
P H Y S I C A L R E V I E W V O L U M E 1 3 9 , N U M B E R 4 A 16 AU G U S T 1 9 6 5 

Antiferromagnetism in the Face-Centered Cubic Lattice. I. The 
Random-Phase Green's Function Approximation 

M. E. LINES* 

Bell Telephone Laboratories, Murray Hill, New Jersey 
(Received 29 March 1965) 

The random-phase Green's function approximation is used to derive equations for zero-field magnetic 
susceptibility and two-spin correlation functions which are valid, at temperatures above the Curie or Neel 
point, for all ferromagnets and antiferromagnets which can be described by any isotropic Heisenberg 
Hamiltonian. At high temperatures, these expressions are also expanded as series in inverse powers of 
temperature. Detailed numerical calculations are carried out for the face-centered-cubic lattice with anti-
ferromagnetic nearest- and next-nearest-neighbor exchange parameters J\ and Ji. Susceptibility results are 
compared with molecular-field estimates at temperatures near the Neel point, and with the known terms of 
the exact power-series expansion at high temperatures. The spin correlations are computed for the first 
four shells of nearest neighbors. Finally, the sublattice-magnetization curves at temperatures below the 
Neel point are computed, in the random-phase Green's function approximation, for the type-2 antiferro-
magnetic order of the face-centered-cubic lattice. The curve shapes are found to be very insensitive to J2/J1 
and approximate closely the shape of the molecular-field Brillouin-function curves. The significance of this 
result in connection with the biquadratic-exchange question in MnO is discussed in detail in the following 
paper by Lines and Jones. 

where ]£<»•„,•> runs over all pairs of spins S* and Sy. (Note 
that the exchange parameters / # as defined by the 
above Hamiltonian differ by a factor 2 from those in 
Ref. 1.) For the numerical computations we have con
sidered the fee lattice with nearest-neighbor exchange 
Jh next-nearest-neighbor exchange Ji, and all other 
interactions equal to zero, investigating in particular 
the range \<Jil J\<^> for which the type-2 anti-
ferromagnetic order (Fig. 1) is stable at low 
temperatures. 

The reasons for this particular choice are as follows : 

(i) The fee antiferromagnetic structures require at 
least two exchange parameters (e.g., J\ and J2) if 
stable long range order is to set in at any nonzero 
temperature.1 They are, therefore, among the more 
difficult structures to treat theoretically. 

(ii) The molecular-field theory and many cluster 
theories tend to give more than usually poor results 
for these structures.1,3 

(iii) Of the several different fee antiferromagnetic 
spin structures which have been observed experi
mentally by neutron-diffraction techniques, the type-2 
order has appeared most frequently. As a few examples 
we mention MnO, a-MnS, FeO, CoO, and NiO.4 

(iv) The type-2 order covers a very wide range of 
antiferromagnetic situations; from the J^/Ji^h limit 
for which long-range order sets in only at the absolute 
zero of temperature, on the one hand, to the J\—>0 
case for which the system goes over into the simplest 
of all three-dimensional antiferromagnets (the simple 
cubic structure with a single nearest-neighbor exchange 
parameter), on the other. 

(v) An important question concerning the possible 
importance of biquadratic exchange in magnetic 

3 M. E. Lines, Phys. Rev. 133, A841 (1964). 
4 W. L. Roth, Phys. Rev. 110, 1333 (1958). 
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1. INTRODUCTION 

IN a recent publication,1 the present author has 
employed the now familiar techniques of Green's 

function theory to develop a statistical treatment of 
antiferromagnetism. In that paper, the double-time 
temperature-dependent Green's functions are used with 
a simple random-phase decoupling approximation to 
present, for arbitrary spin S, a theory which is im
mediately applicable to any antiferromagnetic spin 
structure which can be separated into two translation-
ally invariant ferromagnetic sublattices, and can be 
described by any isotropic Heisenberg Hamiltonian. 

In the present paper, we point out that any results 
of this theory which are obtained for temperatures 
above the magnetic-transition temperature are valid 
for an even wider range of lattice structures, and we 
develop expressions for susceptibility and two-spin 
correlation functions which are valid (in the random-
phase Green's function approximation) for all ferro
magnets and antiferromagnets no matter how complex 
the spin arrangement which is preferred in the ordered 
state. These results have been used to compute in 
detail the susceptibility and near-neighbor correlations 
in the face-centered-cubic (fee) lattice where we have 
given particular attention to that range of exchange 
interactions which favors the type-2 antiferromagnetic 
order2 at temperatures below the Neel point. 

