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Relativistic Electronic Structure in Crystals. I. Theory* 
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A relativistic generalization of the augmented-plane-wave (APW) method is presented. The upper com
ponents of a Dirac plane wave are joined continuously on the Slater sphere to a linear expansion of central-
field Dirac orbitals. The lower components of the functions in the two regions are discontinuous, A varia
tional expression for the energy which is appropriate for this type of basis function is developed. The matrix 
elements between these relativistic APW's are derived and compared with the nonrelativistic case. 

INTRODUCTION 

AN increasing number of references in the current 
literature dealing with the electronic states in 

crystals have attempted to include relativistic effects. 
Most of these calculations begin with the two-compo
nent Hamiltonian which results from application of the 
Foldy-Wouthuysen transformation to the Dirac Hamil
tonian.1 This yields three relativistic correction terms to 
the nonrelativistic Hamiltonian: mass velocity, Darwin, 
and spin-orbit coupling. The spin-orbit term is the only 
one which mixes spinor components. The other two are 
radial functions which are simply corrections to the 
nonrelativistic crystal potential. By absorbing these 
radial terms in the Fourier coefficients of the pseudo-
potential, Anderson and Gold2 were able to fit experi
mental de Haas-van Alphen data for lead by adjusting 
several parameters, one of which was the spin-orbit 
parameter. Herman, et al?A have considered the correc
tions to the band structure of tetrahedrally bonded 
semiconductors due to all three of the relativistic cor
rections. Mattheiss and Watson5 have shown that the 
spin-orbit interaction term can (by an appropriate 
choice of the spin-orbit parameter) lead to band splitting 
in W which is of the same magnitude as determined 
experimentally by Walsh.6 Scop7 has included mass-
velocity and spin-orbit perturbation corrections in an 
augmented-plane-wave (APW) calculation of the band 
structure of AgCl and AgBr. 

Conklin, Johnson, and Pratt8 ,9 have used the rela
tivistic Hamiltonian discussed above for lead telluride 
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with a linear variation function consisting of eigen-
functions determined from a nonrelativistic APW calcu
lation. The first complete formulation of the relativistic 
theory for energy bands in crystals was reported re
cently by Soven.10 His approach was to generalize the 
orthogonalized-plane-wave method (OPW) by orthogo-
nalizing four-component Dirac plane waves to the four-
component central-field solutions of the core states. The 
results of this theory compare favorably with the ex
perimental data available for thallium. More recently a 
theory of spin-orbit interaction in metals has been 
presented by Animalu.11 I t is essentially a generalization 
of the model potential of Heine and Abarenkov12 which 
takes into account the observed spin-orbit splitting of 
atomic levels. This experimental information is used to 
evaluate quantities in the crystal theory which other
wise require a knowledge of the crystal potential near 
the core. 

The theory presented here is the relativistic generali
zation of the Slater13 APW method. The basis function 
consists of an expansion of four-component central-field 
orbitals of the Dirac Hamiltonian inside the Slater 
sphere and a Dirac plane wave outside. The expansion 
coefficients are chosen such that the upper (large) 
components of the two functions in each region are 
continuous on the Slater sphere. As a result the lower 
(small) components of this relativistic APW (RAPW) 
are discontinuous on this boundary. A variational ex
pression for the energy which is suitable for this type of 
function is developed. 

Matrix elements between the states arising in a 
reciprocal lattice expansion of the wave function are 
evaluated. The resulting expression is very similar to the 
nonrelativistic APW theory. Using this method, rela
tivistic calculations can be performed as easily as non
relativistic calculations. Hence all of the advantages of 
the APW method are available with the added benefit 
that the procedure is completely relativistic. The size of 
the basis set is necessarily doubled by the inclusion of 
both spin states, but as Soven10 has pointed out in the 
relativistic OPW theory there are relations among the 
matrix elements which allow the triangularization 
procedure to be carried out for two rows simultaneously. 
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TABLE I. C coefficients C(lij; m—m2, ttn). 

W2 = +§ M2- -i 

FIG. 1. Unit cell 
in crystal showing 
Slater sphere. 

In this paper only the theory will be presented. 
Although the calculations for tungsten are nearly com
pleted, it was felt that the method itself should be made 
available as soon as possible so that others could take 
advantage of its relative ease of application. The pre
liminary results for tungsten are very encouraging, 
however, since it has been possible to perform ab initio 
calculations which predict the observed spin-orbit 
splitting of the energy bands. The complete relativistic 
calculation of the Fermi surface of tungsten will be 
presented in a later companion article. 

