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A general method is described for the measurement of the polarization and alignment of a particle of 
arbitrary spin from the analysis of its three-body decays. This method provides a procedure for the deter
mination of spin and parity of the decaying system which is independent of the dynamics of the decay 
process. The procedure is closely related to the one currently used for two-body reactions except that the 
normal to the decay plane replaces the center-of-mass momentum as an analyzer. The general formalism is 
developed and illustrated by two examples: three-pion decays and baryon-two-pion decays. 

I. INTRODUCTION 

THE description of three interacting bodies is a 
well seasoned and familiar problem, the angular-

momentum aspect of which has received a revived 
interest among particle physicists during the past few 
years.1'2 Because increasing numbers of particles (or 
resonances) of high mass are being experimentally dis
covered which have appreciable three-body decay 
modes, it behooves us to examine the three-body prob
lem from the standpoint of a decaying system. However, 
we do not consider the dynamics of the decay process, 
but merely make use of the consequences of rotational 
and inversion invariance. The treatment presented here 
is therefore completely general, exhibiting the kind of 
angular and polarization distributions which are con
sistent with a system of arbitrary spin decaying into 
three particles with spin. Such distributions, when com
pared with experiment, provide a possible determination 
of the spin and parity of the decaying particle and 
eventually a means to measure its polarization and 
alignment, quantities of great interest for the under
standing of its production mechanism.3 The method 
applied to three-body decays is closely related to the 
one currently used in the analysis of two-body decays 
except that the normal to the decay plane replaces the 
center-of-mass momentum as an analyzer of the polar
ization. Formulas giving the angular and polarization 
distributions in terms of the decaying particle density 
matrix are in fact written in a very similar form for 
both cases. 

As is well known, the description of a three-body 
system requires five variables. A convenient choice of 
these variables consists of two energies and three angles. 
The two energies are taken to be the center-of-mass 
energy of two decay particles, whose domain of vari
ation defines a Dalitz plot. The three angles can be 
chosen as those which define completely the orientation 
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of the decay plane. In the treatment presented here we 
consider only the orientation of the decay plane and 
sum over all energy configurations, or, in some cases, 
separately over different regions of the Dalitz plot. In 
this sense, the distributions presented here are the 
complement of the Dalitz-plot distribution, where all 
angular configurations are averaged over, and where 
the three-body system is studied in terms of its energy 
distribution.4 

The analysis of the energy distribution in terms of a 
Dalitz plot has the advantage of giving useful infor
mation even if the decaying particle is neither polarized 
nor aligned. Nevertheless, its practical interest is bound 
to the dominance of a very small number of independent 
amplitudes. In many cases the general analysis pre
sented here, which does not rely on any dynamical 
assumptions governing the decay process, can be used 
to determine the spin and parity of a decaying state 
via its three-body decay alone. When the system has, in 
addition, a two-body decay mode, the combined analysis 
of both two- and three-body modes can be applied in 
unison in order to obtain improved and more accurate 
knowledge of the system's quantum numbers.5 In all 
cases it can be used in order to get information about 
the production mechanisms by means of polarization 
and alignment analysis. 

The angular distribution of the normal to the decay 
plane is readily obtained when three free relativistic 
particle states of well-defined angular momentum / 
and parity are constructed using the general projection 
method of Wigner.6 The angular dependence of the 
decay amplitude is given as a linear combination of 
rotation-matrix elements corresponding to the (2.7+1)-
dimensional representation of the rotation group: 
Dm'mJ(a,l3,y). The arguments are three Euler angles, 
which can be chosen as the azimuthal and polar angles 
of the normal to the decay plane and a third angle y, 
referring to a rotation of the decay plane around the 
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pions see C. Zemach, Phys. Rev. 133, B1201 (1964). 
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normal. These angles then completely specify the 
orientation of the decay plane. This is a straightforward 
extension to three particles of a procedure already used 
to construct two-particle states.7,1 

The extension to w-particle states has been worked 
out by Werle.8 Present interest in three-body decays 
may, however, warrant the special treatment presented 
here. 

The general formalism is presented in Sec. I I , and a 
general expression for the angular distribution of the 
normal to the decay plane is given.9,10 The simplifi
cations due to parity conservation and possible identity 
of two of the particles are also discussed. The formalism 
is then applied in Sec. I l l to the problem of the decay 
into three spin-zero particles and in Sec. IV to the 
problem of the decay into two spin-zero and one spin-J 
particle. The distribution of the polarization of the 
decay spin-\ particle is discussed in detail and we stress 
the analogy between the formulas obtained and the 
ones currently used for two-body decays into a spin-
zero and a spin-§ particle. In both Sees. I l l and IV we 
also discuss decays into a pion and into a resonance 
which eventually decays into two pions or a pion and a 
hyperon, depending on its quantum numbers. 

In addition to giving the general formulas, the 
simplest cases are explicitly treated. In Sec. I l l angular 
distributions are given for the decay of particles with 
spin \± and 2 ± into three pions. In Sec. IV angular 
distribution of the normal to the decay plane, as well 
as polarization distributions for the daughter hyperon, 
is given for the decaying states having spin § and spin f. 

The Dm>mJ functions required for explicit calculations 
with spins less than or equal to three are given in an 
Appendix. 

II. GENERAL FORMALISM 

Three-Particle States 

A quantum state containing three free particles is com
pletely defined by the momentum and polarization of 
each particle. Such a state may be constructed as the 
direct product of three one-particle states | q*,X»), where 
q* and X* stand, respectively, for the momentum and 
helicity of the ^th particle. To be precise, we could 
define the state |q,-,X,-) as in Ref. 7, namely 

\qi,\i) = R<Pieio\QiM), (1) 

where |Qt,Xt-) is an helicity state with eigenvalue X* 
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means for spin and parity determination appears to carry enough 
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1 k FIG. 1. The angles of ro-
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and momentum Qi along the positive z axis (|Q»| 
= |q*|). The symbol R^o stands for the rotation 
operator, with Euler angles <pi, 0*, 0. The quantities 
<Pi and 6i are, respectively, the azimuthal and polar 
angles of q* with respect to a fixed coordinate system 
x, y, z (Fig. 1). The helicity, i.e., the component of the 
total angular momentum of the particle along its 
momentum, is obviously invariant under rotation. 

A three-particle state is written as 

|qi,Xi;q2,X2;q3,X3). (2) 

I t is convenient to describe the decay in the center-
of-mass system where 

q i + q 2 + q 3 = 0 . (3) 

The three momenta then form a triangle in a plane, the 
normal of which is denned as a unit vector along qi x q2. 
The conservation of energy gives the further restriction 

(«i2+wi i)1/2+(g2
2+W22)1^+(ff^+w«2)1/2=f»o, (4) 

where mo is the mass of the decaying particle. 
A more convenient description of this state is in 

terms of a different set of quantum numbers which are 
the energies coi, co2, and co3 of the three particles restricted 
by (4)—and three Euler angles a, /3, y which specify the 
orientation of the momentum triangle in space (Fig. 2). 

The rotation angles are defined by starting from a 
standard position where the triangle is in the x-y plane. 
As a convention we take qi + q2 along the x axis and the 
normal qi x q2 along the z axis. These are our basic 
states and we define more conveniently the three helicity 
states by rotations around the z axis with angles <pi 
(0< (pi<2ir), taking Q* along the x axis. I t follows that 
the polarization of each particle is described as usual 
with the conventional z and y axes, respectively, taken 
along the momentum and along the normal to the decay 
plane. The angles a and (3 are, respectively, chosen as 
the azimuthal and polar angles of the normal to the 
decay plane. The angle y refers to a rotation around the 
normal and is illustrated in Fig. 2. All helicities remain 
unchanged through these three successive rotations. We 
then write a three-particle state thus defined as 

| coiXi; w2X2; co3A3; a,P,y). (5) 
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FIG. 2. The decay-plane configuration. Triangle 1 represents the 
decay plane in the standard position. Triangle 2 shows the plane 
after rotation of angle y. Triangle 3 shows the decay plane in its 
actual position with its normal indicated by n. 

With the set of states (2) the density of final states 
dpF for the three-body decay is written as 

d3qid%d%$(qi+q2+(lz)d(o)i+o)2+o>z-tno) 
dpF = , 

2o>i2co22co3 

or after integration over d3qz, 

dpF~ j^do)idu2d<pid cosdid<pud cos0i25( cos#i2 

((m0—coi~o)2)
2—qi2— qz2—w3

2)\ 

where <pn and 612 are the azimuthal and polar angles of 
q2 with respect to qi. Integration with respect to 
cos#i2, <pi2, cos#i, and ipi gives a density distribution in 
the a? 1, co2 plane. This is the Dalitz plot. 

