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Antiferromagnetism in the Face-Centered Cubic Lattice. II. 
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The somewhat anomalous properties of MnO have recently been cited as evidence for the existence of 
significant biquadratic exchange in this salt. The present paper suggests that this conclusion is not justified 
and that the magnetic properties of MnO can be quantitatively explained in the complete absence of bi
quadratic exchange. MnO is a face-centered cubic antiferromagnet. The anomalous properties are shown to 
result from the sensitivity of bilinear exchange to inter-ion distance, which results (for MnO) in an ani
sotropic distortion of the cubic lattice for temperatures below the Neel point TN. The random-phase Green's 
function theory of Part I is used to describe the magnetic susceptibility for T>TN, and to investigate the 
sublattice magnetization as a function of temperature for T<TN. Good agreement between theory and 
experiment is obtained, and values / i = 10°K and / 2 = H ° K are calculated for the nearest-neighbor and 
next-nearest-neighbor exchange parameters,.respectively. The molecular-field theory is shown to be far too 
crude an approximation to give quantitatively satisfactory results. The Mn55 zero-field nuclear magnetic 
resonance (NMR) has been observed in the antiferromagnetic state of MnO and, from the temperature 
dependence of the resonance frequency, information regarding the spin deviation as a function of tempera
ture is derived. A simple noninteracting spin-wave theory has been developed to describe the spin deviation, 
and a satisfactory description of the low-temperature properties is obtained. A calculation is also presented 
for the contribution of the indirect nuclear spin-spin interaction to the NMR linewidth. 

1. INTRODUCTION 

THE magnetic properties of the antiferromagnet 
MnO are currently of considerable interest be

cause it has been suggested1 that they present evidence 
for the existence of intrinsic biquadratic exchange in 
ordered magnetic systems. Theoretically, the super-
exchange mechanism is expected to give rise to terms 
of the form y(Si«S2)2 in addition to the usual Heisen-
berg bilinear exchange,2 but these biquadratic effects 
occur in a high order of a fairly rapidly converging 
perturbation theory, and are therefore small and diffi
cult to calculate with any accuracy. First efforts 
towards a quantitative evaluation of j have recently 
been made by Huang and Orbach,3 who find that it 
may well be large enough to produce observable effects 
in MnO. 

The situation is complicated, however, by the fact 
that effective biquadratic terms can also arise via a 
mechanism in which a balance is set up between ex
change and elastic forces.4-6 The question arises, there
fore, as to which effect is predominantly responsible 
for the anomalous magnetic properties of MnO. This 
question has been further complicated by a recent 
calculation by Harris,7 which suggests that some of 
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the anomalies, at least, may be explained without 
recourse to either of the above mechanisms, but merely 
by treating the bilinear exchange Hamiltonian in a 
sufficiently accurate statistical approximation. 

In the present paper, we use Green's function and 
spin-wave techniques to examine in detail the magnetic 
properties of MnO. We find that the so called anoma
lous properties may be understood by studying the 
effects of exchange-induced distortion of the cubic 
lattice structure,6 and that a quantitative agreement 
between theory and experiment may be obtained by 
use of the above statistical theories. The molecular-
field theory would seem to be far too crude and approxi
mation to give quantitatively satisfactory results. We 
are in disagreement with Harris,7 finding that the 
magnetic properties cannot be explained if exchange-
induced crystal distortion is ignored (see Part I). They 
may be quantitatively explained, however, without any 
need to invoke superexchange biquadratic terms and 
therefore they do not present evidence for the existence 
of such terms. On the other hand, we are not able to 
show that biquadratic interactions are necessarily en
tirely absent, because the most significant anomalous 
property (the shape of the magnetization curve) is 
rather insensitive to the presence of a small biquadratic 
term in addition to the observed magnetostriction. 

The large effects of exchange-induced distortion in 
MnO result from a rather unusual property of the 
antiferromagnetic spin pattern found in this salt. 
Similar effects may be expected to occur in other salts 
which exhibit this same spin structure (e.g., NiO, 
a-MnS) but such effects can be expected to be a com
parative rarity in antiferromagnetism as a whole. 

MnO is a face-centered cubic (fee) antiferromagnet 
with the rocksalt crystal structure. Early neutron 
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FIG. 1. The type-2 antiferromagnetic spin arrangement in the 
fee lattice. In MnO, the axis of spin alignment is contained in the 
[111] plane. 

diffraction experiments8 gave evidence that the spin 
ordering was of the second kind9 (Fig. 1), with all 
next-nearest neighbors showing an antiparallel correla
tion, but questions remained for many years as to the 
preferred direction of spin alignment with respect to 
the crystal axes and to the possibility of a multiaxis 
spin structure.10,11 

In MnO, the ionic configuration M n + + 0 should 
predominate (although recent susceptibility experi
ments12,13 indicate that this may not be the case for 
temperatures much above 300°K), so that the manga
nese ions are predominantly in S states. For such a 
case, anisotropy will, in general, be small and arise 
dominantly from magnetic dipolar interactions. For 
MnO, the resulting anisotropy energy amounts at 
most to only a few percent of the isotropic exchange 
energy. For the fee ordering of the second kind, Kaplan14 

has shown that the dipolar interactions restrict the 
spins to lie in the ferromagnetic [111] planes. Keffer 
and 0 ' Sullivan10 and Roth11 point out that this is only 
true if one disregards the possibility of multiaxial spin 
patterns. They suggest, however, that the single-axis 
structure is probably stabilized by the small rhombo-
hedral distortion of the lattice15 which occurs for tem
peratures below the Neel point IV. More recently, 
Nagamiya16 has shown that this distortion does, in
deed, stabilize the single-axis structure, and there can 
now be little doubt that the spins in MnO are confined 

8 C. G. Shull, W. A. Strausser, and E. O. Wollan, Phys. Rev. 
83, 333 (1951). 
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12 J. J. Banewicz, R. F. Heidelberg, and A. H. Luxem, J. Phys. 

Chem. 65, 615 (1961). 
13 J. A. Poulis, C. H. Massen, and P. Van der Leeden, J. Phys. 

Soc. Japan, 17, Suppl. B-I, 212 (1962). 
14 J. I.Kaplan, J. Chem. Phys. 22, 1709 (1954). 
15 N. C. Tombs and H. P. Rooksby, Nature 165, 442 (1950). 
16 T. Nagamiya, in The Second Welch Foundation Conference, 
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in [11V\ planes. A very similar situation occurs for 
NiO where the existence of a single-axis spin structure . 
has now been confirmed experimentally.17 

The spin structure of MnO is, therefore, as shown in 
Fig. 1 except that the direction of the single axis of 
spin alignment should be contained in the [111] plane 
(a situation which is very difficult to illustrate dia-
gramatically). The spins are not confined to any 
particular direction within the plane until further ani
sotropy terms are introduced. Possible sources of such 
an in-plane anisotropy are discussed by Keffer and 
O'Sullivan,10 who indicate that they are likely to be 
considerably smaller than the dipolar anisotropy. 

For temperatures above IV, MnO has a cubic 
structure and we shall describe it by the Hamiltonian 

S C - E / i S r S H - E ^ S r S y , (1.1) 
nn nnn 

where Enn and Ennn run over all pairs of nearest and 
next-nearest neighbors, respectively. We assume that 
all exchange interactions more remote than these are 
negligible. For temperatures below TN we shall include 
the contributions to the spin Hamiltonian which result 
from crystal distortion. The importance of such con
tributions for MnO were noted by Kanamori,18 and 
have been discussed more recently by Rodbell and 
Owen6 who use a molecular-field theory. 

Since bilinear exchange is, in general, separation 
dependent, most dominantly isotropic magnetic sys
tems will undergo an isotropic contraction when long-
range magnetic order sets in. This contraction de
creases the free energy by lowering the exchange 
energy by more than it increases the elastic strain 
energy. For MnO, however, the effect is small and does 
not significantly modify the magnetic properties of the 
system.19 

The unusual feature of the fee type-2 spin pattern, 
which allows for a very much larger effect in MnO, con
cerns the relative orientation of the nearest-neighbor 
spins. There are six parallel and six antiparallel nearest 
neighbors of any particular spin. The six parallel 
neighbors are all contained in the same [111] plane, 
and the six antiparallel neighbors are all out of this 
plane. If we consider possible anisotropic deformations 
of the cubic structure, it is immediately evident that 
such a system gains exchange energy from a contrac
tion along the (111) body diagonal. For MnO, the 
balance between exchange and elastic forces occurs 
when the distorted cube corner angles are i x ± A , 
where20 A = 1.1X 10~2 at the absolute zero of temperature. 

