 

15 T. Holstein and H. Primakou*, Phys. Rev. 58, 1098 (1940). 
16 The demagnetizing field is negligible for spin waves of thermal 

energies as long as kBT/nM£$>2ir, therefore spin waves of opposite 
wave vector are not coupled to each other, a* are thus the true 
spin wave operators. 
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In the interaction Hamiltonian we restrict ourselves 
to the terms which give rise to first-order processes. 
Consequently, terms containing the product of several 
operators ak are dropped, and using the operator 
expansion (9.7) and (9.6) the Hamiltonian (9.5) 
becomes 

X [ f e / + ^ ^ 2 + ^ ( i ^ + ^ ) ] W + H . c . (9.8) 

The superscripts refer to the coordinate axis. Owing to 
the neglect of second-order terms, 70 does not appear 
m 5Cint. 

It is convenient to define the coordinate axis, polar­
ization directions, and the angle 6 as in Fig. 4. 
We set 

y^uMJhyipyi^K (9.9) 
and obtain 

5C int = 
/ %k 

•-KYA * 
A(e*01/2 

ik k 
sm26kbki+-—— cosdkhh 

1/2 

ik 

( O 1/2 

( ^ * i ) 

•cos2dkbkt2)ak++H.c. (9.10) 

It is possible to diagonalize the Hamiltonian (9.10) 
including 3Cint, but the general results are rather 
unwieldy. We therefore make the simplifying assump­
tion that the longitudinal and transverse sound velocities 
are equal 

ci=ch=ct2=c. (9.11) 

A glance at (9.10) presents us with a Bogoliubov17 

canonical transformation to new Bose operators bu 
and bu defined through 

bk±= co$2Bkbkt2+svcLLekbki, 

&k3= — sin20k&k*2+cos20k6kz. 
(9.12) 

3Co has the same form in terms of bkz and bki as it 
had in terms of bki and bkt2, but bk$ drops out of 3Cint-
A consecutive canonical transformation 

&ki= ukbkA+vkbkh, uk= (l+cos2fe)1/2, 

6k2= — Vk*bki+ukbktl >
Vk==z — ̂ cos0k(l+cos20k)~

1/2, 

decouples also 6k2, and leaves 

(9.13) 

i = l k k 

X (l+cos*dk)v*(bki+ak-bklak+). (9.14) 

At this point it is convenient to introduce the 
double-time, temperature-dependent Green's functions18 

17 See, for example, N. N. Bogoliubov, Zh. Expt. Theor. Phys. 
SSSR 34, 58 (1958) [English transl.: Soviet Phys.—JETP 34, 41 
(1958)]. 

18 For the detailed definition of the Green's function symbolism 
the reader should consult D. N. Zubarev, Usp. Fiz. Nauk 71, 71 
(1960) [English transl.: Soviet Phys—Uspekhi 3, 320 (I960)]. 

for phonons and magnons 

Gk™^Gk™(t~-t',p)^((ak(t); ak* (*')», 
and 

G**=Gtf(t-t,fi)=«hi®\ W ( 0 » , (9.15) 

where the double angular bracket denotes the (advanced 
or retarded) Green's function of the enclosed Heisen-
berg operators, averaged with respect to the grand 
canonical ensemble,19 and ($= 1/ksT. The Dyson equa­
tion of motion for the Green's function 

iGk™=b{t-tf){tak{t),aJ{t)J) 

+<<[>*«, 3C]; <>k+(0» (9.16) 

involves the grand canonical averages (denoted by 
single brackets) of commutators with 3C. Going over 
to the Fourier transform with respect to time 

Gk(E)=(2ir)-
J —0 

G^t-t'ipyz^-^dit-f), 

(9.16) and (9.14) yields 

EGk™(E)= (l/2T)+ek™Gk™(E)+gkFk(E), (9.17) 

with 
gk= liKk/{tkpy^{\+co&dk)w, (9.18) 

where Fk{E) is the Fourier transform of the newly 
introduced mixed-type Green's function 

Fk(t-t';l3) = ({bkl(t);ak(t'))). 