Thus we consider, in general, an arbitrary lattice of 
interacting spins which may be described by the 
Hamiltonian 

3C=£ JifirSj, (1.1) 
{i,3) 

* Present address: Clarendon Laboratory, Oxford University, 
Oxford, England. 

i M. E. Lines, Phys. Rev. 135, A1336 (1964). 
2 P. W. Anderson, Phys. Rev. 79, 705 (1950). 
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FIG. 1. The type-2 antiferromagnetic spin arrangement 
in the fee lattice. 

systems has grown up around certain of the properties 
of MnO and NiO, both examples of fee type-2 
antif erromagnets.5»6 

In Sec. 2 we derive the random-phase Green's function 
expression for magnetic susceptibility at temperatures 
above the Neel point (TV) and compute it specifically 
for the fee type-2 order. We compare the curves with 
those obtained by molecular-field theory and note the 
marked difference between them for temperatures near 
TN. In Sec. 3 we obtain the Green's function high-
temperature expansion series for susceptibility and 
compare it with the exact series as calculated by 
Wojtowicz and Joseph.7 We also compare the computed 
Green's function curve with estimates of susceptibility 
obtained by truncating the exact series. We find that 
the methods agree well at very high temperatures but 
that there is quite a large temperature range above TN 

for which the number of known coefficients in the exact 
series is not sufficient for the latter to give estimates of 
susceptibility as accurate as those obtained by use of 
Green's function techniques. 

In Sec. 4 we derive the Green's function estimate for 
near-neighbor spin-correlation functions and calculate 
them numerically for the first, second, third, and fourth 
nearest neighbors in the fee lattice for temperatures 
T> TN. We also write the Green's function result as a 
high-temperature series expansion in powers of inverse 
temperature. Finally, in Sec. 5, we calculate the sub-
lattice magnetization as a function of temperature in 
the ordered state. We find, for the fee type-2 order, that 
the curve shapes are very insensitive to the value of 
J2/J1 and follow closely the molecular-field Brillouin 

6 E. A. Harris and J. Owen, Phys. Rev. Letters 11, 9 (1963). 
6 D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys. 

Rev. Letters 11, 10 (1963). 
7 P. J. Wojtowicz and R. I. Joseph, Phys. Rev. 135, A1314 

(1964). 

curve,8 in disagreement with results obtained by use 
of the Monte Carlo method.9 This last result is very 
important in connection with the biquadratic exchange 
question,6 and indicates that the anomalous sublattice 
magnetization curves observed for MnO and NiO are 
probably due to terms which have been omitted from 
the Hamiltonian (1.1). We shall develop this question 
in detail in Part I I where we consider the magnetic 
properties of MnO. 

2. SUSCEPTIBILITY ABOVE THE 
NfiEL TEMPERATURE 

Reference 1 uses Green's function techniques to discuss 
those antiferromagnets with spin patterns capable of 
separation into two translationally invariant ferro
magnetic sublattices. At temperatures greater than or 
equal to the Neel temperature TN, and in the presence 
of an external magnetic field H, the average spin value 
per site 8S is given by Eq. (3.34) of Ref. 1 as 

2 5 ( 5 + 1 ) sinha / smiia v 

\cosha— cosh/3/ * 
where 

35$ \cosha— cosh/3^ 

a=[gMB^+5S0*i+/*2)] / f t r , 

P = \dB/kT, 

Mi=E^[exppK-G-g)]-l], 
3—0 

d 

o-g 

d 

X= E Jj0 exppK- ( j - g ) ] , 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where £ , - / CCy-/) runs only over values for which 
j and g are on the same (different) sublattice, and 
where (• • • )K is an average value for the wave vector 
K running over the values allowed by periodic boundary 
conditions in the first Brillouin zone of the reciprocal 
sublattice. 

In the limit of very small fields, Eq. (2.1) reduces to 

2$(S+l)/38S=((a+P)-i+(a-t3yi)K. (2.7) 

If the allowed values of K are now taken to run over 
more than one reciprocal sublattice Brillouin zone and, 
in particular, if they are taken to run throughout the 
first Brillouin zone of the reciprocal lattice, then Eq. 
(2.7) is naturally still valid, but it may now be simpli
fied further to read 

5(5+l)/3«iS=<l/(a+/5)>K, (2.8) 

where (• • • )K is now an average for K running over the 

8 A. B. Lidiard, Rept. Progr. Phys. 17, 201 (1954). 
9 E. A. Harris, Phys. Rev. Letters 13, 158 (1964). 
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values allowed by periodic boundary conditions in the 
first Brillouin zone of the reciprocal lattice. The right-
hand side of this equation involves exchange inter
actions only in the form 