With the states (5), the density of states is obtained 
by replacing dcpid cos6\d <pi2 by dadcosfidy in (6). The 
Jacobian determinant is equal to l.11 

In their center-of-mass system the three decay 
particles are in a state of well-defined angular mo
mentum and, if we consider only decays via strong or 
electromagnetic interactions, also parity. The total 
angular momentum is equal to the spin j of the decaying 
particle. Such a state is written as 

I coiXi; 002X2; C03X3; jmM), (7) 

where m is the eigenvalue of the component of angular-
momentum operator / along a fixed axis chosen as the 
z axis; M is the eigenvalue of angular momentum along 

11 This result may be seen as follows. The integration indicated 
by (6) is over all possible directions of two vectors whose relative 
angle is fixed. But this integration may as well be considered as 
ranging over all possible rotations of a rigid body. In this case we 
may apply the well-known result that the differential element may 
be written as dR—dady sin/3 /̂3, where a, p, and 7 are the usual 
Euler angles. For a detailed derivation see Ref. 4. 

the normal to the decay plane, which can be used 
together with the other observables J2 and Jz to specify 
the state.6 

The angular distribution of the normal to the decay 
plane, obtained for a pure state of definite m and M 
such as (7), is given by 

dN C 
—=/MI«7, (8) 
dtt J 

where dti—sm/3df3da, and where 

A = (coiXi; CO2X2; 003X3; affy | coiXi; 002X2; 003X3; jmM). 

In order to continue further we need the relationship 
between a state of definite angular momentum such as 
(7) and a state described in terms of Euler angles. To 
achieve this we follow the procedure of Wigner6 and 
write 

|coiXi;co2X2; W3X3; jmM)= / DmMj*(a/3y) 

X I coiXi; 002X2; W3X3; afiy)da sinfldpdy, (9) 

where the integration is performed over all rotations, 
namely 

0<a<27r , ( K / K T T , 0 < T < 2 T T . 

As is well known, these angles can be defined as in 
Fig. 2 or, just as well, 7 may be considered as the angle 
of the third rotation performed around the normal to 
the decay plane. As is easily checked using the group 
property of the D functions, (9) transforms under 
rotations as a state of total angular momentum j with 
z component m and with component M along the normal 
to the decay plane, a rotationally invariant quantity. 
The energy and helicity of each particle are invariant 
under rotations and their same eigenvalues appear on 
both sides of (9). I t should be remarked that we do not 
obtain in this way the most convenient orthonormal set 
of states for three free particles as in the two-body 
problem.7 Such states have been explicitly constructed 
by Wick1 by coupling two particles together and then 
coupling the third one to the system constructed from 
the first two. A quantum state with eigenvalues j , m, 
and M will in general be described by a wave function 
of coi and C02 which multiplies the angular wave function 
(10). The angular distribution of the normal which is 
obtained by integration over the Dalitz plot (11) will 
average over all configurations the final-state interaction 
of two of the decay particles in a particular angular-
momentum state. 

Using the angular-momentum eigenstate (9) we have 

A=DmMr(a0y). (10) 

A normalization coefficient could appear in (10). I t is, 
however, independent of m and M and therefore 
irrelevant for our purposes. 
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The Normal to the Decay Plane as an Analyzer 

Many of the formulas which are presented now are 
special cases of general relations for ^-particle states 
given by Werle.8 We derive here those expressions 
which are relevant for the special case of three-body 
decays. 

We now turn to the decay of a particle of spin j 
whose state is not pure but rather a statistical mixture 
of states described by a density matrix pOTW'. The 
eigenvalues m and w! run from — j to -\-j in integer 
steps and refer to the z axis. The angular distribution 
of the normal to the decay plane can be obtained for 
each set of eigenvalues of the final particle helicities. 
On using (10), the angular distribution reads as 

ft -V V 
I I —2—iM,M' 2^rn,m' Pmm' 

X / DmM
j*(a$y)Dm>M>j(*Py)dy $MM> , 

where 

3MM' = / dwidcx)2FM(coiXi; CO2X2; 003X3) 

XFM'*(o>ihi', ^2X2; W3X3). 

The phenomenological decay amplitudes FM which 
have been introduced are functions of rotationally 
invariant quantities only. They depend in general on 
M but not on m. 

Since the 7 dependence of a D function is simply a 
factor e~iMy, interference between different FM ampli
tudes vanishes in the normal angular distribution when 
it is integrated over 7. 

If everything else but the direction of the normal to 
the decay plane is summed over, a simple relation is 
obtained for the angular distribution of the normal: 

dN/dtt = Y, 
m,m' Pmmf 2-^M 

XDm>Mi{afft)\RM\\ (11) 
where 

I RM 12 = 2T Sx1.X2.X3 / do)ida>21FM(&>iAi; co2X2; co3X3) |
2 . 

Equation (11) relates the angular distribution of the 
normal to the density matrix of the initial particle in 
terms of the 2 j + l decay parameters RM-

This also shows that the maximum number of inde
pendent decay amplitudes, as far as the orientation of 
the decay plane is considered, is actually 2j+l for 
each set of final helicities. Conservation of parity in the 
decay process further reduces this number, as will be 
shown later. This number of independent decay ampli
tudes is also equal to the maximum number of linearly 
independent tensors that can be built with the particle 
momenta—in terms of which the decay amplitudes can 
also be written. 

In order to use (11), one may calculate the required 
D functions. Alternatively, use of the Clebsch-Gordan 
series allows (11) to be written as 

( 4TT \ 1 / 2 

XC(jjl\M, - j f ) ( - i ) " - » ( _ - ) 
\ 2 / + l / 

XYm,-m
l*{P,a)\RM\\ (12) 

where we have introduced standard Clebsch-Gordan 
coefficients.12 

The angular distribution is thus given by a sum of 
spherical harmonics with highest order 2j. This 
generalizes the well-known theorem on the complexity 
of the angular distribution in two-body reactions to the 
case of three bodies in terms of the normal to the decay 
plane. 

I t is convenient to group together terms with opposite 
values of M and to write (11) as 

dN/dti= S I S (Repmm> cos(m— m')a 
M > 0 mm' 

— Impmm/ sin(m— fn')a)[RM+Zmm>jM+ (0) 

+RM~Zmm^M-(l3)^}, (13) 

where we have introduced the notations 

Zmm^*M±(0) = d m M W ^ ^ 

and RM
±=H\RM\2±\R^M\2); R+>0 and Rr may be 

either positive or negative. The D functions have been 
written12 as 

e-im'adm>Mi.{&)(riM'*. 

As follows from their definition and the relation 

< W ( 0 ) = {-l)j+m'dm>-J(TT-$), 

the Z functions satisfy the relation 

ZmJM±($) = ± (~ l)f*-m,Zmn>''M±(*'-P) • 

If we invert the direction of the normal (which, in 
terms of the Euler angles, means the transformation 
a —> 7r+«, # —»7T—j3), then the angular function which 
goes with Rm

+ is unchanged, while the function which 
goes with RM~ changes sign, as is obvious from (13). 
The normal direction is determined only up to a sign 
when two particles are identical and when the sum
mation over all available energies is performed according 
to (11). In that case, all terms proportional to RM~ will 
vanish identically. In order to keep the direction of the 

12 We follow the notations of M. E. Rose, Elementary Theory of 
Angular Momentum (John Wiley & Sons, Inc., New York, 1957). 
We refer the reader to this book for the various relations among 
rotation-matrix elements used throughout this paper. 

Sx1.X2.X3
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normal well defined, it is necessary to sum hide- We can further group together terms with opposite 
pendently on parts of the Dalitz plot, for instance values of both m and m' and write the angular distri-
separately for coi>co2 and o>i<co2. bution of the normal as 

M >0 mm' 

-$m{m-m')a(Impmm.- (-1)™-™' Imp_m_M0]Zmm''M+(/3)i?M+ 

+ [cos(w-w')a(Rep<n»'- (_1)»»-«' Rep_m_m,) 

-sin(w-m')a(ImPmm>+ ( - 1 ) " ' Imp^m>)lZmm,>'M-((3)RM-. (14) 

Because of the Hermiticity of the density matrix and the definition of the Z functions, terms where m and m' are 
interchanged give the same contribution. As follows from their definition, Zm-m

m~(($)^0 for integer j , and 
Zm-JM+ 08) == 0 for half-integer j . 

Parity Conservation 

If parity is conserved in the decay we have to replace (7) by an eigenstate of the parity operator with the proper 
eigenvalue. We therefore consider the action of the parity operator P on an angular-momentum eigenstate (9). 
We have 

P | a>iAi,co2A2,co3A3; jmM) = / DmM
j* (aj3y)Ra^yP \ o)i\i,o)2\2,o>z\zfifi,0)da sinpdpdy, 

since the parity operator P commutes with the rotation operator. We now use the fact that the parity operation 
can be defined as the product of a reflection with respect to a plane and a rotation of angle IT around a normal to 
that plane. The plane chosen is the decay plane of the reference state 

10)1X1,0)2X2,0)8X3,0,0,0), 

i.e., the x-y plane (Fig. 2). We denote by Y the reflection operator with respect to that plane and write P=e+<Tj*Y. 
The action of Y changes the sign of all helicities. In fact, the following relation holds13: 

Y10)1X1; o)2X2; o)3X3; 0,0,0)=Vlrw% ( -1) *-*+**-***•**-* | a*- Xi; « 2 - X2; co3- X3; 0, 0,0), 

where S and t\ stand for the spin and intrinsic parity of each particle. It follows that 

P|o)iXi; 0)2X2; 0)3X3; jmM)==vmvz(-l)Sl-~}"1+S2~M+S3~Xz 

X / DmMi*(aPy)Rafiy^i7rJ'\cai-\i'9 o)2-X2; o)3-X3, 0, 0, 0)da sinfidpdy. 

