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slightly on the radius chosen, but the variation in the 
theoretical ratio with radii from 0.7 to 0.9 F is less than 
0.5%. The answers shown were obtained with an rms 
radius of 0.8 F. The column labeled GM/GE scattering 
shows the ratio of magnetic to electric scattering pre
dicted by the experimental fit to the Rosenbluth21 cross 
section. Figure 6 shows the data plotted graphically 
as a function of momentum transfer. The dashed line is 
the best polynomial fit to the data passing through 
one at #2=zero. The data show deviations from one 
(the first Born prediction) at higher momentum 
transfer and backward angles. I t is probable that there 
are more two-photon corrections than predicted by 
Lewis's theory at the larger momentum transfers. 

21 M. Rosenbluth, Phys. Rev. 79, 615 (1950). 

1. INTRODUCTION 

TH E Faddeev equations,1-3 and their validity, for 
a system of nonrelativistic three particles inter

acting through two-body potentials between each pair 
of particles are now well known. These equations are 
clearly applicable to quantum-mechanical three-particle 
systems such as the problem of electron-hydrogen atom 
scattering. They can also be applied to three-body 
problems in low-energy nuclear physics in which the 
two-body interactions can be described by some sort of 
phenomenological potential. Thus in these problems the 
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2 L. D. Faddeev, Dokl. Akad. Nauk SSSR 138, 565 (1961) 

[English transl.: Soviet Phys.—Doklady 6, 384 (1961)]. 
3 L. D. Faddeev, Dokl. Akad. Nauk SSSR 145, 301 (1962) 

[English transl.: Soviet Phys.—Doklady 7, 600 (1963)]. 
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Faddeev equations are expected to play an important 
role. The accuracy of the results of such calculations 
merely depends on how accurately the computations can 
be carried out. 

Our interest in the Faddeev equations is, however, 
based on their possible application to particle physics. 
Here, too, very little has been done with the three-
particle problems. In nearly all the problems, the three-
particle system has been regarded as being two par
ticles, one of which is composed of two particles clumped 
together. The Faddeev equations, although nonrela
tivistic, are at least genuine three-particle equations. 
Furthermore, a remarkable property of the Faddeev 
equations is that they only require a knowledge of the 
two-body amplitude (off the energy shell). This is 
clearly an advantage because at least in the region of 
resonances and where the effective-range formulas are 
valid, the two-body amplitude is known fairly well, 
whereas very little is known about a corresponding po-
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tential (and even its possible existence). A prescription 
is needed, however, to find the off-shell two-body 
amplitude once the on-shell amplitude is known. As 
pointed out by Lovelace,4,5 in the neighborhood of a 
resonance or a bound state the residue of the off-shell 
two-body amplitude factorizes in the initial and final 
momenta. The resulting functions of the momenta are 
called the form factors. In the case of a bound state 
these form factors are simply related to the bound-state 
wave function. Such considerations arise naturally if one 
considers the two-body bound-state solution for a 
separable potential.6 

With this prescription of taking the two-body ampli
tude off the energy shell we apply the Faddeev equations 
to strongly interacting particles. We take as the simplest 
example the problem of possible bound states and 
resonances of three pions. The pions being spinless offer 
a relatively simpler problem. Furthermore, since we 
want to look for three-particle bound states and reso
nances, we only have to study the possible solutions of 
the homogeneous equations. In particular, in the 
present paper, we shall consider the homogeneous 
Faddeev equations for a system of three pions in a state 
of total angular momentum zero, isospin one, and odd 
parity. Thus, following the notion of composite particles 
often emphasized by Chew,7 we want to know whether 
the homogeneous Faddieev equations have a solution at 
an energy corresponding to that of the pion and with 
the above quantum numbers. We would interpret a 
positive result to mean that, within the framework of 
the Faddeev equations and our approximations (to be 
discussed later), the pion can be understood as a bound 
state of three pions. Similarly, one can investigate 
whether three pions can form a resonance state corre
sponding to the co particle. 