The accompanying magnetic effects are described to 
a good approximation (see Sec. 3) by introducing, for 
temperatures below TV, two nearest-neighbor bilinear 

17 W. L. Roth and G. A. Slack, J. Appl. Phys. 31, 352S (1960). 
18 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 17, 197 (1957). 
19 A. J. Sievers, III, and M. Tinkham, Phys. Rev. 129, 1566 

(1963). 
20 D. S. Rodbell, L. M. Osika, and P. E. Lawrence, J. Appl. 

Phys. 36, 666 (1965). 
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exchange parameters 7 i ± =/ i±0.10^( /S) 2 , where S is 
the average spin per site, where k is the Boltzmann 
constant, and where the larger exchange is to be as
sociated with the antiparallel neighbors. For large spin 
values and low temperatures, these effects are very 
similar to those which would result from the presence 
of biquadratic exchange in the system. In general, 
however, this is not the case (e.g., for T>T^, the 
distortion effect is completely inoperative whereas a 
true biquadratic exchange would still be effective) and 
biquadratic contributions to the Hamiltonian are much 
more difficult to treat in a satisfactory approximation 
than are the distortion terms. 

Because of this situation, we have attempted to 
describe the magnetic properties of MnO without in
troducing real biquadratic exchange. Our main result 
is that a quantitative agreement between theory and 
those experimental results which are presently availa
ble can be obtained in this way. 

In Sec. 2 we discuss the properties of the paramag
netic state using Eq. (1.1), and we evaluate J\ and J2 

using Green's function theory. We find 7 i=10°K and 
J2— 11°K. The antiferromagnetic state is considered in 
Sec. 3, where we discuss the origin of the crystal dis
tortion and its effect on the spin Hamiltonian, and 
then evaluate the sublattice magnetization as a func
tion of temperature. The latter calculation is carried 
out by molecular-field and Green's function techniques 
and the results compared. We find that the molecular-
field theory seriously underestimates the effects of the 
lattice distortion on sublattice magnetization, but that 
the Green's function theory indicates an agreement 
between the observed magnitude of the crystal distor
tion and the shape of the magnetization curves as 
measured by neutron diffraction experiments.8 

In Sec. 4, we calculate the temperature dependence 
of sublattice magnetization at very low temperatures 
using a simple noninteracting spin-wave approxima
tion. Section 5 describes the experimental observation 
of Mn55 zero-field nuclear magnetic resonance in anti-
ferromagnetic MnO, and discusses the interpretation 
of the temperature variation of this frequency in terms 
of the spin-wave calculations of Sec. 4. Also discussed 
is the resonance linewidth and its dependence on the 
small "in-plane" anisotropy. Finally, Sec. 6 considers 
the paramagnetic state in more detail. Wre find that 
there can be no anisotropic distortion of the lattice in 
the absence of long-range order, and discuss the signifi
cance of this result when one considers the two-spin 
correlation functions in the paramagnetic state. 

2. THE PARAMAGNETIC STATE 

For temperatures above the Neel point, we describe 
the magnetic properties of MnO using Hamiltonian 
(1.1). Anisotropy in this temperature region is cer
tainly negligible as long as the M n + + 0 description 

of the system is valid. Let us first consider the transi
tion temperature itself, which is 117dLl°K.21~22 

Theoretical estimates for magnetic-transition tem
peratures in terms of bilinear-exchange parameters are 
usually no better than semiquantitative, particularly 
so for the more complex antiferromagnetic orders of 
which Fig. 1 is a good example. Perhaps the best 
estimates presently available for these complicated spin 
structures are those obtained from Green's function 
theories. Such a calculation has been carried out for 
the fee type-2 order by Lines23 using the random-phase 
Green's function approximation. However, there is 
reason to believe that, for spin f (which is the case appli
cable to MnO), these results are likely to be a little low. 
The only systems for which the transition temperatures 
are known with good accuracy are the simple cubic, 
body-centered cubic, and face-centered cubic ferro-
magnets with nearest-neighbor exchange only.24-25 For 
these cases and spin f, the random-phase Green's 
function approximation is, respectively, about 7, 5, 
and 5 % too low. Noting that the discrepancy is largest 
for the least stable (smallest value of kTc/J) system, 
and that the situation for MnO will be less stable 
than any of these, we shall suppose that the best 
theoretical estimates for TN in the fee type-2 order, 
are values about 10% above the random-phase Green's 
function results. These values are shown graphically 
in Fig. 2. 

There are very many published measurements of 
magnetic susceptibility in MnO for temperatures above 

0.50 0.75 1.00 1.25 1.50 

J2A 

FIG. 2. Theoretical estimates of Neel temperature for the fee 
type-2 antiferromagnetic order plotted as a function of the ratio 
of next-nearest-neighbor to nearest-neighbor exchange (see text). 

21 R. WJMillar, J. Am. Chem. Soc. 50, 1875 (1928). 
22 S. S. Todd and K. R. Bonnickson, J. Am. Chem. Soc. 73, 

3894 (1951). 
23 M. E. Lines, Phys. Rev. 135, A1336 (1964). 
24 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 
25 R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1963). 
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the Neel point.12,13'26~~31 They are by no means in quan
titative agreement, although there now seems to be 
little doubt12'13 that, for temperatures 7 » 7 V , the 
susceptibility cannot be described by a function 
C/(T+8), where C is the Curie constant for spin f. At 
such temperatures (5TN<T<1QTN), short-range-order 
effects are small and the system should be described 
to quite a good approximation by the molecular-field 
theory. Experiment shows, however, that the measured 
value of C is up to 15% below the spin § value. The 
most likely explanation lies with the thermal excitation 
of the following reactions, in which the electronic 
states represented are separated by large distances in 
the crystal: 

0—(2^6)+Mn++(3d5) -> 0~(2p")+Mn+(3dQ), (2.1) 

Mn++(3J5)+Mn++(3d5) -> 
Mn+(3d6)+Mn+++(3d4). (2.2) 

Whatever the reasons, the fact that the Curie con
stant is so markedly reduced from the spin-f value 
means that no reliance can be attached to any simple 
interpretation of the associated Curie-Weiss constant 
6. Thus, no information concerning Ji and J 2 is easily 
obtainable from this very high-temperature data. 

For temperatures in the range TN-+2TNl accu
rate susceptibility measurements have been made by 
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FIG. 3. Curves of magnetic susceptibility, calculated in the 
random-phase Green's function approximation for spin §, plotted 
as a function of temperature and compared with the experi
mental data of Lindsay (Ref. 32) for the case 0=54O°K. (0 is 
the Curie-Weiss constant). 
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FIG. 4. The curve / 2 / / i = 1.0 of Fig. 3 replotted by putting 
TN— 117°K and again compared with Lindsay's data. 

Lindsay32 (Fig. 3). In this comparatively low-tempera
ture region, we shall suppose13 that the MnO system 
may still be described in terms of M n + + 0 — . If so, we 
can fit the experimental data to the Green's function 
theory of Part I. This is done in Figs. 3 and 4. The 
"best fit" determines closely the value of the Curie-
Weiss constant as 

6= ( 1 2 / i + 6 / 2 ) 5 ( 6 , + l ) / 3 ^ = 540°K, (2.3) 

and also suggests that the ratio J2/J1 is not far removed 
from unity. Equation (2.3) reduces to 2jri-f-Jr

2=30.9°K. 
I t is interesting to note that the Green's function theory 
allows us to extract two pieces of information about 
the exchange parameters from the paramagnetic sus
ceptibility where a molecular-field theory would give 
only one. 