In order to express the state after the parity operation in terms of the original states (9), we use Ra$y = e~iajz 

Y^e-i&jze-iyjz anc[ simpiy add —7r to the first rotation angle, thus replacing DmM
j*(o>l3y) by (— l)MDmM

j*(a, /?, 
7—7r). In this manner one obtains14 

P10)1X1; o)2X2; 0)3X3; jmM) = ( -1) M ( - l)^-^+^-^+^-uvmm | W l _ X l . W 2_X s . ^^Xg. j m M ^ < (15) 

We write (— 1)^ for ei7rM. Applying (15) to a 3-pion 
state we find the relation 

P10)1,0)2,0)8; jmM}= (—1)M+110)1,0)2,0)3; jmM). (16) 

This yields an important result for 3-pion decays, 
namely that if the parity of the decaying particle is 
even (odd), only odd (even) values of M contribute. 

13 See Eq. (90 of Ref. 7. All helicity states in this paper are 
defined with the "conventional'' z axis along the particle's mo
mentum and the "conventional" y axis normal to the decay plane. 

14 See also J. Werle, Nucl. Phys. 49, 433 (1963). Our phase 
conventions are different. 

For a one-baryon, two-pion state the appropriate 
eigenstates of parity are 

(1/V2) (I o)i,Xi; o)2; 0)3; jmM) 
± ( - l ) ^ | o ) i , - Xi; 0)2; 0)8 ; i w J f » . (17) 

Either parity case will give the same angular distri
bution, since states of different helicities are orthogonal. 

One of the Momenta as an Analyzer 

The basic quantum states (5) which we have intro
duced are labeled by Euler angles which refer to the 
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direction of the normal. One could just as well consider 
these three angles as denning the direction of one of the 
three momenta, qi say, and a further rotation of g2 

around q±. One can follow the same steps and obtain a 
formula identical to (11) for the angular distribution 
of one of the momenta. The functions RM will, of course, 
be different. Equation (14) is still valid and gives the 
polarization of the decaying particle in terms of the 
distribution of one of the momenta. If the analysis in 
terms of the normal turns out to be a little easier to 
work through, it is due to the simple form in which 
parity conservation is expressed. For a three-pion 
decay, we simply have to eliminate either even or odd 
values of M. When the three Euler angles refer to one 
momentum it is found that (16) has to be replaced by 
the following relation: 

P|coio)2co3; jmM)= (-l>'+iV+1|coico2co3; jm -M). (150 

This approach is described in detail in Ref. 8. If the 
parity of the decaying particle is (— l)y, the decay 

with our phase conventions a=ei7r(Xl+X2~X3). 
Note added in proof. The factor a in (18) is missing 

in an unpublished version of this work (Stanford Linear 
Accelerator Center Report No. 73). We wish to thank 
Professor J. Werle for calling this to our attention and 
for informing us of his general work which was inad
vertently overlooked in the references given there. 

The set of angles a'/3V which now appear in the ket 
vector no longer refers to the normal to the decay 
plane, since the direction of the normal is reversed when 
the two particles are interchanged. The angles referring 
to the normal are obtained through the transformation 
c/=cH-7r, /3/ = 7r—/3, 7 r = 2x—7. The rotation defined 
by the set of angles a+T and -K—/3 brings qi + q2 to a 
direction identical to the one obtained using a and 13. 
A rotation of angle 2-n—y around the new normal then 
gives the same configuration as the one obtained with 
the set of angles a, /?, and 7. Since we integrate over all 
rotation angles, we may replace the arguments of the 
D function and write (18) as 

a da sm/3dl3dyDmMj* (OL—TT, IT—/3, 271—7) 

X I ̂ 2X2,001X1,̂ 3X3; ce/37). 

Transforming the D functions and using the definition 
of our state (9), we rewrite (18) as 

f I co2X2, coiXi, C03X3; j , m, — M), 

where t= (— IV+2M+X1+X2-X3— (__ n/+Xi+X2+x3> 

amplitudes RM and R_M are equal (opposite) if M is 
odd (even) and there is no Jkf=0 amplitude. If the 
parity is — (— 1)'" the opposite assignment holds. For 
each M value, both parity states give the same angular 
distribution. 

Identical Particles 

The identity of two (or all three) particles will imply 
further relations among the decay amplitudes. In the 
examples considered in Sees. I l l and IV, for instance, 
they will apply when two T mesons have the same charge 
or are in an eigenstate of isotopic spin. If two identical 
particles are produced, the decay state has to be sym
metrical (antisymmetrical) with respect to the exchange 
of the two particles according to their Bose-Einstein 
(Fermi-Dirac) statistics. In order to construct states 
with such a permutation property, we introduce a 
permutation operator Pu (exchange of particle 1 and 2 
leaving 3 unchanged) and apply it on both sides of (9): 

Since the decay states are symmetrical or antisym
metrical with respect to the exchange of the two par
ticles, the amplitudes Fikr(coiXi,co2X2) will satisfy the 
relation 

IFM(coiXi,co2X2) = ±F_i¥(co2X2,wiX1), (19) 

where the sign is + for symmetrical and — for anti-
symmetrical decay states. When the identical particles 
are spin-zero mesons, the helicity indices are suppressed 
and we have in both cases 

\FM{<*ij**)\*= \F-.M(O)2,O>I)\2. (20) 

When integration over the whole Dalitz plot is per
formed according to (11), we find that opposite values 
of M give the same angular distribution for the normal 
to the decay plane, and therefore RM~ does not 
contribute. 

III. DECAY INTO THREE SPINLESS PARTICLES 

We now consider in more detail the decay of a particle 
of arbitrary integer spin j into three nonidentical 
pseudoscalar particles. At first we do not take into 
account any restrictions resulting from possible isotopic 
spin configurations. 

The 2j+1 a priori independent decay amplitudes are 
reduced by parity conservation according to (15) and 
we obtain the maximum number of independent ampli
tudes as shown in Table I. In the simplest cases we 
have one amplitude for 0~ and 1~; two independent 

P12I wiXi; W2X2; w3X8; j,m,M)= I da ^mfid^dyDmMj{^y)F^Wi^u ^X 2 ; co3X3; afiy) 

= a I da $mfidf$dyDmM
5* (0^7) I ^2X2; coiXi; co3X3; a'ft'y') (18) 
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TABLE I. The number of independent amplitudes describing 
the angular distribution of the three-pion decay of a spin j particle. 
The columns refer to the angular momentum j and the rows to 
the parity of the decaying particle. 

j even j odd 

Parity even j j - \ - l 
Parity odd j - \ - \ j 

amplitudes for 1+ and 2 + ; three independent ampli
tudes for 2~ and 3~, etc. This result may be obtained 
by other approaches, but not in such a simple way. We 
can, for example, exhibit sets of independent amplitudes 
written in terms of Cartesian tensors which, for the 
spin-1 and -2 cases, take the form 

1 + G1(q1+q2)li+G2(qi-q2)fi, 

2+ (G1(q1+q2)li+G2(qi-q2)lih»P*aqipq2<rqza, (21) 

2 " G1(q1»q1
v+q2»q2v)+G2(qi»qiv-q2tiq2v) 

+2G3q^q2\ 

The G's which are the coefficients of the independent 
tensors are Lorentz-invariant quantities. They are 
assumed to be analytic functions of s, t, and u, the 
center-of-mass energies squared of the three particles 

dN/ dQ, = R^{ (P I I+PL. I - I )ZH 1 O 08) +pooZoo10(/3)+2[cosc* (Rep 1 0 - Rep__10) - s i n a a m p x o + I m p ^ Z x o 1 0 ^ ) 

+2[cos2a:(Rep1_1)-sin2a(Imp1_1)]Z1_1
10(/5)}. (23) 

We readily get the Z functions from the table of d functions given in the Appendix and obtain 

dN/dQ=R0
+{2 cos2/?poo+sin2/3(pn+p_1_i) —2v5 sin/3 cos/3((Repio—Rep_io) cosa— (Impio+Imp_io) sina) 

— 2 sin2/3 (Rep!_i cos2o:— Impi_i sin2a)} . (24) 

This is a well-known result. The angular distribution determines six quantities (including the trace pn+poo+p-i- i ) 
of the spin-1 density matrix (this specifies the tensorial polarization), but leaves undetermined the three other 
terms (related to the vectorial polarization). The vectorial polarization is not determined because there is only 
one decay amplitude. The observation of the y distribution would give nothing new. 

