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One of the outstanding problems of elementary-particle physics is the problem of combining Lorentz 
invariance and internal symmetry in a nontrivial way. In this paper we attack this problem by making a 
general investigation of the possibilities of finding a Lie algebra of finite order E such that the Lie algebras 
of the Lorentz and internal symmetry groups appear in it as subalgebras. We carry out this investigation by 
using some powerful standard results from the general theory of Lie algebras. The most relevant of these 
is Levi's result that any Lie algebra E is the semidirect product of a semisimple algebra G and an invariant 
solvable subalgebra S (called the radical). Using this result we show that if L, the algebra of the inhomo-
geneous Lorentz group, is a subalgebra of E, and M and P are the homogeneous and translation parts of L 
respectively, then either (a) M lies completely in G and P lies completely in S, or (b) L has no intersection 
with S. The relevance of this result is that it enables us to classify the ways in which L can be a subalgebra 
of E in a very simple way. The classification is carried out by subdividing case (a) into the three cases: 
(i) S = P, (ii) S Abelian but larger than, and containing P, and (iii) S solvable but not ^.belian, and con
taining P; and by regarding case (b) as case (iv) SC\P = Q. Each of these four cases is considered in detail. 
I t turns out that case (i) is essentially a direct sum of L and a semisimple Lie algebra; case (ii) is possible, 
but has the disadvantage of introducing a translation group of more than four dimensions; and case (iii) 
seems to be rather unphysical. Case (iv) is possible but is equivalent to imbedding L in a simple Lie algebra. 
The over-all picture which emerges is that while there are a number of ways in which L can be imbedded in 
an E, none of these (except the direct sum) seems to be particularly attractive from the physical point of 
view. In particular, it seems that, while it may be possible to make SU(6) theory fully relativistic, it is 
probably not possible to do so within the context of a Lie algebra of finite order. [This does not contradict 
the U(12) theory.] The question of explaining mass splitting within the context of a Lie algebra of finite 
order is considered, and it is shown that this cannot be done. The various negative-type theorems obtained 
by previous authors for special cases of E are rederived here within the general framework, most of them 
being derived from much weaker assumptions. 

1. INTRODUCTION 

RECENTLY, a large number of papers have ap
peared in which the problem of combining in

ternal symmetry and Lorentz invariance has been dis
cussed. Although this problem has always been of in
terest, attention has been focused on it in recent months 
for two reasons. The first concerns the mass splittings 
which are found experimentally to occur within the 
multiplets of particles and which are not explainable 
(except as symmetry-breaking phenomena) within the 
context of the internal symmetry groups. The hope is 
that they might be explainable within the context of a 
higher symmetry group E which would contain both 
the Lorentz and the internal symmetry group as sub
groups. For example, if one lets T+ denote the step-up 
operator for the isospin group, and PM the 4-momentum 
operator, then the commutator 

PVJ (i.i) 

which is zero (and hence precludes mass splitting) for 
the ordinary internal symmetry algebra, would not 
necessarily be zero in E. 

The second reason for the recent interest in this 
problem is the success which has been achieved with 
the group »SZ7(6).1 In this group, an internal symmetry 
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group SU(3) and a space-time group, the nonrelativistic 
spin group SU(2), have been combined in a nontrivial 
way. It is natural then to imagine that this theory could 
be extended and the whole inhomogeneous Lorentz 
group and an internal symmetry group be combined in a 
large group E in a nontrivial way. Attempts to carry 
out the relativistic extension of SU(6), have, however, 
run into serious difficulties, though at present it seems 
as if many of these difficulties can be overcome.2 In 
addition to the attempts to make SU(6) relativistic, 
some specific Lie groups containing the Lorentz group, 
L and internal symmetry have been proposed3-"6 [many 
of these proposals were made, in fact, before the advent 
of SU(6)2' However, none of the groups proposed has 
been entirely satisfactory. Furthermore, a number of 
negative theorems have appeared, in which it is proved 
that, under certain - conditions, the combination of 
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internal symmetry and Lorentz invariance is neces
sarily trivial7"10 (i.e., a direct product combination). 
The prototype of such theorems is that due to McGlinn7: 

McGlinn's Theorem. Let L be the Lie algebra of the 
inhomogeneous Lorentz group, M and P the homogen
eous and translation parts of L, respectively, and T 
any semisimple internal symmetry algebra. If (a) E 
is a Lie algebra whose basis consists of the basis of L 
and the basis of T, and if (b) 

[ 7 \ M ] = 0 , (1.2) 

i.e., the internal symmetry is Lorentz-invariant, then 

[ 7 \ P ] = 0 , (1.3) 

i.e., the internal symmetry is translational-invariant. 
Hence 

E=L®T, (1.4) 

where © denotes direct sum. 
Most of the later theorems have been concerned with 

weakening condition (b) of McGlinn's theorem, and 
perhaps the most refined result of this kind is that ob
tained independently by Michel and Sudarshan.9 These 
authors showed that if only one element of T (say the 
charge operator) is Lorentz-invariant [i.e., satisfies 
(1.2)], then McGlinn's result follows (up to a redefini
tion). However, it is clear that it is assumption (a) 
of McGlinn's theorem which is the really restrictive one 
(just how restrictive will be seen in Sec. 7 of this article) 
and hence McGlinn's result is by no means general. 

I t is clear from the above discussion that most of the 
results which have been obtained so far, in connection 
with combining the Lorentz algebra L and an internal 
symmetry algebra T into a larger symmetry Lie 
algebra E, have been obtained for specific models or 
under spcific conditions. For this reason, we think it 
worthwhile to investigate in this paper the problem of 
determining the most general way in which L can be 
imbedded as a subalgebra in a larger Lie algebra E, 
assuming only that E is of finite order. To carry out 
this investigation, it is necessary to use some of the 
more powerful standard results concerning the structure 
of Lie algebras. These results are summarized briefly 
in the next section, the most important of them, for 
our purpose, being Levi's radical-splitting theorem, 
which states that every Lie algebra E of finite order is 
the semidirect product of a semisimple Lie algebra G 
and an invariant solvable subalgebra S. We use this 
result to show that if L is a subalgebra of E, there are 
only two possibilities: (a) P, the translation part of L 
is completely contained in S, the radical of E, or (b) L 

7 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964). 
8 F. Coester, M. Hamermesh and W. D. McGlinn, Phys. Rev. 