P=Mi+M2+X=E M e x p p K . G - g ) ] - l ] , (2.9) 
3—0 

where Ylj-g r u n s o v e r a^ pairs of spins in the lattice. 
Thus, this equation and the resuming susceptibility of 
Eq. (2.11) are completely independent of any sublattice 
structure which may become evident when the tem
perature falls below 2V. They can, of course, be ob
tained in a rather simpler manner by using a single 
Green's function transform GK (Fourier transformed 
with respect to the whole reciprocal lattice) throughout 
the calculation in place of the two functions GiK and 
C?2K defined in Ref. 1. This simply recognizes the 
equivalence of all spins in the lattice for temperatures 
above TV, and shows that the equations are not subject 
to the two sublattice restriction of Ref. 1. 

Writing the zero-field magnetic susceptibility X equal 
to Ng2VB2X-o, where N is the number of spins in the 
lattice, and where 

Xo=(«3/gM*ff)ir->o, (2-10) 

we obtain, from (2.8), the equation 

l/Xor=<l/(l+Xap)>K, (2.11) 

where 

T=3kT/S(S+l), (2.12) 

and where p is given by Eq. (2.9). This equation for 
susceptibility is valid for all ferromagnetic and anti-
ferromagnetic structures which can be described by a 
Hamiltonian of the form (1.1). For comparison, the 

1 2 3 4 
T/T N 

FIG. 2. Curves of magnetic susceptibility as a function of tem
perature, calculated in the random-phase Green's function approxi
mation, for the fee lattice with antiferromagnetic nearest- and 
next-nearest-neighbor exchange parameters J\ and J2. [0 is the 
Curie-Weiss constant of Eq. (2.16).] 

T /T N 

FIG. 3. The same as Fig. 2, but with the curves now plotted on 
a "reduced'' scale, making them independent of the absolute 
magnitude of exchange. 

molecular-field result, in a similar notation, reads 

l /X0r=l + E ^ / r . (2.13) 

We shall now compute the susceptibility from (2.11) 
for our particular case of interest, which is the type-2 
antiferromagnetic order in the fee lattice (see Fig. 1). 
We define a nearest-neighbor exchange Jh a next-
nearest-neighbor exchange J 2 (putting all other ex
change parameters equal to zero), and consider the 
range JilJ\—\—^ °° over which the type-2 spin 
arrangement is the stable ordered state. For this case 
we may write 

p = 4 / i (C1C2+ C2Cz+Czd— 3) 

+ 4 / 2 ( ^ 2 + ^ + ^ 3 2 - 3 ) , (2.14) 

where 

d=cos(Kxa), c2"=cos(Kya), £3=cos(i£2a), (2.15) 
where x, y, z, label the cubic axes, and where "a" is 
half the distance between next nearest neighbors. The 
average {• • -)K is to be taken for Kz, Ky, Kz, running 
independently between — ir/a and ir/a. Thus, we have 
treated the fee lattice not in terms of its primitive 
translations, i.e., as a monatomic lattice, but as a cubic 
lattice with four spins per cell. Such a procedure lessens 
the burden of machine computation. 

The results of this computation are shown graphically 
in Figs. 2 and 3. In Fig. 2 we plot 3X0(T+0)/S(S+l), 
where 6 is the Curie-Weiss constant given by 

0= (12J1+6J2)S(S+l)/3k, (2.16) 

as a function of T/TN, where TN has (also) been cal
culated by the simple random-phase Green's function 
theory (using the results of Ref. 1 which are reproduced 
graphically in Fig. 4). The ordinate of Fig. 2 is, there
fore, a quantity which is equal to unity on molecular-
field theory for all valuesof T> TN. The Green's function 
curves are seen to approach unity for very large values 
of T/TN but they do so rather slowly if Ji is larger than 
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J%. Near the Neel point, the departure from a Curie-
Weiss behavior is seen to be greatest for the simple 
cubic (Jx=0) limit. In Fig. 3, we plot a reduced 
susceptibility against T/TN to give a set of curves 
which depend only on the ratio J2/J1, i.e., are com
pletely independent of the magnitude of exchange. 
Such curves are useful in giving very direct information 
about the ratio of exchange interactions, as will be seen 
in Part II. In Fig. 5, for comparison, we show the same 
curves calculated by molecular-field theory. 