We now turn to the pseudovector (1+) case where there are two decay amplitudes corresponding to M=dzl. 
The angular distribution is then a function of two terms, one proportional to Rx

+ and one proportional to Rx~. 
I t reads 

dN/dQ = Ri+{ (pu+P-i-i)Zu11+ (P) +pooZoo11+ O?) + 2[cos<* ( R e P l 0 - Rep__10) - sina (Imp10+Imp_1o)]Z10
11+ (/3) 

+2[cos2a Rep1_1-sin2a lmp1.1]Z1^+^)}+Rr{ (pii-p-i-jZn11-® 

+2[cosa (Repio+Rep_10) — sina (Imp10— I m p - i o ) ] ^ 1 1 " (fi)} . 

The Z functions are easily calculated, yielding the explicit expression 

dN/d^l=R1+{ (pn+p-i-i)J(l+cos2 /5)+poo sin2/3 

+V2 sin/3 coSiS((Repio—Rep_10) cosa—• (Impi0+Imp_io) sina)+sin2/3(cos2a Repi_i—sin2a Impi_i) 

+Rf{ (pu—P-i-i) cos/3+v2 sin/3[coso;(Repio+Rep_io) —sina(Impio—Imp_io)]} . (25) 

Provided the two decay amplitudes R^ sat both different from zero, the density matrix can now be completely 
determined. One needs only the ratio of their absolute values. 

15 We use a metric such that a-b^aobo — a-b. 

FIG. 3. p-x decay. The p momentum is taken along z'; the rela
tive momentum of the decay pions is taken along z", 

taken two by two, i.e.,15 

s=(qz+qi)2, u=(qd+q2)2, / = f o i + f t ) 2 . (22) 

The functions \RM\2 defined above will in general be 
linear combinations of products of two of the scalar 
invariants Gi with coefficients that are functions of s, 
t, or u. 

Taking account of the conservation of parity, we 
next give the explicit expressions for the angular 
distribution of the normal to the decay plane. For the 
case of the decaying particle having spin and parity 
1~ we have only the M = 0 amplitude and i?(T=0. The 
quantity RQ+ is the common factor to the angular 
distribution, which, following (14), takes the form 
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The angular distribution of the normal to the decay plane for a spin-2 particle is obtained in the same way. 
The pertinent d2 functions are given in the Appendix. For the 2+ case where there are two independent decay 
amplitudes we obtain for the normal angular distribution 

dN/dU=R1^{ (P22+P-2-2) (sin2/3)i(l+cos2/3)+ ( p u + ^ . O i (cos^+cos22/3) 

+poo| sin22/3— (cosa Re(p2i—p-2-i)—sinalm(p2i+p_2-i)) sin2/3 cos2/3 

— (cos2a Re(p20+P-2o) —sina Im(p2o— P-2o))i(f)1/2 sin22/3 

+ (cos2a Repi_x— sin2a Impi_i) (cos2/3—cos22/3) 

+ (cosa Re(pio— p-10) — sina Im(pi0+p_io))|(f)1 /2 sin4£ 

+ (cos3a Re(p_2i—P2-1) — sin3a Im(p_2i+p2-i)) sin2/3 sin2/3 

— (cos4a Rep2_2— sin4a Imp2-2) sin4/3} 

+Rr{ (p22—P-2-2) sin2/3 cos/3+ (pn—p_i-i) cos/3 cos2/3 

— (cosa Re(p2i+p_2-i) —sina Im(p2i—p-2-1)) sin/3(3 cos2/3— 1) 

— (cos2a Re(p20—p-20) —sin2a Im(p2o+p-2o))(f)1/2 sin2/3 sin/3 

+ (cosa Re(p10+p-io) —sina Im(pi0—p-io))(f )1/2 sin2/3 cos/3 

— (cos3a Re(p_2i+p2_i) —sin3a Im(p_2i—p2-i)) sin/3 sin2/3} . (26) 

For 2~ we have three decay amplitudes corresponding respectively to M= ± 2 and 0 and thus the decay distribu
tion will be a three-parameter expression. We use (14) and the d2 functions given in the Appendix and obtain 

dN/d2 = R2+{ (p22+p-2-2)(3 sin4/3+cos2/3]+ (pn+p- i -OJ sm2/3(l+cos2/3)+p0of sin4/3 

+ (cosa Re(p2i—p-2-1) —sina Im(p2 i+P-2-i)) i sin2/3(3+cos2/3) 

+ (cos2a Re(p2o+p-2o) —sin2a Im(p2o—p-2o))(i\A>) sin2/3(l+cos2/3) 

+ (cos2a Repi_i— sin2a Impi_i) sin4/3 

+ (cosa Re(pio—p-10) —sina Im(pio+p_io))(i\/6) sin2/3 sin2/3 

— (cos3a Re(p_2i—P2-1) —sin3a Im(p_2i+p2-i))i sin2/3 sin2/3 

+ (cos4a Rep2_2—sin4a Imp2_2)i sin4/3} 

+ ^2~{ (p22~P-2-2) | COS/3 (1 + COS2iS) + (pii—p_i_i) Sm2/3 COS0 

+ (cosa Re(p2i+p-2-i) —sina Im(p2i—p-2-i))i sinj8(l+3 cos2/3) 

+ (cos2a Re(p2o—p-20) —sin2a Im(p2o+p-2o))(i\/6) sin2/3 cos/3 

+ (cosa Re(pio+P-io) —sina Im(pio—p_io))Gh/6) s m 3 £ 

+ (cos3a Re(p_2i+p2-i) —sin3a Im(p_2i—p2-i))| sin3/3} 

+Ro{ (p22+p-2-2)| sin4/3+ (pi i+p_i_i) | sin22/3+poo(2+f sin4/3-6 sin2/3)} 

— (cosa Re(p2i—p_2_i) —sina Im(p 2 i+p-2-i)) l sin2jfl sin2/3 

+ (cos2a Re(p2o+p-2o) —sin2a Im(p2o—p-2o))(KA>) sin2/3(3 cos2/3—1) 

— (cos2a Repi_i—sin2a Impi_i)6 sin2£ cos2/3 

— (cosa Re(p10—p-10) —sina Imtpio+p-itOXJV6) sin2/3(3 cos2/3~ 1) 

— (cos3a Re(p_2i~ P2-1) —sin3a Im(p_2i+p2-i))f sin2£ sin2/# 

+ (cos4a Rep2_2— sin4a Imp2_2)f sin4/3} . (27) 

When two particles are identical, integrating over the Dalitz plot averages to zero those terms proportional to R~ 
and the resulting expressions reduce to those given by Dennery and Krzywicki.16 I t is, however, possible to average 
separately over parts of the Dalitz plot (coi>co2 and co2>coi, say) and thereby allow for nonzero contributions from 
terms proportional to R~. 

Should resonances with higher spin be observed, explicit angular distributions of the normal to the decay plane 
could be readily obtained from the Legendre polynomial of order j , Pj(cos/3) using the following relations12: 

d « , « ' ± i ' X / 3 ) = ( ( i ± ^ 

doo'Gff) = iMcos/3); < W ( 0 ) = ( - l)m'-md-m>-mj(f3) = ( - 1 ) m'~mdmm,J(j3). (28) 

16 P. Dennery and A. Krzywicki, Phys. Rev. 136, B839 (1964). 
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Relations (24), (25), (26), and (27) are somewhat more 
complicated than necessary since they correspond to 
the most general density matrix. In many practical 
cases the production mechanism is such that the density 
matrix has many symmetries when referred to particular 
axes and many of the terms written in (24-27) will not 
appear. On the other hand an observation of the 
presence or absence of particular terms in (24-27) 
would give information on the production process.3 In 
this respect we recall the relations which express parity 
conservation in a two-body production process, when 
the initial beam and target are not polarized. If the z 
axis to which the density matrix is referred is chosen 
normal to the production plane, parity conservation in 
the production process yields 

Pm'm=0 if m— m'is odd. (29) 

If the z axis is along the resonance momentum in the 
center-of-mass system, parity conservation in the 
production processs yields17 

Pm' .=(-D" P—m'—m • (30) 

This last choice of density matrix has the advantage of 
being invariant under special Lorentz transformations 
along the resonance momentum, i.e., when one passes 
from the production cm. system to the decay cm. 
system.18 

We now consider the implication of the identity of 
the 7r mesons. If two of the w mesons are identical, i.e., 
have the same charge or are in a state of well-defined 
isotopic spin, we have shown in the preceding section 
that 

FM (C01,C02,C03) = z h (— l ) ^ _ j | f (W2,C01,W3) , 

the sign being + or — according as the states are sym
metrical or antisymmetrical with respect to the ex
change of the two particles. It follows that 

and 
RA 

RA =4(1^ 
are, respectively, symmetric and antisymmetric func
tions of («i—co2) or of (s—u). An antisymmetric func
tion does not contribute when the distribution is 
integrated over the Dalitz plot (11). In order to observe 

terms proportional to RM~2, and determine all parts of 
the decaying particle's density matrix, it is necessary 
to define the normal to the decay plane according to 
the different energies of the two identical particles. As 
mentioned above this corresponds to summing twice, 
over the halves of the Dalitz plot with o>i>co2 and 
O>i<C02. 