135, B451 (1964); M. E. Mayer, H. J. Schnitzer, E. C. G. Sudar
shan, R. Acharya, and M. Y. Han, ibid. 136, B888 (1964); O. W. 
Greenberg, ibid. 135, B1447 (1964). 

9 L. Michel, Phys. Rev. 137, B405 (1965); E. C. G. Sudarshan, 
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has no intersection whatsoever with S. The relevance of 
this result is that it affords us a convenient method of 
classifying the ways in which L can be imbedded in an 
enveloping Lie algebra E. To carry out the classifica
tion, it is convenient to subdivide case (a) into three 
classes; i.e., (i) S=P; (ii) S Abelian but larger than, 
and containing, P; (iii) S solvable but not Abelian, and 
containing P, and to write class (b) as class (iv), where 
(iv) $r\P=0, where f] denotes intersection. In all 
cases, MC\S is zero, where M is the homogeneous part 
of L. 

We then discuss each of the four classes listed in 
turn. The first class seems to be the most attractive 
from the physical point of view, but it is shown that 
(up to a redefinition) this case reduces to a direct sum 
of L and a semisimple algebra T. Case (ii) cannot be 
reduced to a direct sum in this way, but has the dis
advantage of introducing a translation algebra of more 
than four dimensions. Case (iii) appears to be rather 
unphysical, and no algebra of this kind has been pro
posed so far. For case (iv), we find that (again up to a 
redefinition) this case is equivalent to imbedding the 
Lorentzian algebra as a subalgebra in a simple Lie 
algebra. This is not impossible, as is shown by an 
example, but the fact that the simple algebras are 
classified, means that we can examine the possibilities 
for this case systematically. The over-all picture which 
emerges is that while it is not impossible to imbed L 
in a larger algebra Ey the ways in which this may be 
done are restricted and none of them (apart from the 
direct sum) seems to be particularly attractive from 
the physical point of view. I t might be worth mentioning 
at this point that the outlook for Lie algebras of infinite 
order is not so bright either.11 

Our results are, of course, obtained only modulo some 
redefinitions. We take the view here that such redefini
tions are trivial. However we discuss the alternative 
point of view in Sec 8. I t is assumed throughout, of 
course, that E is of finite order, and for Lie algebras of 
infinite order the situation may be quite different. 

We come now to one of the most important questions 
which occurs in connection with combining Lorentz 
and internal symmetry, namely, the question of mass 
splitting. In this connection, we have already obtained 
the result,12 that for a Lie algebra of finite order, no 
mass splitting is possible. This result is discussed in 
some detail in Sec. 6. Furthermore, as the result 
appears to be in contradiction to the results of some 
other papers in which mass splittings have been ob
tained or proposed, two of these papers3'5 are examined 
in detail, and it is shown that there is, in fact, no 
contradiction. 

The relation between the present work and the work 
in which the various negative-type theorems have 
been obtained is also discussed. I t is shown that if one 
makes McGlinn's first assumption, namely, that the 

1 1T. F. Jordan, Phys. Rev. (to be published). 
12 L. O'Raifeartaigh, Phys. Rev. Letters 14, 575 (1965). 
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enveloping Lie algebra E consists only of the elements 
of L and of an internal semisimple algebra T, then 
(modulo same redefinitions, and assuming the linear 
independence of L and T) McGlinn's direct-sum result 
follows, without making any assumptions concerning 
the commutativity of M and T. In other words, as has 
sometimes been suspected, McGlinn's assumption (a) 
is already so restrictive as to preclude anything but a 
direct sum (or some redefinitions thereof). A theorem 
due to Michel and Sakita13 is also rederived as a special 
case of our general results. Finally a link between the 
present work and the nonrelativistic SU(6) and 
££7(6)003 theories14 is found. However, no connection 
with "relativistic" SU(6) is found. On the contrary, 
our results would seem to indicate, that, while it may 
be possible to make SU(6) theory fully relativistic, it is 
probably not possible to do this within the context of a 
Lie algebra of finite order, which contains the transla-
tional, as well as the homogeneous, part of L. This does 
not contradict the results of Ref. 2. 

Throughout the paper we confine ourselves to the 
study of Lie algebras, rather than Lie groups (or other 
topological groups). The algebra L of the inhomogeneous 
Lorentz group (Poincare group) we define to be the 
algebra consisting of the homogeneous part M with 
commutation relations 

[M^M , x ] = gy(rMA- gn\MV(T- g^Mvx+gvxM^, (1.5) 

ju, v, <r, X = l - - - 4 , and the translation part P with 
generators P^ satisfying the relations 

[ M ^ P , ] = gv*Pir- g**Py, C1 -6) 
and 

[ P M , P J = 0 . 

2. SOME STANDARD MATHEMATICAL 
RESULTS 

In this section we should like to introduce the stand
ard result on Lie algebras which is the point of departure 
for the considerations of the present paper: This is the 
theorem of Levi. In order to introduce it, however, it 
might be worthwhile to define first the concept of a 
solvable Lie algebra. This concept is introduced as 
follows: Let E denote a Lie algebra and also any element 
of it, and consider the totality of elements of E of 
the form 

£<« = [ £ , £ ] . (2.1) 

I t is easy to see that the set of elements £ ( 1 ) form not 
only a sub algebra of E, but an invariant sub algebra. 
This invariant sub algebra, which we shall denote by 
E{1\ is called the first-derived algebra of E. In general, 
E (1 ) is smaller than E. The extreme cases are £ ( 1 ) = 0 
and Ea) = E. The first occurs if, and only if, E is 

13 L. Michel and B. Sakita, Ann. Inst. Henri Poincare (to be 
published). 

14 K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev. 
Letters 14, 163 (1965). 

Abelian. The second occurs for semisimple algebras 
(as can easily be checked by inspection of the Cartan 
canonical form), but it also occurs for a wider class of 
algebras, e.g., it occurs for Z,, the Lie algebra of the 
inhomogeneous Lorentz group. The algebra 

E«) = [£Ci) |js(i)] j (2.2) 

which is the first-derived algebra of E (1 ), is called the 
second-derived algebra of E. By using the Jacobi identity 
one can show that it is not only an invariant subalgebra 
of E (1 ) , but also an invariant subalgebra of E. Continu
ing in this way, we can define the &th derivative algebra 
of E to be 

E(*) = [E( f c-1>,E^1>], (2.3) 

and this is an invariant subalgebra of E{:'\ r=0, • • •, 
(k— 1). A Lie algebra E is said to be solvable if, for some 
integer k, 

£(fc> = 0. (2.4) 

We are now in a position to introduce the standard 
result mentioned above (see Jacobson,15 p. 91). 