THEORY 

Form of the RAPW 

Let us consider a unit cell which contains only one 
Slater sphere (Fig. 1). Our results can easily be gener
alized to more than one sphere. In region I I the poten
tial is zero and the wave function in this region is 

&**+l\1/2 

\ 2kn* J 

xO) 

*»*+! 
-xO) 

^ , f ( w = ±J ) . (1) 

The normalization is one particle per unit volume.14 

kn*= (&n
2+l)1/2. k n is the reciprocal space vector, 

k+K n . <r is the usual notation for the Pauli matrices, 
and x ( ± 2 ) are t n e Pauli spinors.1 The Dirac Hamil-
tonian is 

H~vp+I3+V. (2) 

For zero potential the eigenvalue equation is 

I I (3) 

In region I the wave function is a linear combination 
of the central field orbitals15: 

>T> I —"V A n 

^ nm — 2s A-ftp 
(4) 

14 Units are m^c^h—1. Later in the paper we will convert to 
atomic units with e2 = 2,tn — i, and h — 1. 

16 The subscripts nm are in anticipation of the joining require
ment which will be discussed. 

j=l+h 

j = l~i 

\ 21+1 J 

/l-m+W' 

\ 21+1 J 

/1-tn+iV 

\ 21+1 J 

/1+m+iY 

\ 21+1 J 

The spin-angular functions x**1 are 

x / = E C(lij',fx~mJm)Yi^~m(f)x(m) (5) 
m— ± | 

and they have the properties 

( a - l + l ) x / = - * x / , (6) 

or-fr/=-X-«M. (?) 

These functions are orthonormal in the sense that 

X^XK^'sinBddd^d^d^. (8) 

The C coefficients as given by Rose1 are reproduced in 
Table I for completeness. Notice that they satisfy 

(9) 

The radial functions are solutions of the following 
coupled linear differential equations: 

dr r 

dg 

(W-l-V)g, 

(K+D 
(W-V+l)f 1 

dr r 

(10) 

(11) 

The expansion coefficients A Kfl
nm are chosen such that 

the upper components of ^nm
l and ^fnm11 are equal on 

the Slater sphere. This is easily done if the plane wave is 
expanded in terms of the spin-angular functions. The 
result is1 

where 

* nm — Zs ^KM 1IZnO K 

[ftn*+l 
-jl' (kn^XS 

(12). 

/kn^+iy" 

\ 2kn* J 
(13) 

ji(x) is a spherical Bessel function. SK means "sign of 
K" The K summation is over all positive and negative 
integers (not zero), j , Z, and /' are specified by K ac-
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(14) 

(15) 

cording to the rules 

1=K, j=l-i, 1' = K-1 (*>0) , 

/ = - K - 1 , j=l+h 1'=-K (*<0) . 

For fixed K, the n summation is between j and —j. 
The expansion coefficient is taken to be 

AKf>™=aKli™tJi(knR)/gK(R)2, 

which establishes the desired continuity of the upper 
components. The lower components, however, are dis
continuous on the Slater sphere. Before forming matrix 
elements between the RAPW's, it is necessary to con
sider the appropriate variational expression for the 
energy. 

Variational Expression for the Energy 

The Dirac Hamiltonian has been shown by Swirles16 

to yield a variational expression for the energy if an 
infinite region is considered. Schlosser and Marcus17 

have developed variational expressions which apply to 
nonrelativistic trial wave functions which are discon
tinuous on a surface inside the unit cell. We will consider 
the combined situation of a relativistic trial function 
discontinuous on the Slater sphere. 

From the divergence theorem we have 

J n J s 
fiftdor. (16) 

The volume integration is over regions I and I I of the 
unit cell. In region I the outward unit normal A is equal 
to r. In region I I it is in the opposite direction. The 
surface integration in both cases is over the Slater 
sphere. Expanding the integrand of the left-hand side, 
it is easy to show that 

j <pcL-V*dT=- (^+a-V0)*dr+ / <pa-fi&d<r. (17) 
J to J to J s 

Setting p^—iV and using the Hermiticity of /3+ V, we 
find 

j <pH*dr= j 
J to J to 

<pmdr= / (&H4>)*dr-i 
J s 

(18) 

A comparison of the above surface term and the 
analogous term in the nonrelativistic theory17 leads us 
to assume the following form for the energy: 