In many cases the symmetric function will be 
dominant, since the simplest symmetric function is 1, 
while the simplest antisymmetric one is (s—u)/M2, 
where M is a phenomenological parameter with the 
dimension of a mass. In any simple model this mass 
would be of the order of the inverse range of the 
interaction. If the range is short, i.e., if vector mesons 
play a dominant role,19 the average energy of each 
particle could be less than the inverse range (depending, 
of course, on how heavy the decay particle is) and the 
antisymmetric term would then be quenched by the 
centrifugal barrier effect as opposed to the dominant 
symmetric one. 

Furthermore, when the decay amplitude is written 
in terms of Cartesian tensors such as (21), as is usually 
the case when dealing with a particular model, the 
antisymmetric term vanishes when the different tensor 
amplitudes have the same phase, i.e., are relatively real. 
This can be seen as follows: If the spin is j , the decay 
amplitude is written as a Cartesian tensor of order j . 
It is constructed with the two linearly independent 
vectors available, for instance q—qi—q* and p=qi+q2, 
where qx and q% are the four-momenta of the two 
identical pions. The decay amplitude is a linear com
bination of monomial expression of the type 

Gkphph ' ' ' PinQin+l • • • Qij • ( 3 1 ) 

The density-matrix element constructed in tensor form 
Ph—ij,h-~jj contributes to the angular distribution a 
term 

2 GhGfpii' - -qijph' • 'qjjPiv»ij,h—jj, 
kl 

where the indices of the sets {i} and {j} running from 
1 to 3 refer either to p or q components, depending on 
the subscript k, /,•••. We can apply the Hermitian 
property of the density matrix to write the decay 
distribution as 

ki 

- Im[G*£i*] [ (p ,y -qijph'' - # j ) - (Ph' -qjj)(ph'' 'Qij)l I m p ^ . . . ^ . . . ^ } . 

Using the fact that the whole decay amplitude is sym
metrical with respect to the exchange of the two 

17 We use the (̂ >,0,O) representation of Ref. 7. 
18 This follows from the property that the generator of a Lorentz 

transformation along a particular axis Mu commutes with the 
component of the angular momentum along that axis, i.e., 
ZMjK,Mi43 = 0. 

identical particles we have that if Gk is symmetrical 
(antisymmetrical), the associated tensor contains a 
component of q an even (odd) number of times. In
spection then shows that odd powers of components of 

19 See, for example, M. Gell-Mann, D. Sharp, and W. Wagner, 
Phys. Rev. Letters 8, 71 (1962). 
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the normal to the decay plane, i.e., terms of the form 
nk—piqj—qipj, which correspond to terms linear in 
cos/3 or sin/3 in the angular distribution, are obtained 
only in the terms proportional to Im{Gk,Gi*}. 

In order to determine fully the decaying particle's 
density matrix, we see tha t it is necessary to have 
amplitudes of different phases. This is necessarily the 
case in three-pion decays when a two-pion resonance 
(the p meson) can actually be produced. 

To illustrate this point, we consider the decay of a 
pseudovector particle A into a pw state with the sub
sequent decay of the p into two pions (Fig. 3). To be 
more specific we consider a A* —> 7r±+7r=F+7r=F decay. 
We introduce the unsymmetrized Apw decay amplitude 
as 

gieA-eP+g2(eA-q2)(eP'q2) 

and a p-rnr decay amplitude 

geP(q-qi)-

qi and q2 are the momenta of the two identical pions, 
and €A and €p, respectively, stand for the linear polari
zation vectors of the A and p mesons. The A -—> 3ir 
decay amplitude can be expressed, after the proper 
symmetrization, as 

\gi(q-qi)+g2q2q2'(q~qi) 
€A'g\-— 

I (q+qi)2-mP
2 

(q+q2)2~mp
2 J 

This last expression is of the form 

€A- (G1(sit,u)(qi+q2)+G2(s,t,u)(qi-q2)), (32) 

where G\ (G2) is a symmetrical (antisymmetrical) 
function with respect to the exchange of s and u. In 
(32) the mass of the p is actually complex and we write 
mp

2 as Mp2+2iMpTp where Mp and Tp are the p mass 
and width. In terms of the coupling constants gx and 
g2 one finds for the interference term the covariant 
expression 

lm{G^G2) = (2MpTp(s-u)/1 (s-mp
2)(u-tnp

2)|) 

X { g 2 2 [ ( ^ - g ) 2 - ( ^ ^ - 2 g r g 2 - M 2 ) 2 ] 
+3gi2+2g1g2(K'P-2q1-q2-»

2)} , 

where K=q+qi+q2 is the A -meson momentum. The 
term Rf in Eq. (25) is proportional to the interference 
term Im(GiG2*). The interference term will be non-
negligible on the p bands as compared with a symmetric 
|G i + | 2 term, except on that part of the p bands which 
actually cross over within the Dalitz plot. The non-
crossover p bands contain the events useful for deter
mining the vectorial polarization of the A particle. 

Vector-Meson-Pion Decay 

Since meson resonances appear to play a dominant 
role in elementary-particle interactions, a three-meson 

decay may often be considered as two successive two-
body decays, two of the mesons being the decay 
products of a meson resonance produced together with 
the third one. Decays of this type have been already 
observed,5 and we now consider in some detail an 
example of such a process (Fig. 3). 

To illustrate the argument we consider a parity-
conserving decay where the intermediate two-meson 
resonance is a vector meson and where the initial 
decaying state has a definite angular momentum. In 
order to construct a state of well-defined parity we use 
the result of applying the parity operator to a two-body 
helicity state given by Eq. (41) of Ref. 7, i.e., 

P\jmX) = 7]17j2(-iy~^-^\jm, - X ) . (33) 

Therefore a decay state of well-defined parity can be 
expressed as 

£ Fx(l/^X\jm\)+e(-iy\jm}-\)), (34) 

where j is the spin of the parent decaying particle, m 
its component on a fixed axis, X the helicity of the vector 
meson, and e the relative parity of the vector meson 
and parent decaying particle. The sum in (34) extends 
over only two values of X, X= 1 (or — 1) and 0. 

I t follows from (33) that for either choice of parity a 
vector-meson helicity of ± 1 is allowed, while the 
helicity 0 state is allowed only when e== (— \)j. If the 
vector meson is a p (negative parity), the helicity state 
X=0 is allowed for the assignments 1+ , 2~, 3 + , • • •, for 
the parent decaying particle. Turning now to the two-
spinless-particle decay mode of the vector meson, we 
see that states with X= ± 1 and 0 give different angular 
distributions. When the angular distribution is referred 
to the vector-meson line of flight as a polar axis and 
averaged azimuthally, one finds, respectively, for the 
cases X=dzl and X=0 (in the vector-meson rest frame) 
angular distributions of the form 

sin2^T7r or c o s 2 ^ . 

This is true independently of the parent decaying 
particle's state of polarization or alignment. 

A cos^™ term allows for the occurrence of events 
with the three mesons along the same line in the parent 
decaying particle's rest frame, and its occurrence would 
show that the relative parity to the vector meson is 
(—1)3\ Taking into account the negative parity of the 
p meson yields a parity (—1)J'+1 for the parent particle 
decaying into an intermediate pir state.20 

To complete this discussion we give in (35) the 
angular distribution obtained from (34). The method 
for arriving at this expression follows the derivation of 
Eq. (38) given below. 

20 For a more detailed discussion of sequential decays see S. U. 
Chung, University of California Radiation Laboratory Report 
No. 11899 (unpublished); J. Button-Shafer, UCRL Report No. 
11903 (unpublished); S. M. Berman and M. Jacob, Stanford 
Linear Accelerator Center Report No. 43 (unpublished). 
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The angular distribution of the vector meson in the parent-meson rest frame is then 

^ ( M ^ i E {cosO-m')ip R e [ p w + {-\)m~^p^Tf^m>']-sm(m-m,)ipIm[)w--(-l)™-^,^]} 
mm' 

XZ\F1\^Zmmr^(6)+2\Fo\2Zmm^+(e)2. (35) 

IV. ISOBAR TWO- AND THREE-BODY DECAYS 

We consider next the decay of a particle of arbitrary 
half-integer spin j into a spin-| hyperon and two w 
mesons. Parity is assumed to be conserved in the decay 
and hence the decay state corresponding to a pure spin 
state Jz=m is written, according to (17), as 

HMFM(\ j,m}Mi)+<-l)M\j,m,M, - J » , (36) 

where e stands for the parity of the decaying particle, 
relative to the decay baryon. M takes all half-integer 
values such that —j<M<j. 