Levi's theorem. Every Lie algebra E can be written 
in the form 

E=GDS, (2.5) 

where G is a semisimple subalgebra of E, S is an in
variant solvable subalgebra of E, and D denotes 
semidirect sum. 

The semisimple subalgebra G is called the Levi 
factor of J5, and the invariant solvable subalgebra S is 
called the radical. From the semisimplicity of G 
(Ref. 15, p. 24) it can easily be shown that S contains 
every invariant solvable subalgebra of E. 

An important question for our later consideration is 
that of the uniqueness of G in (2.5). (The uniqueness of 
S is guaranteed by its invariance.) Clearly G is no t 
completely unique, since the inner automorphisms 

E->E'= expCE)Eexp( -E) (2.6) 

induced by elements E which involve S, do not, in 
general, leave G invariant. Thus the question really is: 
Is G unique up to such inner automorphisms? The 
answer to this question is "yes." This is shown by the 
Makev-Harish-Chandra theorem( Ref. 15, p. 92) which 
proves the following more general result: Let G\ be any 
semisimple subalgebra of E. Then there exists an inner 
automorphism E such that 

Gi' = expC2)Gi e x p ( - £ ) (2.7) 

is a subalgebra of G in (2.5). 

3. CLASSIFICATION THEOREM 

In this section we shall use the standard results just 
mentioned to establish the theorem stated below. This 
theorem will enable us to make a classification of the 

15 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., 
New York, 1962). 
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possibilities for combining Lorentz invariance and 
internal symmetry, and to discuss these possibilities in 
a systematic way.16 

Theorem. Let L be the Lie algebra of the inhomogen-
eous Lorentz group, consisting of the homogeneous part 
M and translation part P . Let E be any Lie algebra, 
with radical S and Levi factor G. If L is a subalgebra 
of E, then either 

(a) MCG; PCS, 
or 

(b) LCiS^O. 

Here C denotes "is a subalgebra of," and f] denotes 
intersection. 

Proof. Since M is semisimple, it follows from the 
Malcev-Harish-Chandra theorem that G can be defined 
so that MCG. From the invariance of S and the Lorentz 
relation 

[AT,P] = P , (3.1) 
we have 

tM,snpi=snp- (3.2) 

Thus, with respect to M, Pf\S is an invariant sub-
space of the space P . But P is irreducible with respect 
to M. Hence 

Pf)S=0 or P f | S = P . (3.3) 

From this the theorem follows. 
The relevance of this theorem is that, as mentioned 

above, it enables us to classify the ways in which L 
may be a subalgebra of a larger algebra E. We make this 
classification by subdividing the case (a) above into 
the following three cases: (i) S=P; (ii) S Abelian but 
larger than, and containing, P ; (iii) S solvable but not 
Abelian, and containing P . If we add to these case (b), 
which may be written (iv) PC[S=Q, we see that we 
have, with this classification, four possible cases. These 
will be discussed in Sec. 5. To facilitate that discussion, 
some preliminary theorems are proved in the next 
section. 

4. SOME PRELIMINARY THEOREMS 

In order to facilitate the discussion of the next sec
tion, it is convenient to establish here some theorems 
which are of a rather technical nature. They arise in 
the following way: Let E be any algebra with Levi 
factor G and radical S, and U any Abelian subalgebra 
of S (including S itself) which is invariant with re
spect to G, i.e., 

[G,m=U. (4.1) 

In this way, U forms a representation space for G. The 
question arises as to the reducibility of U with respect 
to G, and further, as to the reducibility of U with respect 
to the simple algebras G(a) in the direct sum expansion 

G = E e G « a > (4.2) 

of G. I t is to handle these questions that the following 
theorems are proved. 

Theorem A. If TJ\ is a 1-dimensional invariant sub-
space of U with respect to any G(o) of (4.2), i.e., if 

ZGW,U{]=Ui, (4.3) 
then 

[G<">,J7i] = 0. (4.4) 

Proof. From (4.3) we have 

[[G<^G<">],tfi] = 0. (4.5) 

That is to say, any commutator in G(a) commutes with 
U\. But G(a) is simple. Hence (Sec. 2) its first derived 
algebra is equal to itself. Hence every element of G(a) 

can be expressed as a commutator. Hence (4.5) implies 
(4.4). Q.E.D. 

Theorem B. If D{h) is the set of matrices representing 
the linear transformations induced on U by the elements 
of G(&> in (4.2), then 

[£K6>,£><C>] = 0 , (4.6) 

for all elements in G(c) and G(6). 

Proof. Since G is a direct sum, we have 

[G<*>,G<c>]=0. (4.7) 

Hence from the Jacobi identity, we have 
0 = [[G<&>G<C>]Z7] 

= [G(c>[G(6)£/]]-[G(&>[G^,L7]] 

= IG^\D^U~]-IG^\D^U~] (4.8) 

= D<bWWU-D<cWWU. Q.E.D. 

Theorem C. For any G(c), let D(c) which is completely 
reducible (Ref. 15, p. 79) be written as a direct sum of 
irreducible representations Dq

ic\ q= 1 • • • m. If any Dq
(c) 

occurs only once in the reduction, then the subspace Uq 

on which Dq
(c) operates, is an invariant subspace of U 

with respect to G. 
Proof. Uqis obviously invariant with respect to G (c). 

But from theorem B, and Schur's Lemma (in the form 

SM=M'S-+S=0, (4.9) 

for M and Mf inequivalent) Uq is also invariant with 
respect to D(b\ and hence G(&), b^c. Hence, Uq is 
invariant with respect to all G (a ). Q.E.D. 