3. COMPARISON WITH EXACT SERIES 
EXPANSIONS 

The theory of high-temperature magnetic suscepti
bility of Heisenberg f erromagnets and antif erromagnets, 
using the exact power-series expansion method of 
Opechowski,10 has, over the years, been extensively 
developed by several authors.11,12 The susceptibility is 
expanded as a Taylor series in reciprocal temperature 
and, for systems with only a single exchange parameter, 
the coefficients are now known up to the sixth-power 
term.12 Only recently, however, has the problem been 
developed for Hamiltonians in which two exchange 
parameters are present.7 The latter susceptibility ex
pansions are extended as far as the fourth-power term 
in inverse temperature and are directly applicable to 
the present problem. The series-expansion formulas, 
like the equivalent Green's function ones, are applicable 
to both ferromagnets and antiferromagnets, i.e., for 
exchange interactions of either sign. 

In the present section, the Green's function Eq. (2.11) 
will be expanded as a series in inverse powers of tem
perature and compared with the exact expansion results 
of Wojtowicz and Joseph.7 In this way we can obtain 
some indication of the accuracy of the random-phase 
Green's function approximation in this high-temperature 

MOLECULAR FIELD THEORY 

RANDOM PHASE 
GREEN FUNCTION THEORY 

FIG. 4. The N6el temperature TN for the fee antiferromagnetic 
type-2 order, as calculated by the molecular-field theory and the 
random-phase Green's function theory. 

10 W. Opechowski, Physica 4, 181 (1937); 6, 1112 (1939). 
11 H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955). 
12 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 

T/T N 

FIG. 5. Curves of magnetic susceptibility against temperature, 
as calculated for the fee lattice (with antiferromagnetic nearest-
and next-nearest-neighbor exchange parameters J\ and J2) by 
molecular-field theory. These curves are to be compared with the 
equivalent Green's function estimates of Fig. 3. 

region. We shall also compare the various truncated 
exact power-series expansions with the computed 
Green's function curves to estimate for what range of 
temperatures the latter results are likely to be the more 
useful. 

From Eq. (2.11) it is possible to obtain high-tem
perature series expansions for susceptibility or its 
inverse. We shall concentrate on the series expansion 
for inverse susceptibility because the pertinent co
efficients are much simpler for this case, and the 
molecular-field approximation also takes on a particu
larly simple form. Expanding X0

_1 as a power series in 
1/r, using Eq. (2.11), we obtain 

^rCl + E Q V ] , 
i=l 

where 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where p is given by Eq. (2.9). For the particular case 
of the fee lattice with exchange parameters / i and J2, 
these coefficients work out to be 

C 1 =- (p ) K , 

C 2 =<P 2 )K-{P)K 2 , 

C 3 = - { P ' ) K + 3 { P ) K ( P 2 ) K - 2 < P ) I 

C1=12J1+6Ji, 

C2=l2Ji*+6Ji, 

C 3 =-24/ 1 2(2/ 1 +3/ 2 ) . 

(3.5) 

(3.6) 

(3.7) 

In molecular-field approximation we should find Ci as 
in Eqs. (3.2) and (3.5) and all other coefficients equal 
to zero. 

If we write the high-temperature expansion for 
inverse susceptibility in the form 

( X o r ) - ^ £ C „ ( A / r ) » W r ) » , (3.8) 
rn,n—0 
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TABLE I. Numerical values of the coefficients Cnm of Eq. (3.8) 
as calculated for the fee lattice with exchange parameters Ji and 
J\ and spin quantum number S. 

Coo 
Cio 
Coi 
C20 
C'u 
C02 
C30 
C21 
C12 
C03 

X = S ( S + 1 ) 

Exact8 

1 
12 
6 

12+9/X 
0 

6+9/2X 
( -6 /5 ) (36+11/X-

- 7 2 - 3 6 / X 
0 

•6/JP) 

(3/5)(4+9/X+6/X2) 

Random-phase 
Green's function 

approx. 

1 
12 
6 

12 
0 
6 

- 4 8 
- 7 2 

0 
0 

Molecular-
field 

approx. 

1 
12 
6 
0 
0 
0 
0 
0 
0 
0 

Ng2/4 
XJ. 

30 

» Reference 7. 

then the coefficients of the Green's function expansion 
may readily be compared with the exact expansion 
coefficients as obtained by Wojtowicz and Joseph.7 

Such a comparison is made for the fee lattice in Table 
I, where the molecular-field results are also included. 
We note firstly that the Green's function coefficients 
Cnm are not spin-dependent whereas the exact coeffi
cients, with a few exceptions, are. 