The latter may be eliminated by means of its equation 
of motion, which gives 

hence 
EFk{E) = ek*Fk{E)+gk*Gk™(E): 

Gk*(£)= (l/2T)t(E-ek™-Mk™(E)y^, (9.19) 

where 
Mk»(E)=\gk\*/(E-ek*), 

\gk\
2=(K2k/ch)(l+cos26k). (9.20) 

The energies of the elastomagnons are given by the 
poles of 

Gk™(E), i.e., by E-ek
m-M*m(E) = 0. (9.21) 

The two solutions of (9.21) are 

dbit(ek
m-ekv)2+4K2k(l+cos26k)/chJl2. (9.22) 

For ekQ
m= €kQ

p=c2h2/a there is an energy gap A between 
the two branches, 

Ak= Ek*-Ek
2= 2K((l+cos2dk)/ay'2. (9.23) 

In terms of the gap we shall write |gk|
2=4Ak

2ep/eo. 
19 In this section the temperature dependence is irrelevant, and 

the averaging over the ensemble may be discarded. It will be used, 
however, in XI. 
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Expressed by the two elastomagnon operators and 
the two uncoupled phonon operators bk2 and bk$y 3C is 
diagonal. The Green's function of the phonon Gk

p(E) is 
obtained from (9.19) simply by interchanging the 
superscripts m and p. 

X. POLARIZATION OF THE 
COUPLED PHONON 

I t is interesting to establish the polarization of a 
phonon, which is produced by a magnon through the 
magnetoelastic coupling. This amounts to the deter­
mination of the state of polarization of 

bki= (l+cos2dk)~
1,2[_cos2dkbkt2+sin26kbki—i cos0k6k<1]. 

Using the procedure of Appendix B, we readily find 
the Cartesian components of Stokes' vector 

P = ( l + c o s 2 ^ ) - 1 

X {cos20k-cos220k, 0, 2 cos0k cos20k}. (10.1) 

The squared amplitude of the longitudinal polariza­
tion component can be directly read off : 

| ai 12= sin220k/(l+cos20k). (10.2) 

The transverse component is elliptically polarized. 
Since P 2 = 0 , the axes of the ellipse are parallel to fa 
and h. The ratio of the corresponding semi-axis a and 
b is 

a/b=cos0k/cos20k • (10.3) 

The maximum amount of longitudinal polarization 
is obtained for d\ai\2/dd=Q, which gives for the angle 
do between the direction of propagation of the magnon 
and the direction of magnetization 

0o=5Oo. 

I t is easily verified that this result holds true, even 
if the longitudinal and transverse sound velocities 
are different. 

From (9.12) and (9.13) we see, that for 

0k=45°, 135° 

the transverse phonons fa, polarized in the plane (k,Mo) 
do not couple to the magnons. For 

0k=O°, 90°, 180° 

the longitudinal phonons do not couple, whereas for 

0k=9O° 

the transverse phonons fa, polarized perpendicular to 
the plane (k,M0) do not couple to the magnons. 

Of special interest are the cases of pure circular 
polarization. According to (B6) they are obtained as 
eigenstates of P3- Since P2=0 , the necessary condition 
for circular polarization is 

Pi==cos20k~cos220k=O, 
which yields 

0circ = O°, 60°, 120°, 180°. 

P 3 is positive for 0° and 120° and negative for 60° and 
180°, hence the former and the latter two differ in their 
sense of polarization. This means, that phonons of the 
corresponding sense of circular polarization couple to 
the magnons, those of the opposite sense pass through 
the medium without interaction. 

Thus the medium is birefringent with respect to the 
transverse phonons, as was first pointed out by Kittel.20 

When the wave propagates under an angle of 60° or 
120° to the direction of magnetization, the circular 
transverse polarization may combine with longitudinal 
polarization, yielding conically polarized waves. Of 
course, the longitudinal component may be experi­
mentally eliminated. 

The difference of the group velocities of the ordinary 
and the extraordinary sound rays is easily obtained 
from the expression of the energy (9.22), if we assume 
that the frequency of sound is sufficiently different 
from the crossing frequency. In this case 

(ek
m~ ekv)2»4K2k(l+cos2dk)/ch 

and the square root may be expanded to yield for the 
acoustic branch 

£~€fc*>+ [K2k ( l+cos 2 0 k ) / a (e™- €*)]. 

The magnitude of the group velocity of the coupled 
phonons is 

1 dE # 2 ( l+cos 2 0 k ) 

h dk cft2(ek
m-ek

p) 

For any of the directions of circular polarization of the 
coupled phonon, the plane of polarization of linearly 
polarized sound will be rotated by the angle 

<p=v-c=K2(l+cos20i,!)/c&(em-e*) 

per unit length. This rotation has often been used2,21 

to determine the magnetoelastic coupling constant K, 
and to deduce 71. 

XL THERMAL-EQUILIBRIUM DISTRIBUTION 
OF MAGNONS AND PHONONS 

Keeping in mind that all energy-dependent quantities 
depend on the wave vector, too, the subscripts k and k 
will be suppressed in the sequel, except where ambiguity 
might arise. 