Since all M values may appear in the expression 
obtained for the angular distribution of the normal to 
the decay plane, this distribution will appear slightly 
more complicated than the one obtained in the 3x case. 
Nevertheless, the a priori unknown parameters—the 
2 j-\-1 decay amplitudes and the density matrix elements 
which describe the polarization and alignment of the 
decaying particle—also predict the polarization state 
of the daughter hyperon. Its density matrix can in turn 
be fully determined from the knowledge of the decay 
asymmetries. 

Since this approach using the helicity formalism 
generalizes the derivation of well-known relations for 
two-body decays to three-body decays, we first briefly 
introduce our method for the two-body case. Many of 
these results are already known21 but have not been 
given in the same concise and simple form presented 
here. Furthermore, in many practical cases two-body 

21N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963). 
22 R. Gatto and H. Stapp, Phys. Rev. 121, 1553 (1961). 

and three-body decays occur with similar branching 
ratios (Yf-tAir, Fx* ~> ATTTT, and F0*-+2+7r, F0*-> 
A7T7T- • •) and it may be useful to have the various decay 
distributions compiled together, since both cases refer 
to the same set of density matrices. 

Consider now the parity-conserving two-body decay 
of a particle into a hyperon and a pseudoscalar meson. 
From Eq. (33) we find that parity conservation implies 
that the decay state corresponding to a pure spin state 
(Jz=m) takes the form7 

(im(\jm,i)+e(-l)M\jm, - * ) ) . (37) 

There is only one amplitude associated with a parity-
conserving decay. It follows from (37) that the angular 
distribution and the longitudinal polarization of the 
decay hyperon depend on the angular momentum, and 
on the polarization state of the decaying particle, but 
not on the relative parity e. However, the transverse 
polarization, which is an interference term between the 
two helicity states, changes sign with e, which is a 
well-known result.22 We take the z axis and the hyperon 
momentum (in the isobar rest frame) to define a decay 
plane, and will consider the polarization vector of the 
final hyperon in this plane (Fig. 4). Our phase conven
tions for two-body decays are those of Ref. 7. The polari
zation is described with the conventional z and y axes, 
respectively, taken along the z' and zXz' axes. 

From (37) one readily finds the angular distribution 
of the daughter hyperon 

mm' 

= i L (Repwm> cos(m—mf)<p—Impmm> s'm(m— tn')<p)Zm*„**+($), 
mm' 

= i Z {cos(w-w /)^Re(pmW '+(-l)m"m/p-m-mO 
mm' 

-sm(m-mf)<p I m G w + ( - \)m-m'p-m~m>)}Zm,mti+(6). (38) 

For the longitudinal polarization, i.e., the expectation value of the helicity, we have merely to replace Z+(0) by 
Z~(6) and thus we obtain 

pLXl(0,<p) = l\F\2 E {cos(w-mO^Re(pw~(-l)M-wP-m-mO 
mm' 

-sm(m-m,)cpIm(Pmm'+ (-l^-^p-m-m^Z^J^ie). (39) 

The longitudinal polarization given by (39) vanishes if the isobar is not polarized. Even for a polarized isobar 
the longitudinal polarization of the hyperon is zero when averaged over the angular distribution, since Z^-(TT—6) 
= -Z*-(0). 
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The transverse polarization, in the zzf plane, reads 

= e ( - l ) ^ ( l ^ l 2 / 2 ) E (^epmm' cos(m~m/)cp-ImPmm^m(m--m/)(p)Xm'm
j(e), 

where 
Xm>m>'(fl) = dm>xJ(6)d^Xd)+dm,^(e)dmhi(Q). 

With the relation X_m>_m '(#)= ( - l ) m ' + w J S W ' ( £ ) we write 

^ X / ( M = € ( - l ) ^ K i ^ l 2 / 4 ) E { c o s ( ^ - m O ^ R e ( p ^ + ( - l ) - + - ' p _ w _ w O 
mm' 

- sin (w-*&')*> I m G w - (-l)m+mVm-mO}^m'my(0) • (40) 

Examination of Eq. (40) shows that the transverse 
polarization also vanishes if the isobar is not polarized, 
and furthermore, that if the azimuthal angle <p is not 
observed, only diagonal terms of the density matrix 
contribute. 

The simplicity of the method is related to the fact 
that the ratio of the helicity amplitudes does not change 
when transformed from the isobar rest system to the 
rest frame of the hyperon. 

For a specific illustration, we give the above decay 
distributions obtained for the decay of a spin-J and of a 
spin-f isobar. The Z ± and X functions are obtained 
from the values of the d function given in the Appendix. 
In order to give relatively simple expressions we average 
over the <p angle. The effect of any other density-matrix 
elements whose contributions have been averaged out 
can be obtained in a straightforward way if this 
azimuthal average is not performed. 

For j — \ we have the well-known results 

where the angular bracket means average over all 
directions. We use the Clebsch-Gordan series expansion 
(12) together with the orthogonality property of the D 
functions. We find 
(pL(fi,<p)I(e9tp) ca&e) 

= W I V 2 ) E « ( - l ) ^ R e ( p ^ - p _ ^ ) 

XCUjUm,-m)C(jjl\h-i) 
and 

(pT(0,v)I(fi,<p)sm6) 

= (\F\*/2)^e(-iy^Zm(-l)m+x> 
XRe{pmm—p-rrv-m)C(jji\m, —m)C(Jjl\%%). 

I t follows that 

-Ri= 
(pL(e,cp)i(e,<p) cosfl) 
{pT(d,<p)I(dycp) sind) 

= - € ( - ! ) • 3+1 
c(jji\j-j) 

1(0)-

/»2TT 

= / / ( M ^ = 2 x | F | 2 | , 
J 0 

(41) 
# L X / W = 2 x | ^ | 2 i ( p * i - p L i _ i ) cosfl, 

# rXI (0 ) = 2ir|F|*ie(pj * - p _ M ) sin0. 

In the y = f case, it reads 

I{e) = 2ir\F\*M(Ph r r - P - ^ X l + 3 cos20) 

+ (PI t+P-t-f)3 sin20} , 

2x 
PLl(d) = -\F\>{(ph r -pL-w)(9 cos20-5) 

16 

+3(p% | — P H - I ) s i n2^} cos^> 

^ / W = ~ ( 2 7 r / 1 6 ) | F | 2 6 { ( p u ~ p _ M ) ( 9 c o s 2 0 - l ) 

+3(p§ |—p_|_|) sin20} sin0. 

At this point we may easily derive a useful result. 
From (39) and (40) we get the ratio of the expectation 
values of (pL(6,<p)I(0,<p) cos#) and (pT(d9<p)I(d7<p) sin0), 

The ratio of the two Clebsch-Gordan coefficients is 
readily obtained and we find 

* i = « ( - i ) « D / ( 2 i + i ) ] . 

I t should be stressed, however, that the two quantities 
which appear in this ratio are both proportional to the 
parent-particle polarization. This result can be gen
eralized to higher moments of the type illustrated below 
with the restriction that / be odd.21 For example, we can 
calculate the ratios 

Ri= 

where 

(pL(e,v)I(e,v)Pi(ca36)) 

(PT(e,<p)i(d,<p)(?m) 

(42) 
/ 4TT V'2 

<?f*(0) = e~im<PYim(0, <p) J . 
X 2 / + 1 / 

In a similar way we find for the average longitudinal 
polarization 

< M M / ( M ^ ( c o s 0 ) > = 1/(2/+1) 

X ( | F l 2 / 2 ) I . ( - l ) - * R e ( P m m - p _ m _ m ) 

X C ( ^ 7 | W , - W ) C O J 7 | J , - J ) , 

which vanishes for even /, and for the average transverse 
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FIG. 4. Hyperon-pion decay. 
The decay-hyperon momentum 
is taken along z'. The vectors 
pr, PL, and p are the trans
verse, longitudinal, and total 
polarizations of the decay hy-
peron, respectively. 

polarization 

< M M / ( M < 5 V ( 0 ) > = = * ( ( - l ) ' + l / [ 2 J + l ] ) 
X ( | F | 2 / 2 ) £ m ( - l ) m +*Re( P m m -p_ m _ m ) 

XC(jjl\m,-m)C(jjl\U). 

I t then follows that21 Ri can be expressed as the ratio of 
Clebsch-Gordan coefficients 

Rt=e(-iy-i- cum,-h) 
c(jji\U) 

= 6 ( - l ) ^ -
2j+l 

Similar relations can also be obtained in the same 
simple way when the Legendre polynomials and 
Legendre functions are replaced by D functions. (One 
always obtains the ratio of two Clebsch-Gordan co
efficients, but off-diagonal density-matrix elements are 
introduced.) 