If we call n-\-m the order of the coefficient Cnmy 

then all three sets of coefficients coincide exactly only 
for the zeroth- and first-order terms. In the second 
order, the Green's function coefficients are correct in the 
limit of infinite spin but become progressively worse 
for smaller spin values. Only in the case of spin \ (and 
possibly spin 1), however, are they badly astray. In 
the third order, some of the Green's function terms are 
incorrect even in the infinite spin limit, but again the 
major terms are rather well approximated, particularly 
so for high spin values. 

In Part II , we shall be concerned with the properties 
of MnO for which £ = f and Ji—J^. I t is of interest, 
therefore, to consider this particular case in more detail, 
and to compare the inverse susceptibility as computed 
from Eqs. (2.11) and (2.14) with the estimates obtained 
by use of the exact series expansion. Such a comparison 
is shown in Fig. 6 where we plot the computed Green's 
function curve together with a set of four exact series-
expansion curves obtained by terminating the series, in 
turn, at the first-, second-, third-, and fourth-order 
terms. Since the exact coefficients of fifth- and higher-
order terms have not yet been published for Hamil-
tonians containing more than one exchange parameter, 
we are not able, at the present time, to plot any curves 
of higher order. 

For the higher values of temperature, we see that 
the successive exact series-expansion curves converge 
rapidly and enable a good quantitative estimate of 
susceptibility to be made. For temperatures below 
~ 3 7 V , however, the series-expansion curves converge 
very slowly or not at all indicating that, for this 

1 

1 
1 

1 

G.FN 

r ^^ 

UTN)gf/ 
f / 

1 1 /1 

2 

- 4 

1 

yz 

1 

1 

J,=J2=J 
s=Vz 

1 1 1 

2 4 6 8 10 12 14 
3KT/JS(S+|) 

FIG. 6. Estimates of high-temperature magnetic susceptibility 
for the fee lattice in the case 5 = f, Ji = J2. The Green's function 
curve (G.F.) is compared with successive approximations (1,2,3,4,) 
obtained by use of the exact high-temperature series expansion 
(Ref. 7). 

temperature region, far more terms in the series are 
required before any reasonable susceptibility estimates 
can be made using this approach. Thus, for tempera
tures below —37V, the Green's function method, at 
least for this particular problem, is the more direct 
approach. We are, therefore, encouraged by the fact 
that the Green's function curve (Fig. 6) appears to be 
in very close agreement with the best series estimates 
in the temperature region where the series-expansion 
approximations converge rapidly. 

4. NEAR-NEIGHBOR SPIN CORRELATIONS 
FOR T>TN 

In an external magnetic field H parallel to an axis z 
we may write a Hamiltonian for a magnetic system, in 
standard notation, as 

X = 3 e 0 - # i s # £ S ? , (4.1) 

where 3C0 is the Hamiltonian for the system in the 
absence of the field. The thermodynamic and magnetic 
properties of the system are derived from the partition 
function 

Z = T r { e x p ( ~ 5 C / ^ r ) } ; (4.2) 

and it follows, therefore, that the magnetic suscepti
bility in the limit of zero field is given by 

NgW 
x(r)= E <s**s,«>, 

kT Q—h 

(4.3) 

where (Sh
zSg

z) is the thermodynamic mean correlation 
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between the z components of the spins at sites h and g 
in zero field. This longitudinal correlation is also of 
direct physical interest in other connections such as 
the thermodynamic energy, specific heat and the diffuse 
magnetic scattering of neutrons. 

For temperatures T>TN the longitudinal and trans
verse correlations resulting from the Hamiltonian (1.1) 
are equal and are thus very easily calculated in the 
random-phase Green's function approximation from the 
theory of Ref. 1. The calculation of longitudinal cor
relations for T<TN (which will not be considered in 
the present paper) is somewhat more difficult to carry 
out in the Green's function formalism, but a method has 
recently been demonstrated for ferromagnetism by 
Tahir-Kheli and Callen.13 

Solving Eqs. (3.3) and (3.4) of Ref. 1 for G1K. and 
G2K, we readily establish equations for the correlation 
(Sh~Sg~

i'). Writing the average spin per site equal to dS 
for both sublattices, we find: (i) for g and h on the same 
sublattice 

_ / / sinha \ \ 
(SrS0+) = 5B([ 1 WK-<«-k> ) (4.4) 

Wcosha—cosh/3 / / K 

and (ii) where g and h are on different sublattices 

/ — sinh/3 \ 
(ShS+) = 8S( e*K.(g-h)\ 5 ( 4 > 5 ) 

\ cosha — cosh/3 / K 

where a and 0 are as defined in Sec. 2, and where K 
runs over its allowed values in the first Brillouin zone 
of the reciprocal subl&ttic. 