Our first task is thus to write the Faddeev equations 
for a system of three pions in a given angular mo
mentum, parity, and isospin state. A method of separa
tion in angular momentum of the Faddeev equations has 
been discussed by Omnes8 (this separation was utilized 
by one of us in a preliminary investigation of the co 
problem9). Omnes uses the variables described as the 
energies of the three particles in the three-body center-
of-mass system, the total angular momentum and its 
components in a body-fixed axis and on a space-fixed 

4 C. Lovelace, in Strong Interactions and High Energy Physics, 
edited by R. G. Moorhouse (Oliver and Boyd, London, 1964). 

5 C. Lovelace, Phys. Rev. 135, B1225 (1964). 
6 See, for example, Yoshio Yamagouchi, Phys. Rev. 95, 1628 

(1954). 
7 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin, Inc., New York, 1961). 
8 R. Omnes, Phys. Rev. 134, B1358 (1964). 
9 Akbar Ahmadzadeh, Lawrence Radiation Laboratory Report 

UCRL-11749, 1964 (unpublished). Note t h a t E q . (11) of this 
paper should read: f2z~ —a^/l-K1. Although this error makes the 
eigenvalues considerably smaller, a preliminary study of the 
integral equation given in the present paper showed that it is 
possible to produce eigenvalues of the order of 1 by taking the 
physical cutoff parameter pm to be of the order of 5. We intend to 
re-examine this problem within the framework of the present paper. 

axis. We use instead the variables introduced by Dalitz10 

in connection with the three-pion decay of the r meson. 
Using this separation of angular momentum together 
with the factorization of the off-shell two-body ampli
tude, we obtain an integral equation in one variable so 
that numerical computations can be carried out with 
reasonable confidence. Recently, a similar result has also 
been obtained by Basdevant11 using the Omnes vari
ables. The separation of angular momentum by Omnes 
and the one carried out here are merely two alternative 
ways of which one or the other may be more practical in 
a particular problem. 

In the pion problem the two-body amplitude is con
sidered to consist only of the isospin zero, s-wave state 
described by the ABC phenomenon, and the effective-
range formula associated with it. The third pion is con
sidered to combine with the ABC to form an over-all 
isospin one, angular-momentum zero state. This model 
(for every combination of the pions) is imbedded into 
the Faddeev equations, and conditions for a homo
geneous solution are sought. 

In the following section we describe the reduction in 
the angular momentum. Subsequently, the pion problem 
is considered in Sec. 3. Finally, in the last section we 
give a discussion of the results. 

2. REDUCTION OF THE FADDEEV EQUATIONS 

Let us consider the case of three nonidentical spinless 
particles with masses mh w2, m%. At the end of this 
section we shall examine how the reduced equations can 
be further simplified for identical particles. 

In the nonrelativistic case the equations for the three-
particle scattering matrix T has been given by Faddeev.1 

They can be written in a formal way as 

P(s) = T1(S)-T1(s)Go(s){T*(s) + T*(s)}, 

P(s) = T,(s)-Tt(s)G0(s){P(s)+T*(S)), (2.1) 

7*(s) = Tt(s)-Tt(s)G0{s){TL(s)+T*(s)}, 
with 

T=p+T2+r, 
G0(*) = l / ( t f o - s ) , (2.2) 

Ti(s)=Vi-Vi€o(s)Ti(s). 

Here H0 denotes the total kinetic energy of the three 
particles and V' i is the potential between particles j and 
k(^i). From (2.2) we see that Ti is the two particle 
scattering matrix in the Hilbert space of the three 
particle states. This should in principle be known off the 
energy shell for solving the Faddeev equations. 

The T^s) are defined by the equation 

T*(s) = Vi- VtG0(s)T(s). (2.3) 

10 R. H. Dalitz, Phys. Rev. 94, 1046 (1954). 
11 Jean Louis Basdevant, Phys. Rev. 138, B892 (1965); Lawrence 

Radiation Laboratory Report UCRL-11838, 1964 (unpublished). 
We are grateful to Dr. Basdevant for communicating his re
sults to us. 
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Owing to the conservation of the total momentum we 
may assume without any loss of generality that we are 
in the center-of-mass system of the three particles. The 
Eqs. (2.1) have been further reduced by Omnes8 by 
using as variables the Eulerian angles and the absolute 
values of the momenta k » ( i = l , 2, 3). We shall here 
carry out the reduction with a different set of variables. 