We now specialize to the case where P is an invariant 
subalgebra of the algebra E of Sec. 3. This includes in 
the first place, the case (i) of the classification made 
above (i.e., S=P), but includes also cases (ii) and (iii) 
with the restriction that P be invariant. We now prove: 

Theorem D. If P is an invariant subalgebra of E, 
then the Levi factor G of E can be written in the form 

G = G o 0 G r , (4.10) 

where © denotes direct sum, the complex extension 
Go of Go is 

16 L. O'Raifeartaigh, Phys. Rev. Letters 14, 332 (1965). G 0 = ^ 3 or B2 or Ai@Al9 (4.11) 
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(in the Car tan notation) (Ref. 15, p. 146) and G> 
(f=remainder) is a semisimple algebra, satisfying the 
relation 

[G r ,P]=0. (4.12) 

Proof. From the invariance of P we have 

[ G , P > P . (4.13) 

Hence, for the G(a) of (4.2), we have 

IG^\P~]^P. (4.14) 

If, with respect to every G(a), P reduces to a set of four 
1-dimensional spaces, then by theorem A, we have 

[G ( a \P ]=0 , (4.15) 
for all a, whence 

[G,P] = 0. (4.16) 

This is clearly incompatible with the fact that G contains 
as a subalgebra the homogeneous Lorentz algebra M, 
with respect to which P transforms irreducibly. Hence 
there exists at least one G(a), G(1) say, with respect to 
which P contains an irreducible subspace Pd of more 
than one dimension. There are now four possibilities 
(i) Pd is 4 dimensional (Pd==P). (ii) Pd is 3 dimensional, 
and (iii) Pd is 2 dimensional, and G(1) (which is simple 
and therefore fully reducible on P), induces an inequiva-
lent representation on the complementary 2-space 
P—Pd. (iv) Pd is 2 dimensional, and G(1) induces an 
equivalent representation on P—Pd. Cases (ii) and (iii), 
however, are ruled out by theorem C, since in these cases 
Pd would be an invariant subspace of P with respect to 
G, but since G contains M, there are no invariant sub-
spaces of P with respect to G, other than P and 0. 

In case (i), G(1) is a simple algebra with a 4 di
mensional irreducible representation. Hence, from the 
general classification of simple Lie algebras and their 
finite representations, we have for the complex ex
tension 5 (1) of G(1> 

5 ( l>=48 or P2(=C2) or Ax. (4.17) 

On the other hand, since D(1) is irreducible, we have 
from Schur's lemma (in the form 

SM=MS->S=kI, (4.18) 

where k is a number and / the unit matrix), 

D™ = kl, a^l, (4.19) 

whence from theorem A, 

[G ( a \P] = 0, o ^ l . (4.20) 

Hence in case (i) we may take 

G0=G<», G r= E 0G<«>i, (4.21) 

where G(1) is A 3 or J52, since A \ is ruled out by the fact 
that G must contain M. 

In case (iv), the situation is a little more complicated. 
By a change of basis in P we can arrange that the repre

sentations of G(1) in the 2-space Pd and P—Pd are 
not merely equivalent but equal, and then using theorem 
B and Schur's lemma Qn the form (4.18)] we have 

red pi-\ 
£>(«)= I a9*ly (4.22) 

LyI 81J 

where / is the unit 2X2 matrix. The matrices (4.22) can
not be reducible for every a ^ l , since any one which is 
reducible is diagonal, and hence zero, by theorem A. 
Hence if they are all reducible, Pd and P—Pd are in
variant with respect to all G(a), hence with respect to 
G, and hence with respect to M, which is impossible. 
Hence there exists at least one a, a=2, say such that 
Di2) is irreducible. But then, from theorem B and 
Schur's lemma [in the form (4.18)] we have 

D^ = kl, a9*l,29 (4.23) 

whence from theorem A, 

[G(fl>,P] = 0, a^l,2. (4.24) 

On the other hand, G(1) and G(2) are simple Lie algebras 
with irreducible 2 dimensional representations. Hence, 
from the general classification mentioned above, we 
have for their complex extensions G(1) and G(2) 

g(D = e(2) = ^[1. (4.25) 

Hence, in case (iv), we may take 

G 0 =G^eGW, Gr= E 0G<»>. (4.26) 

Combining the two cases (i) and (iv) we obtain the 
required result. 

5. GENERAL DISCUSSION 

In Sec. 3, we made a classification of the ways in 
in which the Lie algebra L of the inhomogeneous 
Lorentz group could be imbedded as a subalgebra of a 
larger Lie algebra E. In this section we should like to 
discuss each of the four ways which we classified in turn. 

Case (i): S=P 

In this case, the translation algebra P is an invariant 
subalgebra of G (and is, in fact, the only Abelian in
variant subalgebra of G). Hence this case would seem 
to be the most attractive from the physical point of view. 
However, we shall now show that this case can amount 
to no more than a direct sum. 

To show this, we note that this is a special case of the 
case considered in theorem D of Sec. 4. Since G can 
therefore be expanded as in (4.2), we can expand M 
in the form 

M=MGo+MGr. (5.1) 

Clearly the algebras MQO and MQT are homorphic to M. 
But since, from (4.12) 

[ M G „ P ] = 0 , (5.2) 
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we see that the Lorentz transformations 

ptf , P ] = P , (5.3) 

induced by M, are, in fact, induced by Moo alone. Thus 
MGo must be isomorphic to M. Since (MGO,P) has 
therefore all the properties of Z,= (M,P), and MQT is 
trivial on account of (5.2), it is only a matter of re
definition17 to set 

MGr=0. (5.4) 

Thus (modulo such a redefinition) we can say that M is 
contained in Go of (4.10). If we how have an internal 
symmetry algebra T, then since the vector spaces 
P=S and M of Go are "already occupied" by the 
Lorentz algebra L,T can consist only of two parts i.e., 
TGO=remainder of Go when M is removed, and P<yr=Gr. 
But since 

Go=Az or B2 or Ai®Ai, (5.5) 

it is clear that TGO is, from the physical point of view, 
an embarrassment rather than a help, unless we choose 

TGo=0: 5 o = i 4 i 0 i 4 i : G0=M, (5.6) 

and in this case we have just 

E=L@T (5.7) 

where © denotes direct sum. Thus case (i) amounts to 
no more than a direct sum. 

Case (ii): S Abelian, but Larger Than 
and Containing P 

In this case S is again a representation space for G. 
However, the choice of simple algebras in the expansion 
of G which do not commute completely with S will be 
restricted only by the dimension of S, and this is 
variable. S itself may, of course, consist of several 
irreducible invariant substances S#, one of which will 
contain P. The 1-dimensional subspaces commute with 
everything (from theorem A of Sec 4) and are therefore 
the generators of the gauge-transformations, such as 
that corresponding to baryon number conservation. 
The Sq of more than 1 dimension, and not containing P , 
seem to have no particular physical significance. The 
important question is whether the irreducible Sq con
taining P is larger than P . If not, then we can simply 
omit the other Sq and we are back at case (i). Thus, by 
case (ii) we mean essentially the case where S is 
Abelian, larger than P , and irreducible with respect to 
G. This case has been proposed in Refs. 3 and 6. I ts 
chief disadvantage is that it introduces an invariant 
translational algebra of more than four dimensions. 
This is not easy to interpret physically. Furthermore, 
we note that since all the elements of S commute with 
those of P , they represent internal quantum numbers 
which can be measured simultaneously with momentum 
and energy, and the question is: What are these num-

17 The redefinition problem is discussed separately in Sec. 8. 

bers physically? Moreover, unless the spectra of these 
operators are limited in some artificial way (i.e., in 
some way extraneous to the Lie algebra, as is done by 
Barut18 for example) they will be continuous. This is 
hardly what we expect for an internal variable. Thus, 
case (ii) cannot be ruled out, but it is also not particu
larly attractive. 