We may now plot the reduced susceptibility X/X{TN) 
against T/TN, again comparing the Green's function 
results of Part I with Lindsay's data. The results are 
shown in Fig. 5. For temperatures T^<T<2TN, the 
experimental values fall close to the curves J 2/J i~ 1.2 
and 1.3. Using Lindsay's estimated relative accuracy 
( ^ 1 % ) , we estimate l . l < / 2 / / i < 1 . 5 . For higher tem
peratures, the experimental results of Refs. 12, 27, and 
30 fall close to the curve ^2/^1= 1.5. Allowing, very 
roughly, for a Curie constant reduction of 10 to 15% 
at very high temperatures, the ratio ^2/^1= 1.1 would 
seem to be more likely than the value 1.5. 

Measurements of magnetic susceptibility at the Neel 
point are reported in Refs. 1, 27, 28, and 30. Values 
range from 79 to 84, in units of 10~6 emu/g. McGuire 
and Happel28 measure the susceptibility as a function 
of magnetic field, whereas most of the other measure
ments are reported for a single arbitrary value of field, 
and their results suggest that the lower values are 
more likely to apply to the zero-field limit. Theoreti-

32 R. Lindsay (unpublished). 
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cally, the zero field magnetic susceptibility at TN may 
be written,23 in standard notation, 

X{TN)-NgW/n{J1+J,), (2.4) 

where the molecular-field theory and the random-
phase Green's-function theory give the same result. 
Equating this expression to 80X1O"6 emu/g, gives 
/ ! + / , = 22.1°K. 

A check on this value for /1+ /2 can be obtained 
from the perpendicular susceptibility at absolute zero. 
The only direct measurement of this quantity presently 
available is that of Rodbell et al,1 who give Xx(r=0) 
equal to (74±5)10~6 emu/g. Theoretically, the best 
expression for low-temperature perpendicular suscepti
bility is that obtained from spin-wave33 or Green's 
function23 theories. For MnO it may be written 

X l ( r=o)=iVgW/[ i2 / i + ( i+A n i l ) 
+ 12/2(1 + Annn)], (2.5) 

where 7i+= Ji+0.l0k(S)2, as described in Sec. 1 (see 
also Sec. 3), and where Ann and Annn refer respectively 
to antiparallel nearest and next-nearest neighbors i and 

j , where 
A=<S,-*Sy,>/65)*. (2.6) 

In this expression, x is a direction perpendicular to the 
spin alignment, and the angular brackets represent an 
ensemble average. The effects represented by Ann and 
Annn are quite small and for our purpose it will be 
sufficient to write Ann=Annn=A. For the simple cubic 
antiferromagnet A = 0.13/£, or, for spin f, A « 0.05. For 
MnO, the value is likely to be a little smaller, because 
the zero-point spin-wave deviations are smaller for 

FIG. 5. The same as Fig. 3 but with the curves now plotted on 
a reduced scale making them independent of the absolute magni
tude of exchange. The open circles are the experimental results 
of Lindsay (Ref. 32), the closed circles are those of Johnston and 
Heikes (Ref. 27). 

MnO (see Sec. 4) than they are for the isotropic simple 
cubic case. We shall take values A«0.04, and 7i+—J\ 
«0.6°K, when we find 

Xl ( r = 0) = NgWi (12/i++12/2) 1.04 
= (74±5)10~6emu/g. (2.7) 

and the result /1+/2=22.4=fcl.5°K. 
We may now combine the above results to see 

whether they are consistent within the available theo
ries and, if so, to estimate the values of J\ and J% 
which exist in MnO. Within the range 0 .8< / 2 / / i< 1.5, 
the condition that TN is 117°K and is given by Fig. 2 
may be written, to a good approximation, as 

/2_0.3J1== 8.0°K. (2.8) 

(2.9) 

We may summarize our findings as follows: 

(i) framx(Z>ZV); 2/1+/2=30.9°K, 

(ii) fromx(ZV); J 1+/ 2=22.1°K, 

(hi) from TV; / 2 -0 .3/ i=8.0 o K, 

(iv) from X(T> TN); J*/Ji= 1.25±0.25. 

The first three results should not be in error by more 
than 10% and may well be good to ~ 5 % . Values of 
Ji and / 2 are readily found which satisfy conditions 
(i) to (iii) to better than 5% and are also within the 
limits set by (iv). The "best-fit" values for the ex
change parameters are close to 

Ji=10°K, 7 2 =H°K, (2.10) 

giving a ratio J 2 / / i = l . l . This ratio is in excellent 
agreement with that measured by Coles, Orton, and 
Owen34 for Mn++ pairs in MgO, which is J2/Ji=1.0 
±0.1. The paramagnetic resonance pair spectrum, how
ever, cannot be satisfactorily interpreted without the 
introduction of biquadratic exchange terms,35 whose 
magnitudes are much larger than would seem possible 
(in view of the results of the present paper) for equiva
lent terms in MnO. We do not understand the reason 
for this discrepancy at the present time. 

3. THE ANTIFERROMAGNETIC STATE 

Long range antiferromagnetic order sets in for MnO, 
with the fee type-2 spin pattern, when the temperature 
is reduced to about 117°K. At and below this tempera
ture, lattice distortions are observed, as described in 
Sec. 1. For MnO, the effects of isotropic volume con
traction are very small compared with those of the 
rhombohedral deformation, and we shall neglect the 
former.6 

Let the deformed cube have corner angles §7rzl=A. 
For small values of A, the distance d+ between parallel 
pairs of nearest-neighbor spins and the distance dr 

33 R. Kubo, Phys. Rev. 87, 568 (1952). 

34 B. A. Coles, J. W. Orton, and J. Owen, Phys. Rev. Letters 
4, 116 (1960). 

35 E. A. Harris and J. Owen, Phys. Rev. Letters 11, 9 (1963). 
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between antiparallel pairs of nearest-neighbor spins is 

rf±-d(ld=jA), (3.1) 

where d is the nearest-neighbor distance in the cubic 
state. 

In the same small A limit, we assume that the 
exchange interaction between dr neighbors (Ji+) and 
between the d+ neighbors (Jr~) may be written 

/ i ± = / i [ l + c ( r f ± - r f ) / d ] = / i ( l ± i € A ) , (3.2) 

where e and A are positive if exchange decreases with 
increasing spin separation. 

The free energy of the MnO system is dominantly 
made up of an exchange part Fex, and an elastic part jPei-
The former may be written in terms of the exchange 
Hamiltonian 5C as 

^ex= -kT ln[tr exp( -3C/&r) ] , (3.3) 
where 

3 C = E / r S r S H - E - f i + S . - S H - i ; / S S . - S , , (3.4) 
nn nn nnn 

and where ]Tnnp and J2nna refer to summations over 
nearest-neighbor parallel and antiparallel spin pairs, 
respectively. The elastic part of the free energy con
tains, in our approximation, a single shear term of the 
form 

Fel=lCA\ (3.5) 

where C( — 3Cu) has been measured, for MnO, by 
Oliver36 and found to be 2.37X1012 dyne cm~2 to 
within about 5%. 

The equilibrium situation is found by minimizing 
the total free energy with respect to A. Noting that 

dF^/dA=(d3C/dA), (3.6) 

where the angular brackets denote a thermal average 
over the ensemble, the equilibrium condition becomes 

<d3C/dA)+CA = 0. (3.7) 

Using Eqs. (3.2) and (3.4), this condition provides us 
with an expression for the equilibrium distortion Aeq in 
the form 

Aeq= tf*l/l€[<S<. S y ) n ^ - <S,- Sy)nn«]/8C , (3.8) 

where Zi(=12) is the number of nearest neighbors of 
any particular spin, where N is the number of spins in 
the system, and where {• • -)nnp and (• • - ) m i

a refer to 
thermal averages over parallel and antiparallel nearest 
neighbors, respectively. 

The molecular-field estimate of Aeq, as obtained by 
Rodbell and Owen,6 results (for T<TN) from the 
approximation 

<S<- S y ) m i ^ - < S r SyW*- (Sy, (3.9) 
and is 

Ae<l=NZlJlt(Sy/AC. (3.10) 

36 D. W. Oliver (private communication). 

Near the absolute zero of temperature, measurement 
of distortion finds that the parameter Aeq is close to 
1.1X10"2 for MnO.20 For temperatures above the Neel 
point it is zero.15 If this last result is exact, it indicates, 
from (3.8), that (SrSy)n n

p=(S»-Sj)n n
a throughout the 

paramagnetic region, in agreement with the Green's 
function calculations of Part I, but in disagreement 
with the interpretation of diffuse neutron-scattering 
measurements as given by Blech and Averbach.37 We 
shall discuss this question in more detail in Sec. 6. 