We now turn to the three-body decay into a spin-J 
hyper on and two pseudoscalar mesons. The angular 
distribution of the normal to the decay plane is given 
by (13) and (14). This is a simple generalization of (38) 
where the normal to the decay plane replaces the 
momentum as an analyzer of the decaying-particle 
polarization. However, for a three-body decay into two 
spin-0 mesons and a spin-| hyperon, there are in general 
2j/-f-l independent amplitudes, instead of one as in 
(38). The 2j-\-l decay amplitudes FM are, in general, 

unknown functions of the invariant scalars s, /, and u. 
However, the kind of angular functions which arise in 
the normal angular distribution do not depend on the 
explicit form of the FM but only on the parameter M. 
Just as in the case of 3TT decays, if some of the decay 
products are in a fixed isospin state, then there can be 
some additional relations among the amplitudes FM-
For example, the two -K mesons will be in a state of 
well-defined isotopic spin for the decay Fi*(1660)-^ 
A 2w (branching ratio 0.23), and for the decay 
F0*(1520)->A 2TT (branching ratio 0.16)- ••. The 
decay amplitudes FM with opposite values of M are 
then related by (19) and, just as in the case treated 
above for the three-pion decay, the RM~ amplitudes 
will vanish when summed over all energy configurations. 

As an illustration of the general formula (14), we 
give the angular distribution of the normal obtained 
when the parent particle has angular momentum f. In 
order to make the resultant expression more compact 
we define the 12 quantities 

C i = P H + P - f - f > 

C2=PH+P-i-4> 

Cz(a) = cosa Re(p f i - p_ f_ i ) - s ina Im(p§ * + / M M ) , 

C4(o0 = cos2a Re(p|_!+P-§ i)—sin2ai Im(p |_ i -p_ f x), 

C5(a) = cos3o: Re(p)f_|—p_§ i) —sin3a: Im(pf_§+p_i f) , 

CQ(O) = cosa Re(pi_i—p_i i)-—sina Im(pi_i+p_i A), 

and 

C I ' = P H — P - ! - § > 

Cz (a) = cosa Re(p§ i+p„i_i) — sina Im(p§ i—p_|_i), 

C/(a) = cos2o: Re(p§_i—p_§ i) —sin2a Im (p,i_^+p-t h) > 

C*>'(a) = cos3a Re(p3_f+p_a |) —sin3a Im(p§_§--p_§ §), 

CQ (a) = cosa Re (p§-§+p-f *) - sina Im (pi_x—p^i i ) . 

In terms of these quantities, the angular distribution of 
the normal may be expressed as 

dN/dtt= {d i ( ( l + 3 cos2/3)i?f++3 sin2/3i^+)+C2 i ( 3 sin2£R t++ (1+3 cos2/3)Rh+) 

+ (vJ/2)C3(a) s in2/3(i? f+-^+)+(v3/2)C4(«) s i n 2 / 3 ( i ^ - i ^+ )} 
+ {Ci ,i cos/3((cos2/3+3)i?r+3 sm2(3Rf)+C2'i c o s / 3 [ s i n 2 ^ r + ( 3 cos2/3- (S/3))Rf2 

+ (v3,/2)C3
,(a) s in /5 ( ( l+cos 2 /3 ) i? r+( l -3 cos2/3)Rf)+(^3/2)C/(a) cos/3 sin2/?(Ri--3Rf-) 

+ l C 6 ' ( a ) sin/3 sitfp(Rf—3Rf-)+lC6'(a) sin/3((9 cos2/3- l)Rf+3 sitf(3Rf-)} . (43) 

Analysis of the three-body decay in terms of Eq. (43) 
would provide 16 different functions of a and 0 which 
can in principle fully determine the density matrix of 
the decaying particle. 

We now turn to the polarization of the daughter 
hyperon. As follows from the way we decomposed the 
parity operation, where the z and y axes were defined 
to be along the hyperon momentum and along the 

normal to the decay plane, respectively, the state 

( l / v 2 ) ( | 7 > , M , i ) + € ( - l ) ^ | i , m , M , - J » 

is an eigenstate of the spin component of the hyperon 
normal to the decay plane, with eigenvalue e(— 1)M~§. 
As usual, this polarization is defined in the hyperon rest 
system. 
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I t follows from (36) that the expectation value of 
the polarization of the hyperon, normal to the decay 
plane, can be easily expressed in terms of the parent 
particle's density matrix. The polarization is defined as 
the expectation value of c r$ , where n is a unit vector 
along the normal to the decay plane. In terms of the 
parent particle's density matrix pmm>, the distribution 
of transverse polarization along the normal can be 

Equations (43) and (46) can be used to determine the 
spin and parity of the decaying isobar by fitting to the 
three-body data, or at least can be used to impose 
further consistency requirements when the two-body 
decay data are simultaneously analyzed in terms of 
(38), (39), and (40). 

For example (46) when applied to the Y{* (1660) 
data should yield expressions of the same sign for the 
A and 2, employing averages over both the Dalitz plot 
and the azimuthal angle of the normal if the A and S 
particles have the same parity. This comparison could 
be considered as an independent determination of the 
SA relative parity, and generalizes to three-body 
decays—a result already known for two-body decays.23 

If desired, the expectation value of the hyperon 
polarization along any other direction is readily ob
tained from (36). However, the polarization normal to 
the decay plane is the only component of polarization 
which does not vanish when an average is performed 
over 7. 

Isobar-Pion Decay 

Since a three-body decay of a high-mass isobar may 
proceed through an intermediate isobar-pion decay, we 

23 Ph. Meyer, J. Prentki, and Y. Yamagouchi, Phys, Rev. 
Letters 5, 442 (1960). 

expressed as 

PTidN/dty-eZ (-1)M-*\FM\* £ Pmm' 
M mm' 

X {Dm>Mj(aP$)DmM
j\aPtt)). (44) 

Just as for the angular distribution of the normal, we 
regroup terms with opposite values of M and obtain 

now consider, as in the case of the three-pion decay, 
two successive parity-conserving two-body decays20 

eventually producing a final three-body state of one 
spin- | baryon and two spinless mesons. We restrict the 
arguments below to exclude any possible overlapping 
isobar bands, thus eliminating any possible ambiguities 
as to the kind of two-body decay. The decays 

N*(16S8)-*N*(1238)+TT 

and 
S * ( 1 8 1 0 ) - > S * ( 1 5 3 0 ) + T T 

provide two such examples.5 In both cases, one of the 
daughter particles is a decuplet member with angular 
momentum •§+. For the first step of this two-step 
process, parity conservation implies two independent 
decay amplitudes. Assuming that the intermediate 
particles are a spin-f particle and a pseudoscalar 
particle, we find that the intermediate decay state 
corresponding to a pure spin state of the initial particle 
can be expressed as 

( 1 / ^ ) { F W 1 ( | j,m,i)+e(-l)^\j, m, - f » 

+Fv*(\ J > , 4 > + « ( - D ' - * l i , » , - I ) ) } . (47) 

where j is the angular momentum of the parent isobar 
and € is the relative parity of the parent and daughter 
isobars. For the special case of the parent isobar having 

M>0 mm' 

+RM~ D [Repmm> cos(tn—m')a+Impmm> sin(m— mr)a]Zm>m
m+(fi)} 

mm' 

= e L ( - 1 ) M - * | { E [ R e ( p w + ( - l ) m + m P - m - m < ) c o s ( m - m > 
M>0 mm' 

- I m G w - (- l )O T +"Vm-m') sm(m-m')ar\Zm,JM-(P)RM+ 

+ [ R e G w - (-l) r o + m 'p-m_m0 cos(m-m')a 

- I m G w + ( - l ) « ' p _ m - m 0 8in(f»-f»')a]^»'» ,Af+08)22jf-} • (45) 

In order to illustrate this general relation, we consider the case where the parent particle has angular momentum 
f. Employing the Z± functions already obtained for the normal angular distribution, we find 

pT(dN/<m) = -e{lCl' cos/3[(cos20+3)2?|+-3 sin2/3 i ? i+ ]+ |C 2 ' cos/S[sin2/3 i ? j+ - (3 cos2/?- (5/3))22j+] 

+ |VJC 8 ' (a) sin/S[(l+cos»/S)2?l++ (3 cos2/3- l ) i^+]+ | \*3C 4 ' (a) cos/3 sin*j8(R|++3.Rj+) 

+JC 5 ' ( a ) sin/3 sk*/3(*|++3.R l+)+KV(a) sin/3[3 sin2/? R^- (9 cos2/3- l)Uj+] 

+ C i i ( l + 3 cos2/3) C R r - 3 sin2/? jRr )+C»i [3 sin2/? Rf- ( 1+3 cos2/3)i?r] 

+ | \ 3 C 3 ( a ) sxD2P(to-+Rf-)+WCt(a) sitfp(Rf-+Rf-)} • (46) 
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X , y , Z Y * * REST FRAME Y * * _ _ ^ Y * + IT 

X'.ylz' Y * REST FRAME Y * — Y + IT 

XH
ty"z" Y REST FRAME Y __^N + IT 

FIG. 5. The two-stage decay F** -> Y*+v, F* -> F+TT. The 
coordinate system (x,y,z) is the rest frame associated with the 
F**. The F* momentum is along z', and (x',/,*;') is the rest frame 
associated with the F*. The F momentum is along z". In addition, 
the coordinate system {xrt

1y"iz") in the F rest frame, used for the 
analysis of the final hyperon polarization, is indicated on the 
figure, where z'" is along the nucleon in the analyzing decay 
F —» N-\-ir. Note that the direction of the y axis remains invariant 
between any two successive frames of reference. 

spin | there is only one decay amplitude, and F3/2 will 
not appear in (47). 