Following Lovelace,4,5 instead of characterizing a 
three particle state by the momenta ki(i=l, 2, 3), we 
can use certain combinations of them, namely 

P i = -
(2W2W3(W2+W3))1/ 

-[m3k2—ra2k3], 

(2.4) 
qi= 

(2mi (m2+mz) (W1+W2+W3) )1 /2 

Xf>i (k 2 +k 3 )— ( w 2 + w 3 ) k j . 

The corresponding normalized state we shall denote by 
I Pi; Qi)i- The extra subscript 1 is needed to stress the 
fact that we use the combination (2.4). Furthermore, we 
shall also need the corresponding partial-wave states, 
which are denoted by \pilmi)qiLmi)i. These wave 
functions are normalized as 

i{plmi\ qLmL\p'lrmv\ o[LfmL)\ 

= (p\2)-lb(p-pf)Kq-qf)divhLLfbmm^mLrnLf. 

In addition to the set pi, qi, we shall also use the other 
sets p2, q2 and p3, q3, which are defined by cyclic 
permutation of the subscripts in Eq. (2.4). The corre
sponding normalized states are denoted, respectively, by 
|p2;q2)2 and |p3 ;q3)3 . Needjess to say, these repre
sentations describe the same state of the three particles. 
Hence 

|kik2k3)= |p i ; q1>1= |p 2 ; q2)2= |p 3 ; q3)3. (2.5) 

The relations between two sets of variables is simply a 
linear one. For example, 

p 2 = - ( 
miW2 1/2 

(mi+mz)(m2+mz)/ 
P i 

/ W3(wi+m2+w3) \ 1 / 2 

+ qi , 
\ (mi+mz) (w 2 +m 3 ) / 

q 2 = -
/ W 3 ( W i + W 2 + W 3 ) \ 1/2 

(2.6) 

) * \(mi+mz) (w2+m3)> 

/ mini2 1/2 

\ (mi+niz) (m2+mz)/ 
q i . 

Since the total angular momentum / is a conserved 
quantity, in writing out the Faddeev equations ex
plicitly it is more appropriate to use the states in which 

/ is diagonal. These states are simply given by 

\pqJMlL)i 

'J I L' 
- E c( 
ml,mL \M Ml ML-

)\plm; qLmL)i, (2.7) 

in which C 
(J l L\ 
\M mi mLJ 

are the well-known Clebsch-

Gordan coefficients. For convenience we shall denote the 
discrete quantum numbers J MIL simply by a. 

We are now in a position to write out the Faddeev 
equations in this representation. Let us consider the 
first equation in (2.1). The other two can be treated in a 
similar way. With the notation 

*ni(pqa) = t{pqa\Ti\n) 

(where n = ki', k2", W), it can be written as 

^n1(pqa) = $n1(pqa)— £ Z / dpidqiKi(pqa\piqia%) 
i=2 cti J 

pi2qi2 

X VSipiqtXi) , (2.8) 
pt+qt-s 

where 
Ki(pqa|piqiOLi) = i(pqa\ Tx \ piqia^i, 

$n (pqa) = i{pqa\Ti\n). 

We first proceed to compute K2. With the aid of (2.5) 
and (2.7) we obtain 

#2= E id&ci ) 
muniL J \M mi m-Lf 
mi', ML' 

/j' y u \ 
XC( J i d M l l r i l P i q i ^ F ^ " ^ , ^ ) 

\M' my m-L'f 

XYmL
L^(eqj(pq)Ymlt

l\eP2J(pP2)YmLt
Lf(eq2,(pq2), 

where dtt = d cosd pd<ppd cos6qd(ppd co$0P2d(pP2d cosd Q2d<pqr 

Moreover, pi and qi are defined through the relation 
(2.6) as functions of p2 and q2. According to (2.2) the 
matrix element i(pq | Ti \ piqi)i is given by 

i<pq|3Ti|piqi>i=«(q-qi)<p| f i ( 5 - g 2 ) I p i ) , (2.9) 

where Ti is the two-particle scattering matrix in the 
Hilbert space of the two-particle states. I t is now useful 
to make the decomposition 