Case (iii): S Solvable but not Abelian, 
and Containing P 

This case is very similar to cases (i) and (ii). I t 
does not seem to have any particular advantage over 
those cases. Moreover, solvable non-Abelian algebras 
are not usually considered in physics, and, in fact, no 
such algebra has been proposed in connection with 
higher symmetry so far. One of the reasons for this is 
the result due to Lie (Ref. 14, p. 50) that every finite 
dimensional representation of such an algebra is 
triangular, i.e., has a basis such that every matrix in 
the representation has zero elements above the diagonal. 
This means that, except for the trivial Abelian repre
sentations, for finite-dimensional representations Hermi-
tian conjugation cannot be defined. 

Case ( i v ) : P n S = 0 

In this case we see that no element of the translation 
algebra P lies completely in S. This does not mean that 
P lies completely in the Levi- factor G, but only that if 
we expand P in the form 

P=PG+Ps (5.8) 

then for each P , PQ is nonzero. On the other hand, it 
does mean that PQ is isomorphic to P and transforms 
under M (which is contained in G) in the same way as 
P . Hence it is only a matter of redefinition17 to take PQ 
rather than P as the translation algebra, in which case 
we have, 

LQG. (5.9) 

Let us now expand G in a direct sum of semisimple 
algebras 

G = E e G ( a ) . (5.10) 

a 

In an obvious notation, we then have 

x=EeL ( a ) . (5.ii) 
a 

I t is clear that each Z,(a) is homomorphic to L and, 
since L cannot be expressed as a direct sum of two 
algebras, that at least one Z ( a ) , L (1 ) say, is isomorphic 
to L. By a further redefinition, we can take L(1) and 
not L to be a Lorentz algebra in which case we have 
the result: Case (iv) is equivalent to imbedding the 
Lorentz algebra L as a sub algebra in a simple Lie 
algebra. (If we do not allow the redefinitions made 

18 A. O. Barut, University of Colorado Report (unpublished). 



B1058 L . O ' R A I F E A R T A I G H 

above, we can make the weaker statement: case (iv) 
is equivalent to imbedding an algebra isomorphic to 
the Lorentz algebra L in a simple Lie algebra.] 

At first sight it would appear to be impossible to 
imbed L (or an algebra isomorphic to L) in this way, 
as L is not even semisimple. However, we can easily 
construct an example: Let Mab be the generators of the 
real orthogonal group in six dimensions. As a basis for M 
choose Mrs and Mro—iMn, r, s,= l, 2, 3, and as a basis 
for P , P^Mtf+iMtf, M = 1, 2, 3, 4. I t is easy to verify 
that the M and P so chosen satisfy the relations (1.2) 
of the inhomogeneous Lorentz algebra. (Note that the 
relation 

[ i V V ] = 0, (5.12) 

depends critically on the i in Mps+iMpt). Less trivial 
examples, containing internal symmetry, can also be 
constructed.19 

jjf^On the other hand, although case (iv) is therefore 
possible, the fact that the simple algebras are classified 
(Ref. 15, p. 146) provides us with a systematic way of 
determining the various simple algebras in which L 
can be imbedded. 

There is one feature of case (iv), however, which 
should be mentioned, as it may have serious conse
quences for the physical interpretation. This is the fact 
that the generators PM are necessarily nonreal linear 
combinations of the generators of the compact form of 
the simple algebra in which L is imbedded. This we 
have already seen in the example given above, and 
that it holds, in general, is shown in the Appendix. 
This means that the parameters corresponding to the 
P^ have a noncompact range. This may lead to serious 
difficulties in defining multiplets, even in the absence 
of mass splitting (see next section). No algebra belong
ing to case (iv) has been proposed in the literature 
cited. 

This completes our general discussion of cases (i)-(iv). 
I t appears that none of the four cases is particularly 
attractive, except for the direct product, though case 
(iv) deserves some further investigation. This negative 
conclusion is not, of course, in contradiction with the 
"relativistic ££/(6)" results of Ref. 2, since we are con
sidering here (a) exact symmetry and (b) the in-
homogenous Lorentz group. 

6. MULTIPLETS AND MASS SPLITTING 

As mentioned in the Introduction, one of the reasons 
for attempting to combine Lorentz invariance and 
internal symmetry in a higher symmetry algebra is the 
hope that the observed mass differences of the ele
mentary particles might be explained within the context 
of the higher symmetry. In this section we wish to dis
cuss the possibility of explaining the mass differences 
in this way. 

One of the difficulties confronting any attempt to 

19 D. L. Pursey (private communication). 

explain the mass differences in this way is the difficulty 
of defining what is meant by a multiplet of particles. 
For a direct sum algebra, L®T, where T is semisimple 
and compact, there is no difficulty. Each particle is 
represented by the direct product of a vector in a finite 
representation of T with a vector space which is a one-
particle representation space of L. For the more com
plicated case when L and T are combined in a nontrivial 
way, the situation is not so simple. However, it seems 
reasonable to make, at any rate, the following three 
assumptions: 

(a) Two particles belonging to the same physical 
multiplet should be represented by vectors belonging 
to the same irreducible representation of the combined 
algebra E. 

(b) Each such vector should be an eigenvector of 
the mass operator P^P^ corresponding to a discrete 
eigenvalue. 

(c) PuP*, which is an observable, should be self-
adjoint. 

The assumptions (a), (b), and (c) are not, of course, 
sufficient to define what is meant by a multiplet. How
ever, what one can now show, is that these three assump
tions are already enough to preclude mass-splitting 
among the particles belonging to the same multiplet. 
More specifically, one can establish the following 
theorem: 

Theorem: Let L be the Lie algebra of the inhomogen
eous Lorentz group, E any Lie algebra containing L, 
H a Hilbert space on which any irreducible representa
tion of the group generated by E operates. If, on H, 
the mass operator 

P2 = PliP» (6.1) 

has a discrete eigenvalue m2, and P2 is self-adjoint on H, 
then the eigenspace Hm belonging to the eigenvalue m2 

of P2, is closed, and is invariant with respect to the 
elements representing E on H. Hence the elements 
representing E can produce no mass-splitting. The proof 
of this theorem has been given in Ref. 11. Here we shall 
merely discuss its implications. 