While the two branches of elastomagnons have a 
Bose distribution 

n1>2=Zexv(l3E1>2)-l']-1 (11.1) 

with E1,2 given by (9.22), the distribution function of 
bare magnons (and phonons) is obtained as the integral 
over E of the spectral density function Jm(E). The 

20 Ch. Kittel, Phys. Rev. 110, 836 (1958). 
21 H. Matthews and R. C. LeCraw, Phys. Rev. Letters 8, 397 

(1962); B. Liithi, Appl. Phys. Letters 6, 240 (1965). 
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latter is defined (for magnons) as 

J™(E)=(i/(ePE-l)) lim[Gm(E+iA) 

- G » ( E - i A ) ] . (11.2) 

To obtain Jm(E), it is rewarding to factorize the Green's 
function (9.19) as 

1 /em-E1E2-em\ 
G"(E) = ( ) , 

2TT{E2-E1)\E-E1 E-E2/ 

and use the identity 

•J -L- -L) - . 
^°\x+iA x—iA/ 

- 2wid (x). 

The result being, for the number of magnons with wave 
vector k, 

nk
1 

/

CO 

- 0 0 

J(E)dE= 

n-El 1 

E2~€m 1 

E 2 _ E l e ^ _ 1 
(11.3) 

The distribution function for that branch of phonons 
which is coupled to the magnons is obtained by replacing 
the superscript m b y ^ i n (11.3). 

XII. MUTUAL DAMPING OF MAGNONS 
AND PHONONS 

The knowledge of the Green's functions Gm(E) and 
GP(E) enables us to write down the damping of one 
type of quasiparticle, if the damping of the other type 
is known. 

Consider the case where the damping of the phonons 
due to some unspecified mechanism is given by a 
relaxation time TP, which might depend on the wave 
vector k. As usual, we introduce the damping yp, 
assigning an imaginary part to the energy 

ep=ep+iyp, 

yp=fi/Tpt 

(12.1) 

The damping of the elastomagnons is given by the 
imaginary part of their energy 

E^&t+iy1'2. (12.2) 

Using Eqs. (9.20), (9.21), and (9.23), we have 

AA2ep/e0 
El,2_^iyl,2„em„ 

E1*2+iy1'2-~ep-iyp 
= 0. (12.3) 

To obtain a simple expression for 71'2 we consider two 
separate energy regions I, I I . 

(I) €m sufficiently far from eo. Then the energy 
difference between one of the branches E* and ep is 

much bigger than the gap: 

4A2ep/e° 

(Ei-ep)2+(y{-yp)2 
-<A. 

The elastomagnon branch i then practically coincides 
with the magnon branch, so that 7 * = 7 ^ Ei=em and 
the imaginary part of (12.3) gives 

4A2ep/e° 
-yp. 

(em-ep)2+(yp)2 

(II) At the crossover 6m=ep=e°, (12.3) gives 
T I , 2 = 7 P / 2 . 

We see that the damping of the phonons introduces a 
damping of order of magnitude equal to that due to the 
magnons in the energy region €0. This region itself has 
a considerable width, if the phonon damping is strong. 

A. Numerical Estimates 

With yi=b2/Mo\ where 62=7.4X106 erg cm~3, a 
typical value for the energy gap is 2w7X10~1 8 erg for 
YIG.21 (A*? averaged with respect to the angle 0k is 
denoted by A.) Hence, A/eo=0.6%. I t follows that if 
the phonon damping is less than (say) 1%, no influence 
on the thermodynamic properties of the magnon 
system can be detected. 

This conclusion is, of course, not generally true: 
Under circumstances of very strong phonon damping, 
the magnon heat conductivity will be noticeably 
reduced. The reverse effect is probably more realistic: 
Very strong spin-wave damping is observed in certain 
materials, due to Van Vleck-type22 or other fast-relaxa­
tion mechanisms. If the material also shows strong 
magnetostriction, then the phonon heat conductivity 
will very likely be noticeably smaller than expected on 
the basis of calculations involving phonons only. The 
amount of damping may then be estimated from (12.3). 
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APPENDIX A 

An asymptotic expression is required for 
/•oo 

Mm,n;B,T)= fk°(fk°+l)e-Bkmk»dk, (Al) 

/*°= {expL(a&/kBT)-1]}-1, (A2) for 

-/£)' » i . (A3) 

2 J. H. Van Vleck, Phys. Rev. 123, 58 (1961). 
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Deliberate use will be made of the formulas derived in 
Ref. 9, Appendix. 

In contrast to /k°, used in Ref. 9, Appendix, fk° here 
has a quadratic k dependence. 