W I ^ t ^ r = J &H*dT- (i/2) 
J to J to 

xf ( ^ I I + ^ I ) t a ^ ( ^ I I ~ ^ I ) J c r , (19) 
J 8 

18 B. Swirles, Proc. Roy. Soc. (London) 152, 625 (1935). 
» H. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529 (1963). 

where ty1 and SPU are the forms of the trial function in 
regions I and II , respectively. I t is implied that in the 
volume integrations the appropriate form of SF is to be 
used in each region. I t is not difficult to show that this 
expression has the desired properties: W is both vari
ational and real for arbitrary trial functions ^ r I and tyu. 
In the following section the matrix elements between 
RAPW's corresponding to different wave vectors and 
different spin states will be determined using the above 
variational expression. 

RAPW Matrix Elements 

If we expand the crystal wave function in a linear 
combination of RAPW's (a reciprocal lattice expansion), 
then the secular equation is 

/NM 

r( ) 
I \ nm J I 

(NM\ (NM\ /NM\ 
III )~WQ( \-S( ) 

\ nm / \ nm / \ nm / 

where 

/MM\ r 
Hi' ) = / 

\nm J J a 
•*njH-*NMdT, 

= 0, (20) 

(21) 

/NM\ r 
Q{ J - / *. 

\ nm / J n 
f^NMdr, (22) 

/NM\ r 
S[ ) = ( * / 2 ) / Qt^+Vnjya-r 

\ nm / J s 
X(^NM1I-^NMI)d(r. (23) 

We consider first the Hamiltonian and overlap matrix 
elements. For convenience the energy parameter W in 
the central-field orbital equations [Eqs. (10) & (11)] is 
identified with the crystal eigenvalue in the secular 
equation. This simplifies the expression for the matrix 
elements because the volume integration of (H—W) 
over region I is identically zero. However, the price we 
pay is that the final form of the matrix elements will 
have an implicit dependence on the energy parameter. 

In the outer region the eigenvalue of the Hamiltonian 
is kN*. The first two terms in the secular equation can 
therefore be written 

/NM /iVM\ /NM\ /NM\ 
Hi )-WQ{ U(kN*-W)V*( ) , (24) 

\nm / \nm / \nm / 

where the superscript indicates that the volume inte
gration is only over region I I . I t can be shown using ty11 
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from Eq. (1) that This completes the derivation of the matrix elements. 
In the next section various simplifications will be con-

nn(NM\ - oa a — A p« kiy—k^ | R) /kn*+1\1/2 sidered, and the procedure for the relativistic calculation 
\nm ) ~ \kN-kn\ \ 2kn* J w i U b e compared to the nonrelativistic APW method. 

X( 1 1+ \dmM \ 2kN* ) 1L 
DISCUSSION 

\ n -r A N -r ) Qu r r e s uits to this point are expressed in relativistic 
ikn xk;\r• (m|<r|M)) un^ts'-^—c—h—X. Let us now convert to atomic units 

_| 1 ? (25) with e2= 2, m=\ and h= 1. The energy will be expressed 
(kn*+1) (kN*+1) J in the form W=E+ mc2, where E is the energy measured 

_ . . . , . . „ „ , . , . with respect to the rest mass in the region of zero 
where 0 is the volume of the umt cell. The spin-matrix p Q t e n t i a l e n e r g y > I f w e a g r e e tQ n e g l e c t t e r m s rf ^ 
elements are given by o r d e r (13?)_2 ag c o m p a r e d t o u n i t y ? t h e e x p r e s s i o n f o r 

(=b | <r| =fc) = ± g , , ( ± |cr| =F)= $x±:i&y. (26) the matrix elements becomes 

The integration in the surface term of Eq. (23) is over »7^ 
the Slater sphere: dUr=R2 sm0d6d<j>. Hence all the radial j^r J = (kN

2-E)UnNdmM+'±7rR2 

functions are evaluated at r=R. We use ^r1 given in \nm / 
Eq. (4) [with ^KM

nw from Eq. (15)] and ^ n from Eq. /NM\ f 
(12). Operating a-r on ^ n - ^ i a n d performing the X Z D ] )ji(KR)\ji(kNR) 
angular integrations yields K \nm I I 

(NM\ /kn*+l\U*/kN*+l\W /cfK(R,E)\ ) 

where 

« W w / I W * + 1 / 2nN=ttdnN-47rR2 — 
ti\r—kn| 

(35) 