If we now make the assumption that H, which is 
irreducible with respect to the group generated by E} 

is irreducible with respect to the operators representing 
E, or the local group of transformations generated by 
these operators, then we see that the theorem implies 
that 

H=Hm. (6.2) 

We see that what this theorem proves essentially is 
that, on H, the mass operator has either a continuous 
spectrum or a spectrum consisting of one point. But a 
continuous spectrum cannot correspond to a multiplet. 
Hence what the theorem shows, is that, under assump
tions (a), (b), and (c), the only multiplets which are 
possible are equal mass multiplets. This does not 
imply that for any given algebra E, equal mass multi
plets exist. I t may well be that even the equal mass 
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multiplets are not possible (except in the direct sum 
case mentioned above). However, this is another ques
tion and will not be discussed here. 

Since, in fact, mass splittings do occur in nature, we 
must now discuss the question as to which of the assump
tions we make, in order to obtain the result that there 
can be no mass splitting, is incorrect. 

Of the assumptions (a), (b), and (c), (a) appears to be 
the strongest, (b) and (c) are, of course, only idealiza
tions, since in practice, on account of the decays of the 
particles, m2 is a bump, rather than a discrete point, 
in the mass spectrum, and P 2 contains a small non-self-
adjoint part corresponding to the line breadth. Perhaps 
it is this idealization which is incorrect. I t is much more 
likely, however, that it is the underlying hypothesis, 
namely, that one should imbed the inhomogeneous 
Lorentz algebra in a larger Lie algebra,20 and in par
ticular in a Lie algebra of finite order, which is incom
patible with mass splitting. This is the conclusion which 
we prefer to draw. 

7. CONNECTION WITH OTHER RESULTS 

In this section we should like to consider the con
nection between the results obtained here, and those 
obtained by other authors. 

We begin by considering the special case where the 
enveloping Lie algebra E (considered as a vector space) 
consists only of the elements of L and the elements of 
some semisimple internal symmetry algebra T, i.e., 

E=M+P+T. (7.1) 

This is the case considered by McGlinn and in Refs. 8, 
9, and 10. In this case, M lies in the Levi factor G of E, 
while T, because it is semisimple, satisfies the relation 

rns=o, (7.2) 
where S is the radical. Hence we can redefine T so that T 
lies in G. From the general classification theorem of 
Sec. 3, we have two possibilities for P , 

Sf)P=0 and PCS. (7.3) 

In the first case, we can redefine L so that it is a sub-
algebra of a simple algebra E. But then the simple 
algebra E contains as subalgebras, L and the semisimple 
algebra T, which we assume to be linearly independent 
of L. This is obviously incompatible with (7.1) (the 
"remainder" of a simple algebra when L is removed is 
not semisimple). Hence the first case, Sf)P=0 is 
ruled out. 

In the second case, M and T are both contained in G. 
Hence from (7.1) (again assuming that L and T are 

20 This includes the assumption that we are dealing with a Lie 
algebra in the first place, or the assumption made above that H 
is an irreducible representation of the algebra if it is an irreducible 
representation of the group. It is possible that this is not true, 
and that the situation is better described by the global properties 
of a Lie group (or some other kind of group). I am grateful to 
Professor G. F. Dell'Antonio for pointing out this possibility. 

linearly independent), S can contain only P. Thus we 
are dealing with case (i) of our general classification. 
But we have already seen in Sec. 5 that this case reduces 
essentially to the direct sum of L and T. Hence we have 
the result: The condition (7.1) with T semisimple, is 
already enough to reduce E to 

E=L@T. (7.4) 

Thus from McGlinn's first assumption alone we obtain 
the result obtained by him and by the authors of Refs. 
8, 9, and 10. No assumptions concerning the commuta-
tivity of the elements of M and T are necessary. They 
are replaced by the much weaker assumptions that L 
and T be linearly independent and that certain redefini
tions are legitimate. 

We next consider the theorem of Michel and Sakita.12 

In this theorem it is assumed that (a) P is an invariant 
sub algebra21 of an enveloping Lie algebra E, and (b) 
E "preserves the Minkowski metric," and from these 
assumptions alone, the direct-sum relation 

G=M@T, (7.5) 

where G is the Levi factor of E and T is a semisimple 
algebra, is deduced. 

I t is easy to see that this result follows also from 
our general considerations. For if we make assumption 
(a) above, then the general discussion of Sec. 5 for S=P 
carries through unchanged, and we have 

G=Go®T (7.6) 
where 

&o=Az or B2 or Ai®Ai. (7.7) 

(In fact, theorem D of Sec. 4 was stated in just such a 
way that the discussion for S=P could be generalized 
immediately to the case P invariant.) Assumption (b) 
then rules out As and J52, leaving (7.5). 

Note that from theorem B of Sec. 4, we have, in 
addition, the McGlinn type result 

P V P ] = 0. (7.8) 

This is not surprising because, in fact, theorems A and B 
of Sec. 4 are a generalization of McGlinn's theorem. 

In view of the strong negative result concerning mass 
splitting obtained in the last section, it might be well to 
discuss some papers in which mass splitting has been 
obtained or proposed. One of these is discussed in detail 
in the next section, in connection with the redefinition 
problem. Here we shall discuss another, due to Barut.3 

In the latter article the enveloping algebra E is taken 
to be the algebra of the inhomogeneous six-dimensional 
orthogonal group, with the commutation relations 

[MahMcd^hcMad—§adMhc—bacMhd+hdMac, 
[Mab,P c ]=5 & c P a ~5 a c P b , (7.9) 

[ P a , P b ] = 0. 
21 It should be pointed out that our considerations are limited to 

Lie algebras, whereas Michel and Sakita discuss the more general 
case of connected topological groups. 
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The MpV and PM, /x, j / = l - - - 4 (with appropriate i 
factors) are identified with the generators of L, and 
M « , M56, and Mu with those of the isospin algebra. 
(Clearly M5e must be the "charge" operator since it is 
the only one of the three which commutes with M^ 
i.e., it is Lorentz-invariant). The "momentum-like" 
invariant of this algebra is clearly not PvP

i1' but 

P a P a = P ^ + P 5
2 + P 6 2 , (7.10) 

which suggests that PMP^ might have different values 
within an irreducible representation of E. However, 
if we let \p), \n) represent a 1-proton and 1-neutron 
state, respectively, and assume that they are eigenstates 
belonging to discrete points in the spectrum of p^p*, 
then, in some one Lorentz frame at any rate, we 
should have 