We set 

k=(kBT/ayiW2, B(kBT/a)^2=C (A4) 

and write 
/JbZYw+1) /2l f" 

/2(f»,»;5,r) = f ) -I fk°(fk°+l)e~c*m/z 

X 2 ( n ~ 1 ) / 2 & 
~ 2 \ a ) 

Mm,n;C). (AS) 

Integrating by parts, we obtain 

J2 (tn>n; C) = — ̂ CmK(^m, J (#+ w— 3); C) 

+§(»- l ) JC( im, i (»"3 ) ;C) . (A6) 

K(a,b; C) is denned by Ref. 9, (A6), and has been calcu­
lated for large C by asymptotic methods to yield Ref. 9, 
(A8). Hence 

with 

M2{m,Yi)--

J2(rn,n; C) = M2(m,n)C-(n-z)lm, (A7) 

-(2r) 1/2 
fl-^fyi—5\ (w+m~3)/™— § K~) «—(»+m—5)/w 

7£—5\ (n-3)/«i-J 

\ m / 
m(n—\)e~{n~ •5)Jm (A8) 

Collecting the results, we arrive at 

J2(m,n ;B,T) = iM2(?n,n)B~<n-vim(kBT/a)2. (A9) 

Integrals which appear in the formula for spin-wave 
thermal conductivity involve w=4, n=7. Evaluation 
of (A8) and (A9) gives 

Jfa(4,7) = 24.75, 
and 

/2(4,7;B,T)=12.38.B-1(^r/oJ)
2. (A10) 

APPENDIX B. PHONON POLARIZATION 

Consider the creation operators of phonons of three 
mutually perpendicular directions of polarization b^, 
&k2f, &ki+. The subscripts 1 and 2 denote the transverse 
directions, I refers to the longitudinal direction. The 
momentum index k will be suppressed in the sequel. 
Let us define the operator, constructed from transverse 
phonon operators. 

X^bJbk-Bik'Ljbfa, i , * , j « l , 2 . (Bl) 

We shall show that the (four-component) operator 
X— (Xik) describes the polarization of a phonon state— 
in analogy to the corresponding operator of the electro­
magnetic field. For this purpose we introduce Stokes' 
vector operator P = (Pi,P2,Pz) and will show that its 
eigenstates correspond to certain simple polarization 

states of the phonon with eigenvalues ± 1 . Stokes' 
vector is defined by 

Hence 

It is 

X — P • o-, <r = Pauli spin matrix vector. (B 2) 

Pi=bfbi-bjb2j 

P2=bJb2+bJbi, (B3) 

Pz=i(fifbi-bfh). 

p t . p = ( n i +^ 2 ) (^ 1 + W 2 +2) , (B4) 

where m= b$bi is the number operator of phonons with 
polarization i. Hence the eigenvalues of the operator 
PiP are 

N(N+2); 

where N is the total number of transverse polarized 
phonons. 

Using Eq. (B3) and the commutation relations for 
the bi, it is easily shown that 

P151t|0)=51t|0), 

PibJ\0)=-bJ\0), 

i.e., a one-phonon state with linear polarization in the 
1 direction is the eigenstate of Pi with eigenvalue 1, 
whereas a one-phonon state with linear polarization in 
the 2 direction is the eigenstate of the same operator 
with the eigenvalue —1. 

States of linear polarization directed along the 
bisector of the angle between 1 and 2 are created by 
the operators 

br/f= (1/V2) (JiM-W) and J_r/4t= (1/V2) (6xt-62t). 

These states are found to be eigenstates of P2; 

P2^/4 t |0)=^ /4
t |0), 

P 2 6_ W 4 t | 0 )= -^ / 4
t | 0 ) . 

To obtain the eigenstates of P3 one has to construct 
phonon states of right and left circular polarization28 

with the help of the operators 

and 

It is 

bD*=(l/yE)(bf+ibf) 

^ct=(l /v2)(52t-tV). 

P3&0t|o>=-*0t|o>, 

P3*ct|o>=*ct|o>. 

(B5) 

(B6) 

n Since b+ represents the Fourier amplitude of the sound 
vibration, b+~b$+e~iu>t, the operators & Q + and 6 Q + c r e a t e phonons 
of circular polarization. This becomes evident by inspecting the 
real part of the amplitude, e.g., 

R(bD
+) = (l/^R^+e-iot+iho+e-*"*) 

= (l/v2) (&2o+ cosw/-r-&io+ sinw/). 
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FIG. 5. Definition of the quantities a, b, and <p which characterize 
elliptical phonon polarization. 