In the limit of zero magnetic field, these equations 
reduce to 

(i) <SA-S,)=Km {3d8/2)(t(a+P)-l+(a-$)-*l 

x ^ K . ( g - h ) ) K j ( 4 # 6 ) 

(ii) <SrS,>=l jm ( 3 5 >S/2)<[ (a+ /3 ) - 1 - ( a -« - 1 ] 

x ^ K . ( g - h ) ) K ) ( 4 > 7 ) 

for all cases g^h. Using the same argument as in Sec. 
2 concerning the extension of (• • • )K to run over all 
allowed values in the first Brillouin zone of the reciprocal 
lattice (rather than sublattice), we find that, with this 
new definition of {• • - ) K , Eqs. (4.6) and (4.7) take the 
identical form 

_ /exppK-(g—h)]v 
<Sfc.S,>=lim3&S< ~> , (4.8) 

indicating again that the sublattice description of the 
system is not necessary for discussing properties above 
the transition temperature. Using Eqs. (2.2), (2.3), and 

13 R. A. Tahir-Kheli and H. B. Callen, Phys. Rev. 135, A679 
(1964). 

(2.10), we obtain the final form 

/exppK-(g— h ) ] \ 
< S » . S , H 3 * r < — ) , (4.9) 

giving a relationship between the spin-correlation 
function and the inverse magnetic susceptibility which 
is valid for all g^h and for all temperatures T> ZV. 

Using this equation, together with the results of 
Sec. 2 for inverse susceptibility, we may compute these 
correlations for any particular case of interest [Eq. (4.9) 
being, like Eq. (2.11), valid for all ferromagnetic and 
antiferromagnetic structures which can be described by 
Hamiltonian (1.1)]. As in the earlier sections, we have 
singled out the fee lattice for detailed consideration. The 
fee lattice is particularly interesting in this respect for 
the following reason. In the simpler types of antiferro
magnetic structure, e.g., the simple cubic or body-
centered-cubic lattices (with a single-exchange parame
ter), the signs of the near-neighbor correlations are 
immediately evident from simple physical consider
ations, and reflect the long-range ordering which sets 
in below the Neel point. Thus, for the above examples, 
the nearest-neighbor correlation is negative, the next-
nearest one positive, and so on, with the magnitude of 
the correlation (for a particular temperature) falling 
off monotonically with increasing distance. For the fee 
antiferromagnets the situation is not always so im
mediately evident. Consider the type-2 order of Fig. 1 
for example. As drawn, it appears to have six positive 
and six negative nearest-neighbor correlations. Such a 
single axis spin arrangement is, however, not a unique 
solution for the isotropic Hamiltonian (1.1), even when 
the exchange parameters have values favoring the type-
2 spin structure. More specifically,2'14 the type-2 order 
requires only that all next nearest neighbors are op
positely oriented in the ordered state. The only re
striction on nearest-neighbor spins is therefore that 
their vectorial sum shall be zero. (In actual salts which 
exhibit the fee type-2 spin arrangement, e.g., MnO, 
a MnS, NiO, FeO, etc., the single axis order is found to 
exist and is stabilized by anisotropy and/or slight 
distortion of the lattice from its cubic form.15-17) I t 
is not likely, therefore, that the correlation for T> TN 
will reflect the spin pattern of Fig. 1 when we calculate 
for the fee type-2 order and Hamiltonian (1.1). Nor, 
we shall see, do the correlations necessarily fall off 
monotonically with distance. 

Using Eqs. (4.9) and (2.14), together with the 
results of Sec. 2 [Eq. (2.11)] for susceptibility, we have 
computed the near-neighbor correlation functions for 
T> TV and for values of J2/J1 which favor the type-2 
spin pattern in the ordered state. The results are shown 

14 W. L. Roth, Phys. Rev. I l l , 772 (1958). 
15 W. L. Roth and G. A. Slack, J. Appl. Phys. 31, 352S (1960). 
16 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 17, 177 (1957). 
17 E. Uchida, H. Kondoh, Y. Nakazumi, and T. Nagamiya, J. 