\p)=T+\n), (7.11) 

where P + , the "step-up" operator for isospin, is the 
linear combination 

T+=M^+iMu- (7.12) 

Otherwise the statement that M45, Af 56, and Mu are to 
be identified with the generators or isotopic spin has 
not much content. But then, from the invariance of P 
we have 

(P^-m^yip)- {?,?»-mf)T+\n) 

^P^lP.P^Mu+iMuHln) (7.13) 

= [P M P*,2P 4 ( -P5+;P6) ] \n) = 0 , 

where mn is the mass of the neutron, whence 

Wn2 = Wp
2, (7.14) 

where mp is the mass of the proton. Hence for the 
nucleon system, there is, in spite of (7.10), no mass 
splitting. Similarly for any isotopic multiplet. We see, 
therefore, that in this example, which belongs to case 
(ii) of our general classification, there is no contradic
tion with our theorem. 

Finally, although it is somewhat irrelevant to the 
general purpose of this paper, we should like, for com
pleteness, to mention an extension of a theorem due to 
Han.10 

Extended Han theorem: Let L be a sub algebra of any 
Lie algebra E. If P 0 is any element of E, and 

c u 2 = ( € ^ M , x P . ) 2 / P 2 , (7.15) 

where e^* is the Levi-Civita symbol, then 

[£o,co2] = 0 (7.16) 
implies 

[ E 0 , P 2 > a P 2 , (7.17) 

where a is a constant, and conversely. 
We shall not present the proof of this theorem here, 

as it is rather similar to that given by Han, depending, 
in particular, on the use of the Poincare-Birkhoff-Witt 
theorem (Ref. 15, p. 159). From a slight extension of 

theorem A of Sec. 4, we also have the corollary: If E0 

is a whole semisimple sub algebra of E, rather than one 
element, a = 0 . 

8. THE REDEFINITION PROBLEM 

The results which we obtained in Sees. 5 and 7 de
pended, in certain cases, as we have seen, on making a 
redefinition of the Lorentz algebra P, or of the internal 
symmetry algebra P. (We must emphasize, however, 
that the mass-splitting theorem of Sec. 6 is independent 
of any such redefinition.) In connection with the 
redefinitions, there are two questions which arise: 

(1) Are the results obtained "the best possible" or 
could one go further and obtain "redefinition-inde
pendent" results? 

(2) Are the redefinitions, which are trivial mathe
matically, also trivial physically? 

The answer to the first question is that the results 
obtained are, in fact, the best possible which can be ob
tained from general arguments concerning the structure 
of P , as used in this paper. To illustrate this, we con
sider the following example: In case (iv) of our clas
sification, we showed that, modulo a redefinition, L 
could be imbedded as a subalgebra of a simple algebra 
E. Suppose, however, we start from the situation where 
P, with no redefinition, is a subalgebra of a simple 
algebra P , which, in turn, is a subalgebra of a direct-
sum algebra E of E and P ' , 

E=E®Ef (8.1) 

where E' contains a subalgebra Ll isomorphic to P. 
Then, if we redefine the Lorentz algebra to be 

P - P 0 P ' , (8.2) 

it is no longer true that the Lorentz algebra is a sub
algebra of a simple algebra. Similar results hold in cases 
(i), (ii), and (hi). We see, therefore, that even if we 
start with a clear cut result of the type we expect, the 
situation can be changed by a redefinition. Hence we 
cannot hope to obtain "redefinition-independent" re
sults. Of course, if we put in some specific assumptions 
regarding the identification of L and the internal sym
metry algebra P, then we may obtain clear-cut results. 
For example, McGlinn's assumption (a) is of a general 
nature and therefore leads to conclusions which are 
valid only up to a redefinition, but his assumption (b) 
is specific, in the sense that the relation 

[ P , M ] = 0, (8.3) 

which he assumes, is not invariant under redefinitions, 
and hence leads to results which are independent of 
redefinitions. 

The second question above is not so easy to answer, 
as it is to a certain extent a matter of opinion. We take 
the view in this paper that redefinitions are trivial, 
physically as well as mathematically. To see, however, 
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just how bad things can become if we do not take this 
view, we consider the very instructive proposal of 
Ref. 5. In this paper the authors consider an algebra L 
isomorphic to L, and a semisimple internal algebra T, 
which (at least for certain finite representations) con
tains a subalgebra _/ isomorphic to L. They then let E, 
the containing Lie algebra, be the direct sum 

E=T®L, (8.4) 

and define L, the "actual" Lorentz algebra to be 

L=L'®L. (8.5) 

The criterion for distinguishing L, the "actual" Lorentz 
algebra, is the identificationjoHhe mass squared opera
tor m2 as PMP" (and not PpP11, say). We then have, 

m2=PlJ>'t=PpPi'+2PpP'i'+P'pP''>. (8.6) 

One now takes a multiplet, or finite-dimensional repre
sentation of T, and by regarding P^P* as an "external" 
mass-squared, common to all the particles of the mul
tiplet, one obtains mass splittings from the term P,/P/fi 

in (8.6) (and line breadths from the term IPyJP'*) by 
taking expectation values of these operators with 
respect to the states of the multiplet. 

The basic question, of course, is the validity of the 
formula (8.6) for the physical mass. However, let us 
accept this definition of m2 as legitimate. Even then, one 
runs into a serious difficulty. This arises from the fact 
that, if we use a unitary representation of T, as is nor
mally done in physics, then in order to obtain a finite 
representation R we must use the compact form of T. 
But since V is not compact, R is a nonunitary repre
sentation of L'. Hence the operators V and, in particu
lar, the operator P/P'** will not be Hermitian,22 and, 
in general, cannot be diagonalized. This difficulty is 
recognized by the authors of the above paper, and for 
this reason they take the expectation values rather than 
the eigenvalues of PJP'*. If one takes the eigenvalues 
(calculated from the characteristic equation) one ob
tains no mass-splitting.23 This leaves the validity of 
the procedure adopted here open to some doubt. This 
example seems to indicate that even if one does not 
allow redefinitions and uses the extra freedom allowed 
in this way, the possibilities for doing anything which 
is physically meaningful are still very much restricted. 
Some further difficulties connected with this type of 
model are discussed in Ref. 22. 