For temperatures between zero and TV, the lattice 
strain varies closely as (S)2 (Ref. 20), and would seem 
to indicate that the approximation (3.9) is a good one. 
This allows us to use with some confidence the relation
ship (3.10) in place of (3.8), and results in a con
siderable simplification of the associated statistical 
problem. Using the measured value of Aeq at zero 
temperature, together with the value of $(=2.43) 
which the spin-wave theory of Sec. 4 calculates for the 
average spin at 0°K, we find from Eq. (3.10), the result 
Jiec^230°K. Inserting Aeq into the expression for the 
total (exchange plus strain) energy, we find that the 
system is described to a good approximation by (3.4), if 

/ i ± = / i d = i ( S ) 2 , (3.11) 

where j = 0.10&, and where k is Boltzmann's constant. 
Thus, a nearest-neighbor distance change of ~ \°/0 

produces a change in exchange J\ of > 5%. 
The statistical problem is now completely defined 

except for the introduction of anisotropy terms which, 
however, are so small that they can be neglected out
side the spin-wave region. The major "anomalous" 
feature of the magnetic properties of MnO in the anti-
ferromagnetic state is the sublattice magnetization as 
a function of temperature. We shall calculate this 
magnetization using the Hamiltonian (3.4), where J^ 
are given by (3.11), and neglecting anisotropy. Both 
the random-phase Green's function and the molecular-
field approximations will be used so that their results 
may be compared. 

In molecular-field theory, the sublattice magnetiza
tion may be written in terms of the Brillouin function 
(Bs) for spin S in the form 

S/S^Bs(gfxBSHeii/kT)7 (3.12) 

where Hen is the effective (or molecular) field acting 
on a typical spin S*-, and is related to the interaction 
energy V of the spin with its time averaged surround
ings by 

HM=-V/gvBSi*, (3.13) 

where % is the axis of spin alignment. For the case of 
MnO and Hamiltonian (3.4), we have 

F = 5 i « S ( 6 / r - 6 / i + - 6 / 2 ) , (3.14) 

3 7 1 . A. Blech and B. L. Averbach, Physics 1, 31 (1964). 
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1.0 1.5 
kT/j2s(s+i) 

FIG. 6. Average spin per site S as a function of temperature, 
calculated in the molecular-field approximation [Eq. (3.16)] for 
spin f and for various values of the distortion parameter j/J2. 
The curves are independent of nearest-neighbor exchange J\. 

from which it follows that 

8/S=Bl6SS(J2+Ji+-Jr)/kT']. (3.15) 

Using Eq. (3.11), we find a molecular-field implicit 
equation for S in the form 

S/S=BJ£6SB(J%+ 2 j (SY)/k r ] . (3.16) 

The solutions of this equation for 5 = f are shown in 
Fig. 6, where average spin S is plotted against kT/J2 

for various values of the parameter j/J2- These curves 
differ from those of Rodbell et al.,1 who also attempted 
a molecular-field solution of the problem, because of 
an error in the interpretation of their Eq. (4). It would 
appear that their curves result from the assumption 
that the function F(a) of Eq. (4) is independent of j \ 
and j2 (their notation), which is not the case. 

The shape of the sublattice spin vs temperature 
curve which is measured by neutron diffraction tech
niques8 for MnO, is close to the y//2=0.04 curve of 
Fig. 6. [The equivalent result from Ref. 1 (putting j2 

= 0 and j\=j) is j / j ^ 0 . 0 2 3 ] . This is to be compared 
with the value j/J2= 0.009 which is the contribution 
to be expected from the rhombohedral distortion. 

Now let us consider the results of Green's function 
theory. In the random-phase Green's function approxi
mation, the sublattice magnetization as a function of 
temperature is given23 by 

where 
£/S=£ s(2Scotrr%), 

-/§Cu2-A2)1/2" 

(3.17) 

/ M r£(M2-A2)1/2-i\ 
x==/ c o t h \ (3<18) 

\ [> 2 -A 2 ;P L 2kT J / K 

kT/J2 

FIG. 7. Average spin per site S as a function of temperature, 
calculated in the random-phase Green's function approximation 
[Eqs. (3.17) and (3.18)3 for spin f, for / 2 = / i , and for various 
values of distortion parameter. The closed circles are the experi
mental results of Shull, Strausser, and Wollan (Ref. 8). 

and where (• • • )K is an average for the reciprocal lattice 
vector K running over values allowed by periodic 
boundary conditions in the first Brillouin zone of the 
reciprocal sublattice. The functions JJL and X are given 
in Part I for the case of MnO, but no allowance is 
made for lattice distortion. The modification required 
to include the distortion is very simple indeed. It is 
merely necessary to replace Ji by J{~ or J^~ in the 
expressions for ix and X, depending upon whether the 
nearest-neighbor pairs are on the same or different 
sublattices respectively [Eqs. (2.4), (2.5), and (2.6) of 
Part I ] . The resulting expressions for ju and X are 
given by 

fx+\ = 4,J1(c1c2+c2cz+czc1)+4:J2(ci2+c^+^) 
+ 4 i O S ) 2 ( 3 - W 2 - W 3 - ^ i ) , (3.19) 

jU-X==4/i(^i^2+^2^3+^3^l) + 4/2(^l 2+^2 2+^3 2 ) 

+4iOS) 2 (3 -^ 2 -c# i -c t f i ) , (3.20) 

where a and Si (i= 1, 2, 3) are defined in Part I, and 
are the cosines and sines of three variables which in 
(3.18) may each be taken to run independently between 
— T and x. 

Solutions of (3.17), unlike those of (3.16), depend 
upon Ji. We have considered the case J\ — J2 to be 
fairly representative of the situation for MnO and, 
using the computer to evaluate the averages (• • • )K, 
we have solved (3.17) for S as a function of kT/J2 for 
the case 5 = 1 , and for a series of values j/J2. The 
results are shown in Fig. 7 and are to be contrasted 
with the molecular-field estimates of Fig. 6. They 
suggest that the latter grossly underestimates the 
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effects of lattice distortion on the curve shape, par
ticularly so for very small values of j . For example, 
the Green's function curve j/J%= 0.001 corresponds 
closely in shape to the molecular-field curve with dis
tortion parameter ten times as large. Although the 
random-phase Green's function approximation may it
self be of questionable validity,25 especially for tempera
tures very close to 2V, the breakdown of molecular-
field theory for the present case is confirmed (for 
T<\TN) by the spin-wave calculation of Sec. 4. 

From Fig. 7 we see that for all except the very small 
values of J/J2, the transition at 2V is of first order 
(the sublattice magnetization coming to zero discon-
tinuously). The critical value of j/J2 for which the 
transition changes from second to first order has not 
been calculated, but it is certainly below 0.005. Thus, 
the transition in MnO should be of first order even if 
there is no real biquadratic exchange in the system. 
This would seem to be consistent with the experimental 
specific-heat data for MnO, which show an anomalously 
large peak at TN and may include a small latent heat. 
The dashed parts of the curves in Figs. 6 and 7 are 
solutions which are energetically unstable. 

At the present time, no published experimental in
formation is available for MnO concerning the absolute 
value of sublattice spin as a function of temperature. 
Shull, Strausser, and Wollan,8 however, have measured 
the temperature dependence of the intensity of neutron 
scattering from the [111] planes in MnO, and this 
intensity should be closely proportional to the square 
of the sublattice magnetization. The published meas
urements range from TV down to nearly | 7 V , but have 
not, unfortunately, been normalized at low tempera
tures. In Fig. 7 we show that they can be fitted very well 
to the y / / 2 = 0.01 curve, which is close to the value ex
pected to arise from the MnO distortion. However, a 
good fit may also be obtained for somewhat larger 
values of j/J2 (—0.02) because the curves, as functions 
of T/TN, are rather insensitive to distortion when j/J2 

>0.01. In the absence of more detailed experimental 
information, it is not possible to discount these larger 
values. 