Let us now turn to the determination of the polariza­
tion of a general one-phonon state <£ given by 

*=(oibf+aj>f+oil>t)\0), 

Ui | 2 + | f l2 l 2 +ki | 2 =i . 
(B7) 

The norm P of the expectation value of the vector 
operator P is then found to be (| a\ | 2 + | ai |2)2, hence 

The amplitude of the longitudinal component is 
obtained from Eqs. (B7) and (B4) as 

| a 8 | 2 = l - | < * t | P | * > [ = : l - ^ t | p t . p | # ) . (B9) 

The amplitude of the transverse components enter 
into the expectation values of the Stokes' parameters 
through 

Pi=<* tlPi|*>=ai*ai-a2*a2, 
P2=($ t |^2|^)=ai*a2+a2%i, (BIO) 

P8=<$t|P8 |$)= -iai*a2+ia2*0i. 

In general, the transverse component of the phonon 
is elliptically polarized with parameters a and <p 
defined in Fig. 5. These parameters can be expressed by 
the expectation values of the Stokes' parameters as 
follows: 

tan2p=P2 /Pi , (Bll) 

P = | ( $ t | P | $ ) | = l ~ | a 3 | 2 . (B8). tana= Pz/LP+ (P2-P8
2)1 / 2]. (B12) 
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Exciton Complexes and Donor Sites in 331? SiC 

W. J. CHOYKE, D. R. HAMILTON, AND LYLE PATRICK 

Westinghouse Research Laboratories, Pittsburgh, Pennsylvania 
(Received 29 March 1965) 

Poly type 33 R, which, in some respects, may be considered as part 6H, part 15R} proves to be intermediate 
between those poly types in many properties, among which are the exciton energy gap (3.003 eV), absorption 
strength, exciton binding energies (two kinds), and nitrogen donor ionization energies (0.15 to 0.23 eV). The 
latter three appear to be consequences of an intermediate value of electron effective mass. Nitrogen-exciton 
complexes (Lampert complexes) are observed in the low-temperature photoluminescence at ten of the eleven 
inequivalent donor sites. In this polytype, it is possible to assign spectral lines to particular sites, which we 
distinguish by a simple code. Both four-particle and three-particle complexes are observed, yielding phonon 
energies and, in addition, exciton binding energies which may be compared with those at corresponding sites 
in 6H and 15R. The comparison suggests that the 15i? electron effective mass is about half that of 6H. For 
three-particle complexes, the effective-mass approximation appears to be inadequate. Thermally excited 
states are observed for both kinds of complexes. 33i? is a member of a special series of SiC poly types, each of 
which may be characterized as part 6H, part 15i?. Some properties of the luminescence of higher members 
of this series are predicted, and their large zones and conduction-band minima are discussed. 

I. INTRODUCTION 

FOR a study of donor properties, SiC has the advan­
tage that the same donor (e.g., nitrogen) can be 

studied with slight changes in neighbor arrangements 
(at inequivalent sites in a polytype), or with slight 
changes in band structure1'2 (by comparing polytypes). 

We are now reporting on 33>R SiC, in which we have 
observed photoluminescence due to nitrogen-exciton 

1 Lyle Patrick, W. J. Choyke, and D. R. Hamilton, Phys. Rev. 
137, A1515 (1965). 

2 Certain band properties appear to be similar in all polytypes. 
For example, the valence-band maximum at k = 0 is thought to be 
affected very little by polytype changes, and the conduction-band 
maxima are thought to be always on mirror planes at the large 
zone boundary. 

complexes (Lampert3 complexes) at ten of the eleven 
inequivalent donor sites. Such luminescence has pre­
viously been reported for the single site4 of cubic SiC, 
for two sites1 in 4£T, three sites5,6 in 6H, four (of a 
possible five)7 in 15P, and six (of a possible seven)8 in 
2 IP, a total of 26 sites in six polytypes. Within a given 

3 M. A. Lampert, Phys. Rev. Letters 1, 450 (1958). 
4 W. J. Choyke, D. R. Hamilton and Lyle Patrick, Phys. Rev. 

133, A1163 (1964). 
5 W. J. Choyke and Lyle Patrick, Phys. Rev. 127, 1868 (1962). 
6 D. R. Hamilton, W. T. Choyke, and Lyle Patrick, Phys. Rev. 

131, 127 (1963). 
7 Lyle Patrick, D. R. Hamilton, and W. J. Choyke, Phys. Rev. 

132, 2023 (1963). 
8 D. R. Hamilton, Lyle Patrick, and W. J. Choyke, Phys. Rev. 

138, A1472 (1965). 