I t is perhaps interesting to note that if we wished to 
retain the idea of Ref. 5 without running into the dif
ficulties which come from the noncompactness of L, 
we could set 

E=T<$)L (8.7) 

where L is isomorphic to L, © denotes direct sum, and 
J1 is a compact semisimple algebra, which contains as 

22 For this reason the fact that one obtains mass splittings in this 
model does not contradict the theorem of Sec. 6. 

23 R. Roskies, J. Math. Phys. (to be published). 

a subalgebra an algebra T', not isomorphic to L, 
but isomorphic to the largest compact semisimple 
algebra contained in L. But this is just 0 3 or SUz. Then 
one could define the Lorentz algebra, in analogy to 
(7.5) as 

MrS=Mrs+Trs', 

Mr0 = Mr0, (8.8) 

p = p 

where r, s=l- • - 3 , ^ = 0 , 1, 2, 3. This will not lead to any 
mass-splitting, of course. Further, the splitting of M^ 
into Mrs and Mro is not Lorentz-invariant. Also if we 
allow redefinitions, TV can be transformed away. How
ever, if we choose not to allow redefinitions and are 
interested only in the nonrelativistic limit, we can regard 
the TV part of Mrs as an SU{2) subalgebra of T. If we 
require T to contain also 517(3), then SU{6) is obviously 
a suitable choice for T. In this way we obtain a link 
between the general analysis given here and SU(6) 
theory. Equation (8.8) also suggests that one should 
not expect it to be possible to make SU(6) theory 
relativistic in the strict sense, and suggests further 
that the SU(2) part of M should commute with every
thing else in space-time, in particular with the "orbital 
angular momentum" M r s . Finally, if we consider the 
little group of E in (8.7) with respect to the invariant 
subgroup generated by P , we see that it is precisely the 
group SU(6)®Oz considered by Mahanthappa and 
Sudarshan.14 
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APPENDIX 

We wish to show that if L is a subalgebra of a simple 
algebra G, then P is not a subalgebra of the compact 
form of G. 

To show this we choose a Cartan basis (Ref. 15, 
p.121) 

_ _ _ _ _ _ [ # ; , £ „ ] = n (a)Ea, etc. (Al) 
24 S. Coleman, Phys. Rev. 138, B1262 (1965). 
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for G, such that the iHi, (Ea+E-a), and i{Ea—E^a) where the da are numerical coefficients. Hence 
belong to the compact form of G (Ref. 15, p. 149). p —i y (h 4.̂ 7 w p 1 77 \ 
Clearly there is no loss in generality in choosing 4 r^^i 
Hx=iMi2 and H2=iMuz=Mzo. Since L is contained r l n 
in G we can now write + ~{ba—da) p(E«—2L.«)]. (A6) 

Pi+iP2-=i:aiHi+ZbaEa, (A2) fiut i f p i s a subalgebra of the compact form of 

G, (ba-{-da) and l/i(ba—da) are real, whence 
where the ai and 6a are numerical coefficients. But * * * z * ^ 
from (1.4) we have I n t M g c a g e 

[ * M u ^ P i + t P j = Pi+«P». (A3) 0 = [ P 1 + i P 2 , P 1 - J P 2 ] = £ & « ^ T E a , £ _ J 
r l ( a ) - l ; r l ( « - l 

= E iJJ^+s^+ia^, (AS) 
ri(a:)=l i^l a 

Hence 

= [ f f iZa<f f<+E^«] = Efi(a)J«E«. (A4) 
where the c* and ca are numerical coefficients, whence 

(A9) 

(A10) 

Thus 

Similiarly, 

i a a 

Pi+ iP 2 = E KEa. 

P i - » P i = E rf«£--, 
r i («)=i 

(A5) 

(A5) 

&«=0, n(a) = l . 

Since this is impossible for 

we see that P cannot be a subalget 
form of G. 
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* + Decay of ALi7 

B. BHOWMIK, T. CHAND, D. V. CHOPRA, AND D. P. GOYAL 
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(Received 26 March 1965) 

An event unambiguously identified as the x+ decay of a Li7 hyp erf ragmen t is reported. The event was 
observed in a stack of Z,4 hypersensitized Ilford emulsions exposed to a 1.5-GeV/c K~ beam at CERN. The 
charge of the hyperfragment was uniquely determined as three, by comparing its measured mean track width 
with the curves (mean track width versus dip angle) established for Z~ 1, 2, 3, 4, and 5 nuclides found in the 
same emulsions. The branching ratio R of the TT+/IT~ decay modes for ALI7, on the basis of the present 7r+ decay 
together with the available world data on iT decays, is estimated as i?(ALi7)^l%. 

I. INTRODUCTION 

ALTHOUGH the ir+ emission in free A decay is 
forbidden by the conservation laws, in the pres

ence of a proton a A can generate 7r+ by virtue of the 
"stimulation process" 

A+p->n+n+7r++35 MeV. (1) 

There are several mechanisms which could conceivably 
contribute to this decay interaction; among them the 
following have been considered by various authors1-5 : 

(i) The A may undergo transition to a virtual 2+ 
1 A. Deloff, J. Szymanski, and J. Wrzencionko, Bull. Acad. 

Polon. Sci., Ser. Sci. Math. Astron. Phys. 7, 521 (1959). 
2 R. H. Dalitz and L. Liu, Phys. Rev. 116, 1312 (1959). 
s S. Iwao, Nuovo Cimento 25, 890 (1962). 
4 N . N. Biswas, Nuovo Cimento 28, 1527 (1963). 
s F. von Hippel, Phys. Rev. 136, B455 (1964); R. H. Dalitz 

and F. von Hippel, Nuovo Cimento 34, 799 (1964). 

state in the presence of a proton inside a hypernucleus 
and subsequently decay from this state with the emis
sion of a 7r+ meson; i.e., 

&+P -> &++n) -> 7r++n+n. (2) 

(ii) The A may decay through the 7r°-mesonic mode 
and the ir° so produced may undergo charge exchange 
with a proton of the hypernucleus; i.e., 

A + £ - > (n+ir°)+p->n+n+T+. (3) 

(hi) The A may generate the decay interaction 
A—-> ?£+(7r++7r~), by virtue of the four-fermion weak 
interaction (Ap)(pn), and the w~ produced may be 
subsequently absorbed on a proton inside the hyper
nucleus; i.e., 

A —> n+ (p+p) —> n+ (x++7r~) 3 
A+p —» n-{-n-\-Tr+. 

(4) 