With this difficulty in mind, it was decided to meas
ure the temperature dependence of sublattice mag
netization at very low temperatures. This has been 
done by studying the Mn55 zero-field nuclear magnetic 
resonance (NMR) in the antiferromagnetic state of 
MnO. The temperature dependence of the zero-field 
N M R has been observed at temperatures between 1.5 
and 27°K (the experiment is described in detail in 
Sec. 5), and enables a measure of ST-+O~- S to be ob
tained in this low-temperature region. These results 
are particularly valuable because they are observed 
for a range of temperature where simple spin-wave 
theory should be an excellent approximation. Such a 
theory can be developed to include the effects of ani-
sotropy which have so far been neglected, and will 
almost certainly give results of better accuracy than 

can be obtained by the use of Green's-function theory 
in the §7V —> 7V temperature region. 

4. SPIN-WAVE THEORY AND SUBLATTICE 
MAGNETIZATION 

In this section we shall develop a simple noninter-
acting spin-wave theory for MnO. We shall consider, 
in particular, the small deviation of sublattice mag
netization from its value at absolute zero. At very low 
temperatures, this deviation depends significantly on 
anisotropy, and it is important that such terms are 
included even in salts which, like MnO, have anisotropy 
energies which amount to only a few percent of the 
isotropic exchange energy. 

The origins of the major sources of anisotropy in 
MnO have been discussed by Keffer and O'Sullivan.10 

As discussed in Sec. 1, the largest contribution to 
anisotropy is probably that from dipole-dipole inter
actions, which constrains the spins to lie in [111] 
planes. Other smaller sources of anisotropy will add to 
this "out-of-plane" anisotropy, and will also give rise 
to an "in-plane" anisotropy which should pin down 
the spins to certain preferred orientations within the 
[111] planes. In this paper we shall not concern our
selves with the detailed forms of such anisotropy con
tributions, but wre shall simply represent them by 
effective anisotropy fields. With this approximation 
we may write the spin-wave Hamiltonian for MnO 
[compare (3.4)] as 

nn nn nnn 

+T, D1Six*+'£ D&S, (4.1) 
n n 

where ]T]u runs over all the spins in the lattice, where 
y and x are directions which are both normal to the 
direction z of spin alignment and are respectively 
parallel and perpendicular to a [111] plane, and where 
D\ and D2 are parameters which give a measure of 
"out-of-plane" and "in-plane" anisotropy, respectively. 
These parameters Di are related to the "out-of-plane" 
and "in-plane" anisotropy energies K\ and K2 by the 
equations 

Di=3Ki/2NS>, ( f= l , 2) (4.2) 

where N is the number of spins in the system. 
Introducing the spin-wave creation and annihilation 

operators of Holstein and Primakoff38 for the " u p " 
sublattice (j) and the "down" sublattice (k) in the 
form 

S^S-afa, S+=(2Sy/2ajy 

Sr=(2S)u*a*i (4.3) 

S*,= S+bk*h, S*+= (2S) 1 / 2 V, 
Sr=(2Sy*h; (4.4) 

38 T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940). 
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where S is the spin quantum number, and where S± 

— SxdziSy, the Hamiltonian (4.1) may be diagonalized 
by use of the transformations 

0) tfa^Qj+iPi, ^h=Rk+iSk, 

^2aj* = Q~iPj, ^J2bk*=Rk-iSk; 

(ii) & = ( 2 / A 0 1 / 2 E < 2 K ^ , 
K 

P y =(2 / t f ) 1 / s X;P*r* ' , 
K 

i ? ,= (2 /A0 I / 2 £*Ke- ' K - k , 
K 

^=(2/iV)1 '2 i :>SKe'-K-k ; 

(4.5) 

where WIK and W2K are positive integers denoting the 
number of spin waves with wave vector K and fre
quencies COIK and CO2K respectively, and where 

^ i K - ^ E C f t + ^ C f t - T ) ] 1 7 2 , (4.13) 

W = S [ ( / ? ! - - 7 ) 0 M - Y ) ] 1 / 2 (4.14) 

are the spin-wave energies. 
The z component of spin Sy is given by Eq. (4.3). 

Using the transformations (4.5) to (4.7) we find 

(4.6) BjM=S+i-(l/2N) 

X E ((qi,K2+q2,K2+pi,K2+p2,iL2)), (4.15) 
K 

where K is a reciprocal lattice vector which takes 
values determined by periodic boundary conditions 
and runs over %N points in the first Brillouin zone of 
the reciprocal sublattice, and 

(hi) &=icr(^i lK+g'2 fK+^i,-K+^2 l-K), 

-RK=|o"(gi,-K— q2,-K+iqi,K— iq2,K), 

PK=%<r(pl,-K+p2,-K+ipl,K+ip2,K) , 

SK=h<7(pl,K—p2,K-\-ipl,-K—ip2,-K) \ 

where a2—— i. In its normal coordinate form, the 
Hamiltonian now appears as 

(4.7) 

3C= - i i V 5 ( 5 + l ) [ « s / , + J « i ( / i + - / i - ) ] 

+hSJL {0i+y)qx,Ki+W2-y)pix2 

K 

+ (/3i-7)g2,K2+ (p2+y)p2,K2), (4.8) 

where the q and p coordinates satisfy the familiar 
position-momentum commutation relationships, where 
zi(=12) and zs(=6) are the number of nearest and 
next-nearest neighbors of any particular spin, and 
where 

/ 3 i = £ Jrei^'-^+Z2Ji+^i(Ji+-Jr)+2D1, (4.9) 

ft=E/reiK-(r-ro)+s2/2+i3i(/i+-/r)+2Z?2, (4.10) 

T = Z /i+e«-<'-«>>+ Z Jte*><™>. (4.11) 

In these equations, ]Cimp (2]nna) runs over all parallel 
(antiparallel) nearest neighbors r of ro, and Xlnnn runs 
over all next-nearest neighbors r of ro. 

The eigenvalues of (4.8) may be written 

Enln2^-iNS(S+l)lz2J2+iz1(J1+-Jf-)2 

+ £ {(%K+i)&o1K+ (»*K+£)fco*K} , (4.12) 
K 

where the angular bracket represents a thermal average 
over the ensemble, and where we have put terms 
(<ZI,K</2,K) and (pilKp2,K) equal to zero because of the 
orthogonality of the oscillators (qi,pi) and (#2,^2). Using 
the fact that the average values of kinetic and potential 
energy for a harmonic oscillator are equal, we find from 
(4.8) and (4.12), that 

<<Zi,K2>= ̂ i K + i ) [ ( ^ 2 - 7 ) / ( / 3 i + 7 ) ] 1 / 2 , (4.16) 

( ^ i , K 2 ) = ^ i K + i ) C ( f t + 7 ) / ( f t - T ) ] 1 / 2 , (4.17) 

together with similar equations for (#2,K2) and (p2,K2) 
which result from the above equations by changing the 
sign of 7. From the knowledge of the boson distribution 
function, the ensemble average (w»K+i) is readily cal
culated to be 

< » « + ! > = i coth(ha>iK/2kT) ( i= 1, 2). (4.18) 

The resulting expression for the average sublattice spin 
per site S follows from Eqs. (4.13) to (4.18), and is 

B=s+h-i(— 
/S1+/8, 

r 
Xcoth 

where, from (4.9) to (4.11), 

[03i+7)(/?2-Y)]1 / 2 

• S [ ( / 3 I + 7 ) ( / 3 2 - 7 ) ] 1 / 2 ' 

2kT h (4.19) 

P2-y=»-\+2D2, 

(4.20) 

(4.21) 

where n and X are defined in (3.19) and (3.20), and 
where we have used, in obtaining (4.19), the fact that 
the average over K is unchanged when the subscripts 
1 and 2 are interchanged. For a numerical calculation 
we require to know the values of / i , J^ j , Di, and Z>2. 
For the first three parameters we use the estimates 
obtained earlier. Thus, for J\ and J 2 we take values 10 
and 11°K, respectively, which are probably good to 
~ ± 5 % . For j we use the value 0.10°K as calculated 
from the observed lattice distortion. It , too, is probably 
accurate to better than 10%. A measure of D\ can be 
obtained from the antiferromagnetic resonance fre-
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quency (27.5 cm-1) which has been observed by 
Sievers and Tinkham19 and Richards.39 