The density matrix pr of the daughter isobar can be 
expressed in terms of the parent density matrix p as 

Pv'^FJP* E e^-^HmJ(Q)dm,j(Q)Prti (48) 

The density matrix p is defined in terms of a co
ordinate system derived from the initial coordinate 
system in the parent-isobar rest frame by a rotation 
through angles 6 and <p, the polar and azimuthal angles 
of the momentum of the daughter isobar in the parent-
isobar system (Fig. 5). Parity conservation as expressed 
by equations of the form (47) then implies that for an 
unpolarized parent particle 

P _ , V = P M / ( - 1 ) ^ . (49) 

As follows from the transformation property of the 

helicity amplitudes under Lorentz transformation, the 
density matrix p is the same in either the rest frame of 
the parent isobar or the rest frame of the daughter 
isobar. We note also that Eqs. (48) and (49) are valid 
for any spin of the daughter isobar. 

If the daughter isobar subsequently has a two-body 
decay, its density matrix given by (48) may now be used 
directly in (38), (39), and (40) to express the resultant 
angular distributions. In particular, for the case of the 
daughter isobar having spin f, the density matrix (48) 
can be substituted directly in (42). The results obtained 
in the beginning of Sec. IV pertaining to two-body 
decays can now be applied directly to the daughter-
isobar decay, notably the theorem on the ratio of 
transverse to longitudinal polarization. 

The succession of reference frames used in the 
analysis of such a two-step process, followed by the 
eventual isobar decay into Y+w, is shown on Fig. 5. 

It is perhaps by this last example of the two-stage 
decay that the simplicity of a method using helicity 
states is clearly demonstrated. The more traditional 
treatment would require recoupling coefficients to 
describe the second stage of the decay in terms of the 
parameters describing the first stage, a complication 
avoided in this presentation. 

APPENDIX 

We list together the d functions which are useful for 
the analysis of the decay of particles of spin less than 
or equal to 3. Not all the d functions are given. The 
missing ones are easily obtained using the simple 
symmetry relations 

dm>m*(P) = ( - l)™-™'d-m,-.J(0), 
<W(/3) = ( - l)m~m'dmm>J(p). 

Several recurrent relations useful for the calculation 
of the d functions are given in the appendix of Ref. 7. 
More relations are given in Refs. 12 and 24. 

The relevant d are now listed below. 

Spin I : 

Spin 1: 

Spin f: 

Spin 2: 

d\M = cos|/3, <L* h (0) = sin J/3. 

<2nG3)=4(l+cos/3), ^oi03)=(sin/3)/v2, 

di-M~- :§(1-cos/3), d0o(j3) = cos/3. 

d\ tO3) = l(l+cos0) cosJ/3, d% M = 
^f_i(iS) = Jv3,(l-cos0)cosJ/S, Jf_f(/3) = 
d\ j(£) = i(3 cos/3-1) cosJ/3, ^_i(/3) = 

-Jv3(l+cos0)sini/3, 
— J(l — cos/3) sin|/3, 
- H l + 3 cos/3) sin|/3. 

lA. R. 

<*22(# = i(l+cos/3)2, <22i(/3) = -i(l+cos/3) sin/3, 
<22o(/3)= (VV4) sin2/3, ^-i(/3) = -J(l--a>s/3) sin/3, 

rf2_2(/3) = Kl-cos/3)2, Jn(/3) = Hl+cos/3) (2 cos/3-1), 
*LOG8) = - (f)1/2 sin/3 cos/3, d^M = J(l-cos/3) (2 cos/3+1), 

doo(/3) = i(3cos2/3-l). 
Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957). 
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Spin 2 • 

Spin 3: 

d* f(£) = i(l+cos/3)2 cosi0, &h m = ~ (5)1/2i(l+cos/3)2 sin*/5, 

^ H 05) = (10!/2/4) sin2/3 cosf/3, rfM Q3) = - (lO1'*/4) sin20 sin§/5, 

d M 0 3 ) = S1/2ia-cosj8)2cosJ/3, rfM03) = - i ( l + c o s P ) 2 s i n J / 3 , 

^1108) = i (5 cos/3- 3) cos^/3, <*f* (0) = (l/v2) ( - (5 cos/3-1)) cos2|/3 sinJ/3, 

di-i03)= ( l / v 2 ) ( l + 5 cos/3) sin2§£cos|/3, ^f_f(^) = —i(5 cos/3+3) shr%3, 

d*\ 03) = J (5 cos2/3- 2 cos/3-1) cos|/3, ^ (/3) = - § (5 cos2/3+ 2 cos/3-1) sin|/3. 

^3(^) = i ( l+cos/3)S d8203) = - (6^ /8) sin/3(l+cos/3)2, 

dsi03)= ( l S 1 ^ ) sin2/3(l+cos/3), ^o(/3) = - (S 1 ' 2 /^ sins/3, 

<Z3-i(/3) = (1SW/&) sin2/3(l-cos/3), i w t f ) = - (&'2/8) sin^(l—cos/3)2, 

d3-303) = Kl -cos /3 ) 3 , </22(/3) = Kl+cos/3)2(3 cos/3-2), 

j2 1(0) = - (5!/2/4v2) sin/3 (3 cos2/3+2 c o s ^ - 1 ) , rf2o(/3) = (151/2/2\^) cos/3 sin2/3, 

^2_i (/3) = (5^2/^/2) sin/5 (3 cos2/3- 2 c o s £ - 1 ) , d2-2 (/3) = i(l—cos/3)2 (3 cos/3+ 2), 

dn{0) = J(l+cos/3) (15 cos2/3-10 cos/3-1), dio(/3) = - (V3/4) sin/3(5 cos2/3-1), 

^i-i(/3) = i ( l - c o ^ 3 ) ( 1 5 cos2/3+10 cos/3-1), d0o(/3)= (5 cos3/3-3 cos/3)/2. 
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Introduction to the iV-Quantum Approximation in Quantum Field Theory* 
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The iV-quantum approximation is designed to find approximate operator solutions of theories character
ized by a specific Hamiltonian. The Heisenberg field operators of the theory are approximated by finite-
degree normal-ordered expansions in an irreducible set of in-fields. The c-number functions which are the 
coefficients of these expansions are the unknown quantities in the approximation. The approximation 
assumes that the dominant contributions to the vertex function, scattering function, and other low-order 
functions come from functions of similar low order. The c-number functions correspond to the connected 
graphs with a given number of external lines. Thus in graphical language the approximation assumes that 
the connected graphs with few external lines dominate. The iV-quantum approximation is manifestly co-
variant, treats positive and negative frequencies in a symmetric way, allows a calculation of several different 
physical processes simultaneously, allows incorporation of bound states, and requires extrapolation off the 
mass shell in fewer variables than the usual Green's function approaches. After describing the 2V-quantum 
approximation, it is shown to be compatible with renormalization theory in first order of the approximation 
in the model with £i = gA3. I t should be emphasized that all powers of the coupling constant occur in first 
order of the iV-quantum approximation in this model. A quadratic integral equation is obtained for the 
vertex function, and it is shown that the vertex function satisfies the renormalization criteria that the 
particles in the theory have a given observed mass, and that the vertex function has a given coupling constant 
as the residue of a pole (m2—&2)-1 in the unphysical region. I t is also shown that the power-series-expansion 
solution is finite term by term in all orders of the coupling constant. 

1. INTRODUCTION theory has rather restricted scope, since it applies only 

Q
TTA^TrT,TT,yr , , -, . ^ T , to purely electromagnetic interactions and is not valid 

UANTUM electrodynamics is the only quantum w h e n e f f e c t s ^ ^ ^ ^ i n t e r a c t i o n s 

_ field theory which provides a quantitative de- f Q r { &t M h en ^ A f ^ & ^ ^ o f ^ 
scnption_of relativistic particle interactions. Even tins s u c c e s s M a t t e m p t s t o t r e a t s p e d f i c t h e o r i e s o f g t r o n g 

* Supported in part by the National Science Foundation under interactions without using perturbation theory, these 
Contract GP-3221. attempts largely have been abandoned, and interest has 

I ^ l l ^ I r ^ Z ^ T v ^ , and Astronomy, s h i f ^ to approaches in which various general require-
University of Maryland, College Park, Maryland. ments, such as relativistic mvanance, spectrum, locality, 