Phys. Soc. Japan 15, 466 (1960). 
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FIG. 7. Temperature dependence of nearest-neighbor spin cor
relations, as calculated for the fee lattice with antiferromagnetic 
nearest- and next-nearest-neighbor exchange interactions / i and 
/ 2 , for temperatures above the Neel point. 

in Figs. 7 to 10, in which we plot (Sh-Sg)/S(S+i) 
against temperature for first, second, third, and fourth 
nearest neighbors, respectively. We find, in particular, 
that the nearest-neighbor correlations are negative, are 
the same for all nearest-neighbor pairs and, in the 
temperature range close to the Neel point, are generally 
very much smaller in magnitude than the next-nearest-
neighbor correlations. These results are in qualitative 
agreement with those of Harris9 who studied the fee 
Ising lattice by a Monte Carlo method. 

At extremes of high temperature, we may expand 
the Green's function equation (4.9) as a power series in 
inverse powers of temperature. Using the previously 
evaluated power series for XQ-1 we may readily calculate 
the first few terms in the high-temperature expansion 
series for the correlation functions. We find 

< S v S . > / 5 ( 5 + l ) = (exp[tK. ( g - h ) ] £ Ai/r*)*, (4.10) 

where 

4 i = - p , (4.11) 

^ 2 = ( p - ( p ) K ) 2 , (4.12) 

A3= 2 p « P % - < p V ) - (p_ (p)K)3 y ( 4 . 1 3 ) 

and where K runs over the first Brillouin zone of the 
reciprocal lattice. 

If we consider again the case of the fee lattice, then 
we may use Eq. (2.14) and calculate the expansions 
specifically. We find 

0 0 

(4.14) 

where, if Sh and S„ are nearest neighbors, the coefficients 
Binn for the first few terms are 

5 1 « » = - / 1 , (4.15) 

Btm=iJi(Ji+Jt), (4.16) 

£,"«= - J r i (21/ 1 *+36/ t /»+12/ t«) , (4.17) 
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FIG. 8. The same as Fig. 7 but for next-nearest neighbors. 

and, if Sh and Sg are next nearest neighbors, the co
efficients Binnn are 

Bi™n=-J2, (4.18) 

5 2
n n n = 4 J i 2 , (4.19) 

Bf»»= _ 2 4 / 1
2 ( / 1 + / 2 ) - 3 / 2

3 . (4.20) 

In the limit Jx —> 0, coefficients Binnn give the result for 
simple cubic lattice nearest neighbors with exchange 
parameter J2. 

We may easily extend this calculation to more 
distant neighbors when we find that £ i = 0 for all 
neighbors beyond the second, i.e., only those neighbors 
with a nonzero exchange between them have a term in 
1/r. Those correlations which have a leading term in 
1/T2 are as follows, 

third neighbors, £ 2 = 2Jl(Jl+J2); (4.21) 

fourth neighbors, £ 2 = / i 2 + 2 / 2
2 ; (4.22) 

fifth neighbors, £ 2 = 2 / 1 / 2 ; (4.23) 

and eighth neighbors, B2=J2
2, (4.24) 

We may now carry out a check on these results by 
employing Eq. (4.3) which, for temperatures above the 
Neel point, may be written 

*o= (1/r) E <SA .S.)/£(S-+1). (4.25) 
g—h 

Using the fact that (Sh-$h)=S(S+l), and noting that 
the numbers of first, second, third, fourth, fifth, and 
eighth nearest neighbors in the fee lattice are, respec
tively, 12, 6, 24, 12, 24, and 6, we calculate from (4.25) 
and the above coefficients B the result 

1 1 2 / x + 6 / 2 6 (22 / 1
2 +24 / 1 / 2 +5 / 2

2 ) 
X o = — -

(4.26) 
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(5.2) 

where Bs signifies the Brillouin function for spin S, 
where fi = m—fi2 with /xi, #2, X, as defined in Sec. 2, and 
where (• • - ) K can be taken over the reciprocal lattice 
or sublattice. For type-2 order (Fig. 1) we may write 

fX+\ = iJl(ciC2+C2Cz+CdC1) + ^J2(c1
2+C22+C2), (5.3) 

/£-X = 4 / i ( w a + W 8 + ^ i ) + 4 J r 2 ( J i 2 + r f + J 8 2 ) , (5.4) 

where a, c2, cz, are defined in (2.15), and where 

s i= sin(Kxa), s2= sm(Kya), 53= sm(Kea). (5.5) 

The averages are taken for each component of wave 
vector running independently between —w/a and w/a, 

FIG. 9. The same as Fig. 7 but for third-nearest neighbors. and we have computed S for the case 5 = f . This value 

3 4 5 

kT/j2S(S-M) 

which agrees with the susceptibility calculations of 
Sec. 3 [Eqs. (3.1), (3.5), (3.6)]. 