There should be two different antiferromagnetic 
resonance frequencies for MnO, associated with the 
two different spin-wave branches of Eqs. (4.13) and 
(4.14). As yet, only one of the resonances has been 
observed, and it would appear to be associated with 
the aout-of-plane" anisotropy which is mainly of 
dipolar origin. This resonance frequency may be ex
pressed in terms of the anisotropy energy K\ and the 
perpendicular susceptibility Xi(T=0) in the form 

kUafmr = gV>B (3Ki/Xx) 
1/2 (4.22) 

from which [using1 x x ( r=0) = (74zfc5)10-6 emu/g], we 
find a value Kx= (1.16±0.08)107 ergs/cm3, which is to 
be compared with the classical dipole-dipole estimate14 

of 1.64X 107 ergs/cm3. It is better, however, to compare 
with a classical estimate reduced to allow for the 3% 
spin-wave reduction of B from f which we shall find 
for MnO. The numerical coefficient is then reduced to 
1.54. The effects of lattice distortion on this dipole-
dipole calculation are very small,10 so that the difference 
between the above estimates may well give an indica
tion of the magnitude and sign of the nondipolar con
tributions to the "out-of-plane" anisotropy. Using the 
value of Ki calculated from (4.22), we find D\ 
= (0.44zb0.03)°K. If we identify the antiferromagnetic 
resonance frequency with the zero wave-vector mode 
co2K of Eq. (4.14), then we calculate a value Z>i=0.48°K. 
For use in the computation to be carried out for B, we 
take the parameter D\ equal to 0.46°K. 

I<0 

ISOTROPIC-^--

FIG. 8. Spin deviation from its value at absolute zero plotted 
as a function of temperature, as calculated in the simple spin-
wave approximation from Eq. (4.19)with / i=10°K, J2

:=sll0rK., 
J=q.lO°K, Z>i=*0.46°K, and D2^aDi. Also shown are the iso
tropic curves Z>i = Z>2=0, calculated by spin-wave theory (S. W.) 
and by Green's function theory (G. F.). 

Little is known at present about Z>2 except that it is 
likely to be considerably smaller than Di. Keffer and 
O'Sullivan10 have considered the field dependence of 
powder susceptibility and have interpreted the experi
mental evidence in terms of a model in which the 
"in-plane" anisotropy is much smaller than the "out-
of-plane" anisotropy. They favor a value for D2 which 
is about two orders of magnitude smaller than D\. 

In Fig. 8 we show the results obtained by computing 
B self-consistently from (4.19). Curves of spin devia
tion from the zero-temperature state (So) are plotted 
as a function of temperature for the above-mentioned 
values of Ji, J2, j , and Z>i, and for various values of 
D2<Di. Also shown is the isotropic result Di=D2=0, 
which has been calculated both by spin-wave and 
random-phase Green's function methods. The latter 
approach renormalizes the spin-wave energies to the 
sublattice magnetization and, in the very low-tempera
ture region where the spin-wave interactions are small, 
results in spin deviations which are too large. At higher 
temperatures where the interactions between spin waves 
are important, the Green's function method takes over 
as the better approximation because all spin-wave in
teractions have been neglected in the theory of this 
section. The temperature region where the two iso
tropic curves of Fig. 8 begin to differ significantly in 
shape should, therefore, be an estimate of the tempera
ture where simple spin-wave theory breaks down and 
where spin-wave interactions begin to be important. 
For MnO this occurs when r ~ 5 0 to 60°K, which is 
T~\TN. This is a somewhat larger fraction of the 
Neel temperature than was found for the breakdown 
of simple spin-wave theory in MnF2,

40 and is due to 
the distortion effect which reduces the number of 
spin waves in the MnO system below what it would be 
in a more rigid system (MnF2) at the same fraction of 
the Neel temperature. 

The value of sublattice spin So at T=0°K is very 
insensitive to the unknown parameter Z>2, and ranges 
from a value 2.425 when Z)2 is zero, to 2.427 when D2 

= Di. This represents a zero-point spin deviation (from 
the 5 = f Neel state) of 2.9 to 3.0%. 

5. Mn55 ZERO-FIELD NMR IN 
ANTIFERROMAGNETIC MnO 

In this section, we present the results and interpre
tation of the observation of the Mn55 zero-field NMR 
in the antiferromagnetic state of MnO. We find that 
a determination of the average sublattice spin in the 
antiferromagnetic ground state at 0°K is not possible 
because of an apparent increase of the hyperfine cou
pling constant A55 in MnO over the value determined by 
electron paramagnetic resonance (EPR) of Mn+^-.MgO. 
From the measured temperature dependence of the 
Mn55 zero-field NMR frequency, we are able to com-

39 P. L. Richards, J. Appl. Phys. 34, 1237 (1963). 
40 V. Jaccarino, in Magnetism, edited by G. Rado and H. Suhl 

(Academic Press, Inc., New York, 1963), Vol. 2. 
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FIG. 9. Tracing of the second derivative Mn55 zero-field NMR 
in antiferromagnetic MnO at r=1.5°K. 

pare the calculated and experimentally measured tem
perature dependence of sublattice magnetization. In 
the last part of this section, we present the results of 
an indirect nuclear spin-spin interaction calculation, 
applicable to MnO, and experimentally measured from 
the Mn55 zero-field NMR linewidth data. 

Experimental 

The zero-field Mn55 NMR was observed in a powdered 
sample of MnO in the frequency range of 615 to 618 
Mc/sec between 1.5 and 27.1°K. The NMR spec
trometers used to observe the resonance were a cw and 
a super-regenerative uhf oscillator described in detail 
by Jefferts and Jones.41 Using the cw spectrometer, 
the Mn55 NMR was observable up to 4.2°K, while 
with the super-regenerative oscillator the Mn55 NMR 
was observable up to 27.1°K (liquid neon). A search 
for the Mn55 NMR was conducted at 64°K, but with 
negative results. The experimental procedure and tech
nique for observing this type of NMR have been 
treated in detail elsewhere.41,42 

Mn55 NMR in Antiferromagnetic MnO 

A typical 1.5°K zero-field Mn55 NMR, obtained with 
the cw spectrometer, is shown in Fig. 9. Because of 
excessive modulation pickup, second-harmonic detec
tion techniques were used. The peak-to-peak absorp
tion derivative linewidth is the distance between zero 
crossings of the Mn55 NMR shown in Fig. 9, and was 
measured to be 811 ~540 Oe (5*/«560 kc/sec). The 
Mn55 NMR frequency for this temperature was meas
ured to be ^55(1.5°K) = 617.8±0.1 Mc/sec. We attrib
ute the distortion of the Mn55 NMR line shape to 
nonlinear effects of the cw spectrometer. The result of 
subtracting a nonlinear base line from the NMR spec-

41 K. B. Jefferts and E. D. Jones, Rev. Sci. Instr. (to be pub
lished) . 

42 E. D. Jones and K. B. Jefferts, Phys. Rev. 135, A1277 (1964). 
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FIG. 10. Temperature dependence of the zero-field Mn55 NMR 
frequency in antiferromagnetic MnO. 

trum (shown in Fig. 9), suggests that the line shape is 
probably Gaussian. We note that the strain which is 
present in MnO for T<T&, has not introduced any 
appreciable contribution to the Mn55 NMR line shape 
by quadrupolar interactions. The measured tempera
ture dependence of the Mn55 NMR frequency is shown 
in Fig. 10. A smooth curve has been drawn through the 
experimental points and extrapolating the data to 0°K 
yields a value ^55(0) = 617.8±0.1 Mc/sec. 

The zero-field time-independent Hamiltonian for a 
given Mn55 nucleus in antiferromagnetic MnO can be 
written as43 

^-A^{Sz)Iz+y"hIzTfDz
i{Sz

i), (5.1) 

where the z axis has been taken to be the direction of 
the sublattice magnetization, {SZ) = S is the time 
averaged electron spin polarization per Mn4 4 ion, A55 

the magnetic hyperfine coupling constant, I the nuclear 
spin (J=f), and y55 the Mn55 nuclear gyromagnetic 
ratio. The second term in Eq. (5.1) is the magnetic 
interaction between the Mn55 nuclear moment and the 
dipolar field due to the neighboring electronic spins, 
H&xv=zlLiDzi{$zi), where i is summed over all lattice 
points. This dipolar field is not a result of the small 
rhombic distortion in MnO which removes the cubic 
symmetry of the crystal for T<T^, but is a result of 
the type-2 antiferromagnetic order. We have calculated 
the D tensor with the result Hdiv^= +7.67 kOe for S=f, 
where the plus sign means that it is in the same direc
tion as the Mn++ electron magnetic moment. As previ
ously mentioned, there is no indication of an appreciable 
quadrupolar interaction and thus we have not included 
this interaction in Eq. (5.1). 