— ji(kNR) — | , (27) j n o u r present units c= 2/a, where a « 1/137 is the fine-
where structure constant. Of course, lengths are in Bohr radii 

and energies in rydbergs. 
(NM\ m t By considering the divergence theorem for the case of 

Dl J = 47r £ C(lh Mi-m, m)C(kj;p-M, M) k n e w a y e s {n [on n i t c a n b e g h o w n ^ 

XF/^(WFr-W. (28) 

The coefficients DK are evaluated using the addition 
theorem for spherical harmonics: /NM\ 

= 4*R2j:SKDK[ ) 
(2Z+l)P,(#-4) = 4ir Z Yf*(fi)Yr(fl). (29) 

m=~Z X{kNji{knR)ju{kNR)-knjl{kNR)jv{knR)). (36) 
In some instances the necessary expressions are found 
by applying the orbital-angular-momentum operators T n i s c a n b e substituted into Eq. (34) to yield an index-
to the addition theorem. The results are symmetric form for the matrix elements: 

^)-|.l«rf-«-«.<#x«w.'«M. <*» „ ( ' ™ ) . ^ _ A A „ + 4 r f E I ) / ™ ) 
v w _ t" / \nmJ \ 2 / \nml 
/N-\ 

DA )=-5.P,I(JVX<l),+*(JVX^).], (31) . /cf(RE)\ 

DA ) = DA ) , (32) 

DK{N1)=~D*( " ) • (33) +*»y«(*^)ii'(**R)]}. (37) 
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I t is interesting to compare the above expression with 
the nonrelativistic APW matrix elements13: 

APWI ( )=(kN-kn-E)ttnN+4TrR*Z ( 2 /+ l )P z ( iV^ ) 
\n/ i-o 

ui'(R,E) 
Xji{knR)jl{kNR) . (38) 

ui(R,E) 

Instead of a single sum over atomic orbitals labeled by /, 
we have the double sum over K which includes both 
possible orientations of the spin. In place of the loga
rithmic derivative of the radial wave function u, it is 
necessary to evaluate the ratio of the two central-field 
functions / and g. These satisfy Eqs. (10) and (11), 
which are repeated here in a convenient form: 

dr 

dg 

dr - ( • 

cf-(E-V)g, 

(E-V) \ ( H - l ) 
—7-+iW 1 

c2 J r 

(39) 

(40) 

Methods for solving the coupled equations have been 
discussed by Hartree18 and by Rose.1 For numerical 
work the Runge-Kutta method and the Milne method 
are applicable. 

The last term on the right-hand side of Eq. (37) does 
not appear in the nonrelativistic theory, but it increases 
the necessary computing only trivially because the 
spherical Bessel functions must also be determined for 
the preceding term in the expression. Hence the only 
significant complication which the relativistic theory 
imposes on the matrix elements is in the coefficients DK. 
Because these are complex one must use complex 
algebra in triangularizing the secular determinant. Here 
again, however, the additional computing requirements 
are negligible. 

There is a significant increase in computing time 
which results from the spin-doubling of the basis set. 
However, this can be substantially reduced because of 
the relations between matrix elements indicated in Eqs. 
(32) and (33). I t is found that if the matrix elements are 
ordered according to the following scheme10 

m+y m—, n2+, n2—, etc., (42) 

The following comparison can be made in the non
relativistic limit: 

lim cf/g= ( K + l)/r+u/u . (41) 

it is necessary to apply the triangularization procedure 
only to the odd rows. If M(i,j) is the matrix element as 
determined by either Eq. (34) or (37), the operation 
necessary to triangularize the determinant can be 
written 

, N t? [Jf*MM(,,i)+(-i)^w*(,,i+(-i)^)M(,,.-+i)] 
M(t,j)->M(i,j)-Y, _ 

v odd M(v,V) 

(43) 

Because the even rows are not needed, there are gaps 
in the machine storage of the matrix. I t has been found 
convenient to store the real parts and the imaginary 
parts each in vectors. There is a one-to-one relation 
between matrix elements ( / , / ) in the odd rows (above 
and including the main diagonal) and the vector com
ponent KV, where 

KV=-
(/-I), 

(N+2-(-—\\+J-I+1; (44) 

The maximum storage locations required for the com
plex matrix elements using this identification is 
2[N(N+2)/ 4 - 1 ] . 
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N is the dimension of the matrix (two times the number 
of reciprocal lattice vectors included in the expansion). 
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