5. SUBLATTICE MAGNETIZATION FOR T<TN 

In this final section, we shall investigate the zero-field 
sublattice magnetization as a function of temperature 
in the ordered state. This is of particular interest for 
the fee type-2 antiferromagnetic order because a number 
of salts possessing this spin arrangement have been 
found to have sublattice magnetizations which deviate 
very significantly as functions of T/TN from the results 
of molecular field theory.14'18-19 One possible cause of 
this deviation has been suggested by Rodbell et al.Q to 
be the inadequacy of Hamiltonian (1.1) to describe the 
substances in question. They point out that the in
clusion of biquadratic exchange terms helps to bring 
the molecular-field theory into accord with experiment. 
On the other hand, Harris9 concludes, from an analysis 
of an fee Ising lattice using a Monte Carlo method, 
that the effect may possibly be due almost entirely to 
the crudeness of molecular-field theory. His work 
suggests that a more accurate treatment of Hamiltonian 
(1.1) would lead to results for sublattice magnetization 
as a function of T/TN which differ markedly from the 
molecular field Brillouin curves. 

We shall again use the Green's function expressions 
from Ref. 1 and compute them for the particular case 
of the fee type-2 order. Sublattice magnetization S, in 
the absence of an external magnetic field, is given, in 
the random-phase Green's function approximation, by 
Eqs. (2.23) and (2.24) of Ref. 1. They are 

S / 5 = 5 . ( 2 5 coth"1*), (5.1) 

18 C. G. Shull, W. A. Strausser, and E. O. Wollan, Phys. Rev. 
83 333 (1951). 

»A . J. Sievers, III, and M. Tinkham, Phys. Rev. 129, 1566 
(1963). 

is the one applicable to MnO, which is the simplest and 
most widely discussed of the salts with the fee type-2 
spin arrangement, and is also the value considered by 
Harris. 

The results of the computation are shown in Fig. 11, 
where we plot S as a function of kT/J2 for temperatures 
between absolute zero and the Neel point. We observe 
that the Neel temperature TN and the value of S at 
T=0 are both dependent on the parameter J2/J1 and, 
thus, differ very markedly from the molecular-field 
results which are 

S r - o = S = i , kTN/J2=2S(S+l) =17 .5 . (5.6) 

The shape of the curves, however, when plotted in the 
reduced form B/ST-+O against T/T^, is found to be 
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FIG. 11. Average spin per site as a function of temperature 
(between absolute zero and Neel point) for the type-2 antiferro-
magnetic order in the fee lattice and the case *S=f. 

almost completely insensitive to J2/J1 and, moreover, 
is described very well indeed by the molecular-field 
Brillouin function for S = § . I t is precisely this latter 
property, viz., shape of the reduced curves, which is 
found to be anomalous in MnO, the measured sub-
lattice magnetization having a much slower "roll-off" 
than the associated Brillouin curve. We are therefore 
in disagreement with Harris and find that the observed 
sublattice magnetization curve cannot be explained by 
a Hamiltonian of form (1.1). The fault with the Monte 
Carlo method as described by Harris9 is that it calcu

lates a quantity (l/N)J2i\Si*\, where the summation is 
over all lattice sites. This quantity is not the sublattice 
spin per site S. I t does not, as Harris notes, go to zero 
at TV, and it will take values which are larger than the 
true sublattice magnetization at all temperatures. This 
lack of sensitivity of reduced magnetization curves to 
the ratio of exchange parameters in simple Heisenberg 
exchange problems has also been noted recently by 
Callen and Callen20 for the case of fee ferromagnets by 
using a two-particle cluster approximation. 

A satisfactory solution of the MnO problem seems 
likely, therefore, to depend on the modification of 
Hamiltonian (1.1). In Part I I , the magnetic properties 
of MnO will be discussed in detail, and we shall show 
that the anomalous temperature dependence of sub-
lattice magnetization is due almost entirely to effects 
produced by the small distortion of the lattice from 
cubic form, which occurs at temperatures below the 
Neel point. The importance of this distortion in affecting 
the magnetic properties of MnO was first pointed out 
by Kanamori,21 and was later discussed in more detail 
by Rodbell and Owen22 using a molecular-field theory. 
To obtain a quantitative agreement between theory 
and experiment, however, we shall find that it is neces
sary to use theories which are more accurate than the 
molecular field. 
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