The Mn55 zero-field NMRjrequency */66(r)ls easily 

43 T. Moriya, Progr. Theoret. Phys. (Kyoto) 16, 641 (1956). 
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derived from the Hamiltonian (5.1) with the result 

"65 (70 = {(!) \A ™/h | - (y^/2T)Hdip}B/S, (5.2) 

where we have assumed that A55 is negative and large 
compared to y55hHdil>. We further assume that the 
temperature dependence of the hyperfine coupling con
stant is negligible in the temperature range for which 
we observe the Mn55 zero-field NMR (see Table I). 
Thus, the temperature dependence of v55(T) is con
tained in the time averaged electron spin B. 

Normally at this time, we should be able to calculate 
the effect that the zero-point spin fluctuations have 
upon the ground state spin alignment at 0°K. This was 
accomplished42 for antiferromagnetic MnF2 by com
bining the measured y55(0) with the value for A55 

(determined by EPR of Mn++:ZnF2) and the calcu
lated dipolar field, and then solving for B/S. However, 
for MnO, this procedure leads to difficulties which are 
as follows. Let us, for the moment, assume that there 
is no zero-point spin reduction, i.e., S=S, and calculate 
the value for A55 from Eq. (5.2) using y55(0) = 617.8 
±0.1 Mc/sec and # d i p =+7.67 kOe. The result of this 
calculation is A55=- (83.51±0.01)10~4 cm"1. Listed 
in Table I are various values of A55 determined by the 
EPR of the M n ^ ion in the nonmagnetic isomorphs 
of MnO. We see that, in all cases, the hyperfine cou
pling constant A5b as determined by the EPR method 
is about 2-3% smaller than the value which we calcu
lated above for the case of no zero-point spin reduction. 
Including a zero-point spin reduction of l—>S/5~3%, 
as calculated in section 4 for MnO, only increases this 
discrepancy for A55 determined by the two different 
types of measurements. Since, at the present time, we 
have no reason to include any new interactions into 
Eq. (5.1), we cannot make any conclusions regarding 
the magnitude of the zero-point spin reduction in 
MnO until the question concerning the value of A55 is 
resolved. 

TABLE I. Comparison of Mn2+ hyperfine coupling constants 
for 6-fold cubic oxygen coordination. 

Lattice 

MgO 

CaO 

SrO 

MnO 

Lattice 
constant 

(A) 

4.203 

4.797 

5.10 

4.435 

Temperature 
(°K) 

290 
4.2 

290 
77 
20 
4.2 

290 
77 
4.2 

150-300 

A (cm^XlO4) 

-81.2±0.05 
-81.55 

-80 .7±0 .1 
-81 .6 
-81.7 
-81.7 

-78.1±0.2 
-80 .2 
-80.7 

-81 .5±1.6 

Refer
ence 

a 
a 

b,c 
b 
b 
b 
c 
c 
c 
d 

cx = o . 

J L 

±10% IN 
J , AND J 2 

±10% IN j J 

J L 

a W. M. Walsh, Jr. (private communication). b W. Low and R. S. Rubins, Proceedings of the First International Con
ference on Paramagnetic Resonance, edited by W. Low (Academic Press 
Inc., New York, 1963). 

"A. J. Shuskus, Jr., Chem. Phys. 41, 1885 (1964). d E. D. Jones, J. Appl. Phys. (to be published). 
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FIG. 11. The theoretical spin deviation results of Fig. 8 are 
compared with the experimental temperature dependence of 
Mn55 NMR frequency (see text). The error in the experimental 
measurements is given by the brackets on the data. Also indi
cated is the sensitivity of the theoretical curves to small varia
tions in Ji and J\ (together) and in j . 

From Eq. (5.2), it is evident that v55(T)ocS(T). It 
follows that Lv(0)-v(T)2/v(0) = lS(0)-B(T)yB(0). 
The experimental data are shown in Fig. 11 where 
[v(0)~v(T)2/i>(0)T2 is plotted as a function of tem
perature. The error in the experimental measurements 
is given by the brackets on the data. Also shown in 
Fig. 11 are the theoretical spin-wave results as ob
tained in Sec. 4. The sensitivity of these curves to 
small variations in j and in bilinear exchange (about 
the chosen values) is also indicated (as a first approxi
mation, the curves retain their shape under these 
variations). The sensitivity of spin deviation to dis
tortion is very large indeed for small j(<^.0.1°K) but 
decreases with increasing j . Thus, at 10°K, the spin 
deviation in an undistorted MnO lattice would be ^ 10 
times larger than it is in the j = 0.1°K case of Fig. 11. 

We find, in general, a good agreement between 
theory and experiment, but the combined effect of 
experimental error and uncertainty in the values to 
be taken for J\ and J2 are such that it is not possible 
to deduce anything about the "in-plane" anisotropy 
parameter D% from this data. The significant result is 
that the temperature variation of sublattice magnetiza
tion in the spin-wave region may be understood (as it 
was for temperatures closer to TV) in the complete 
absence of real biquadratic exchange. 

It is also true, however, that the spin-wave results 
do not completely exclude the possibility that small bi
quadratic terms could be present in the system, in 
addition to the distortion terms. We find that the low-
temperature data may be fitted theoretically for values 
of j somewhat larger than 0.10°K. These larger values 
of j modify the calculated Neel temperature (see Fig. 7) 
and result in a slightly smaller value of Ji being ob-
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tained from the calculations of Sec. 2. The combined 
effects of a slightly decreased J<i and an enhanced 
value of j tend to cancel out in Fig. 11. Since a real 
biquadratic exchange term would behave very much 
like an added distortion term in the ordered state, 
we conclude that the presence of such a term would 
not necessarily destroy the agreement between theory 
and experiment which has been obtained in this paper. 
Because of this situation, it is difficult to make any 
statement concerning an upper limit to the size of a 
possible biquadratic term. The fact remains, however, 
that we possess to date no experimental evidence on 
MnO which requires a biquadratic exchange for its 
theoretical interpretation. 

Mn55 NMR Linewidth 

The contribution to N M R linewidths in antiferro-
magnetic structures by the indirect nuclear spin-spin 
interaction has been discussed by Suhl44 and Naka-
mura.45 We now calculate this contribution to the 
Mn55 N M R linewidth in antiferromagnetic MnO, fol
lowing Ref. 45. 

The Hamiltonian for the electron-nuclear spin sys
tem is 

3C=rc0+3C', (5.3) 

where 3C0 is given by Eq. (4.1), and where 3C' is the 
interaction Hamiltonian between the nuclear and elec
tron spin systems, and is written as 

5Cr = ^ E I n - S n , (5.4) 

where A is the hyperfine interaction (A55= — 83.5X 10~4 

cm - 1). Considering only the transverse components, we 
write Eq. (5.4) in terms of the normal coordinates 
denned in Eqs. (4.5), (4.6), and (4.7), and obtain 

W=(A*S/&Nyi2* 

X E {lK+L(qi-ipi+q2-ip2)+i(qi,-ipi,+q2-ip2)'] 
K 

+^K+C(^I+^I—q^—ip2)+i(qi+ipi— qJ—ipJ)!} 

+complex conjugate, (5.5) 
where 

/ K + = E / y V K ' J , / K + = £ i W * - k , (5.6) 
j k 

are the Fourier transformed operators of Ix+ily, and 
where 

S I , K 3 3 I , qi,-K^qi , etc. (5.7) 

A second-order perturbation calculation of Eq. (5.5) 

«* H. Suhl, Phys. Rev. 109, 606 (1958); J. Phys. Radium 20, 
333 (1959). 

45 T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958). 

gives 

E^^-{A2symj1) 

X Z { ( / K + / K ~ + / K - / K + + / K + / K - + / K - / K + ) I K 
K 

- 4 ( / K + / K - + / K - / K : + ) F B : } , (5.8) 

with 

X K = / I 0 5 I + / 5 2 ) [ 1 / ( ^ 1 K ) 2 + 1 / ( ^ O 2 K ) 2 ] , (5.9) 

F K - ( / I / 2 ) { (2 7 +f t - /3 2 ) ( W ) - 2 

+ ( 2 T - A + / 3 2 ) ( W ) - 2 } , (5.10) 

where 7, ft, /32, COIK, and CO2K, are denned by Eqs. (4.9) 
to (4.14). Terms linear in Iz which lead to a shift of 
the Mn55 N M R frequency are not included in (5.8) 
because these terms are small compared with the cor
responding terms arising from the longitudinal part of 
Eq. (5.4). 

The effective nuclear spin Hamiltonian can thus be 
written as 

j k 

-h E BirVj+ir+iriy*-) 
3>j' 

- i E Bkk.(ik+it-+h-h>+) 

k>k' 

-Xcjk(i+ik-+irh+), (5.ii) 

where 
D = ( ^ 2 / 2 W ) E I K , (5.12) 

K 

Bir = (A*S*/2JXN) E XK COS[K- ( j - j ' ) ] , (5.13) 
K 

Cjk= - (AW/UiN) L FK COS[K. ( j - k ) ] . (5.14) 
K 

These equations reduce to Nakamura's45 for the case 
of a single exchange and uniaxial anisotropy. 

We are now able to calculate an expression for the 
peak-to-peak Mn56 zero-field N M R linewidth from Eq. 
(5.11), with the result (see Ref. 45 for details) 

«ff = ( ^ 2 5 2 / 2 ^ / i 7 5 5 ) [ ( l / 3 ) / ( / + l ) / 
+ (1/20) (21-1) (2/+3)/o 2] 1 / 2 , (5.15) 

where 

/ = < X K 2 > K , / O = < * K > K . (5.16) 

For a numerical evaluation of / and /o, we require the 
knowledge of 7i , / 2 , j , Du and D2. We use the esti
mates previously obtained for the first four quantities, 
i.e., 10, 11, 0.10, and 0.46°K, respectively. The func
tions / and /o are numerically calculated as a function 
of the inplane anisotropy JD2. The dependence of / 0 and 
/ upon the ratio D2/Di is shown graphically in Figs. 
12 and 13. 
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FIG. 12. The function /o of Eq. (5.16) as a function of the 
ratio of "in-plane" anisotropy Di to "out-of-plane" anisotropy 
A . 

The peak-to-peak absorption derivative linewidth 8H 
defined by Eq. (5.15) is shown in Fig. 14 as a function 
of D2/Di. Using the estimate of KefTer and O'Sullivan10 

that Dz/Dx^ 10~2, Fig. 14 indicates a linewidth 5H 
— 380 Oe. In order for the indirect nuclear spin-spin 
interaction to account for the observed linewidth of 
# ^ 5 4 0 Oe, we must use a value D2/Di~10~*. How
ever, we are not allowed to let D2/Di become arbi
trarily small, since for very small values of in-plane 
anisotropy, the Mn55 N M R frequency will be a func

tion of the applied r.f. power.46 Since we did not observe 
any frequency pulling effects, it seems probable that 
D2/Z>i>10~3 and the preceding calculation may, there
fore, not be able to account for the full observed line-
width (for Z?2/£>i~10~2 it accounts for approximately 
70% of the observed N M R linewidth). 

6. SHORT-RANGE ORDER IN THE 
PARAMAGNETIC STATE 

In Part I of this paper, we used the random-phase 
Green's function approximation to calculate the near-
neighbor spin correlations in the paramagnetic state 
of a fee type-2 antiferromagnet. These calculations 
show that the nearest-neighbor correlations are all 
equal (and negative), and that they are in general 
considerably smaller than the next-nearest-neighbor 
correlations. 

D2 /D, 

FIG. 14. The peak-to-peak absorption derivative linewidth 
[Eq. (5.15)] as a function of D2/Di. 
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D2 /D, 

FIG. 13. The function / o f Eq. (5.16) plotted 
as a function of D2/D1. 

Such a calculation is applicable to MnO only if we 
can show that the distortion mechanism (which is not 
considered in Part I) is inoperative in the paramag
netic state. The relationship between the equilibrium 
value of distortion Aeq and the nearest-neighbor spin 
correlations is given by (3.8). Thus, any observed 
rhombohedral distortion in the paramagnetic state 
would imply that the nearest-neighbor correlations 
were not all equal. No such distortion has yet been 
observed, but let us for the moment assume that it 
may be present, but too small to be easily observable. 

From Eq. (4.9) of Part I, the nearest neighbor spin 
correlations can be written in terms of the exchange 
parameters J^ and J 2 . Expressing X0

_1 in the form 
12(J^+J2)+F(T- TN), where F(T- TN) is a positive 
function increasing in magnitude with increasing tem
perature, we find that the two nearest-neighbor 

46 P. G. de Gennes, P. A. Pincus, F. Hartmann-Boutron, and 
J. M. Winter, Phys. Rev. 129, 1105 (1963). 
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correlations (• • • ) n n
p and {• • • ) n n

a can be written in the 
form 

<Sr Sj)nn
p=SkT((ciC2+sis2)/ 

C F ( r - r ^ ) + M + X ] ) K j (6.1) 

( $ r Sj)nn
a=3kT{(c1C2— S1S2)/ 

[ F ( r - 7 V ) + M + \ ] ) K , (6.2) 

where /x+X is given by Eq. (3.19) but with 4/(£) 2 

replaced by 2(Ji+—Jr). The superscripts p and a 
refer respectively to nearest-neighbor spin pairs associ
ated with Jr and Jx

+ exchange interactions. 
From Eq. (3.8), using the measured value of the 

elastic constant C and the previously estimated value 
of Jie, we find (for MnO) 

Aeq= 9.2X 10-4[<S r S , V - <S r Sy>nn«]. (6.3) 

Also, from (3.2), it follows that 

/ l ± =/ 1 ±0.10f t [<SrS i > n n
p -<S, .Sy) i m «] 

= / i±115*A e q , (6.4) 

where k is Boltzmann's constant. Inserting (6.1) and 
(6.2) into (6.4), we derive a consistency condition for 
Aeq. I t is 

(slSi/ZF(T- 7 V ) + M + X ] ) K = 192Aoo/*r, (6.5) 

where 

+ 230Aeq (3 — ^ i 5 2 ~ ^ 2 ^ 3 ~ 3̂<̂ l) . (6.6) 

Physically meaningful solutions must, from (6.3), have 
A e q<0.01. P u t t i n g / i = 10°K, J 2 = H°K, a n d F ( r ~ TN) 
^3k(T—Tx)/S(S+l) [ the last relationship requires 
modification for temperatures very close to TV], we 
find that Eq. (6.5) has only one acceptable solution 
[ A e q = 0 ] throughout the paramagnetic state. I t follows 
that there is no rhombohedral distortion in the para
magnetic state and that the spin correlation results of 
Part I may be applied to MnO. 

Spin correlations in powder samples of MnO have 
recently been investigated by Blech and Averbach37 

by means of diffuse neutron scattering measurements. 
Unfortunately, their results are interpreted by use of a 
model in which the spin correlations in the paramag
netic state reflect the long-range spin pattern which 
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FIG. 15. The next-nearest-neighbor spin correlation curve, as 
calculated in the random-phase Green's function approximation 
for T>TN and for / 2 / / i = l.l , is compared with estimates ob
tained by Blech and Averbach (Ref. 37) from an analysis of 
diffuse neutron-scattering measurements in MnO. 

sets in below TN. As mentioned above, such ac tua t ion 
would result in a rhombohedral distortion at tempera
tures above TN. We have shown that the spin correla
tions in MnO are likely to depend only on the magni
tude of the distance between the spins. In Blech and 
Averbach's notation, this would result in | Xi\ — 1, 3>;=0 
(see their Table I) , and differ from either of the models 
discussed in Ref. 37. 

The results obtained for the even numbered shells, 
however, would seem to be relatively insensitive to the 
choice of model, and we might hope that the values 
obtained for the next-nearest-neighbor spin correla
tions in Blech and Averbach's37 Table I I are quite 
good. In Fig. 15 we compare these experimental results 
with the estimates of the random-phase Green's function 
theory as given in Part I. 
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