<p | f iW|p i>= E ( 2 / + l ) P I ( c o s ^ p p l ) ^ 1 ( ^ i ; ^ ) . (2.10) 

Here BPPl denotes the angle between p and pi. (A similar 
decomposition can be made for T% and TV) With the aid 
of (2.9) together with (2.10), we obtain for K2, after 
integration over the angles 6P, <pp, 6q, and (pq the 

file:///Ti/n
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expression 

ST f (J I L\ (J' V L'\ 
Ki—— X / d cosd P2dcpP2d co$dq2d<pq2Cl jCl J 

q mi,mL J \M mi mj \M' my Wi ' / q mi, mL 
mi', m^ 

Kq2-qi2)'iil(p,Pus-q2) 

X F w / * f t 1 , f e ) F m L
w ( ^ 1 , ^ 1 ) F w ^ ' f t 2 , ^ 2 ) F m ^ ' ( ^ 2 , ^ 2 ) . (2.11) 

We have, furthermore, made use of the relations 

$ ( q - q i ) = (2/q)d(q2-ql
2)6(cosdq-cosdqi)d(<Pq-cpqi) , 

4TT 
Pi(cosdppl) = £ Yml(Pp,<Pp)Yml*(Opi,<Ppi) • 

2 /+1 m 

After some calculation (see Appendix) the expression (2.11) can be simplified to 

32TT 5 / 2 (2 /+1) 1 / 2 fl L J \/V U J \ 

K2 = {-\)l+l'-L-L'bjj,bMM> E ( )( ) 
q mi,mi\mi ML - W L ' / \ 0 m^ — Wz// 

mL 

X / d casOq„,Mq2-qi*)h1(j>, pi', ^-? 2)^m^(^ip 2 ,0)Fm L
L*(^iP2,0)Fw L ,L ,(^ 2P2,0) , (2.12) 

in which the angles 0... should all be expressed with the aid of (2.6) as functions of p2j qi and 0Q2P2. Here the symbols 
in large parentheses are the Wigner 3-j symbols (see, for example, Ref. 12). I t should be noted from (2.12) that / 
and M are conserved, which was to be expected. 

In the same way one finds for K%: 

S2>K»ll{U+iy,A fl L J \/U L' J \ 
Kz= {-\)l+l,-L~Lfbjj,bMM> E 

q mi,mL\mi ML — W I / / \ 0 ML' —mul 
mil 

X dcasBtopjltf-qiWiP, Pi; ^ -2 2 )^« i z *(^ l p„0)F m L
L *(^ f l l p l ,0 )7 m L , L , (d w „0) . (2.13) 

Here pi, qh and 6... are related to p%y g3 and6qzpz through Faddeev equations can then easily be separated out. 
a relation between pi,qi and p3, q3 analogous to Eq. (2.6). From (2.8) one sees, namely, in view of (2.12) and 

The inhomogeneous part of (2.8) can be calculated in (2.13), that the solution is simply given in the form 
a straightforward way. We shall not write this out 
explicitly, since in the applications considered in this ^n\pqa) = gi\p)vn'l\.qc(). 
paper, we shall only be concerned with the solutions of m & ^ £ ( 2 g ) r e d u c e s t Q 

the homogeneous part of (2.1). 
The Faddeev equations, which according to (2.8) fyn

1(ga) = $n
1(aa) 

have been reduced to a coupled set of integral equations 
with only two continuous variables, can be further * f°° ~ ~ ., . , . 
simplified to a set with only one variable, if we make an ~ £- ̂  J dqtKM<* I ?<ff <)%»*(?**»'), (2.15) 
approximation for the two-body partial-wave ampli
tudes. I t was pointed out by Lovelace that when the w n e r e 

partial-wave amplitudes are dominated by a bound $n
l = $n

1(pqa)/gi1(p) 
state or resonance the two-body scattering matrix off 
the energy shell factorizes out in a good approximation r°° pi2qf gifipi) (2.16) 
in the following way5 K ^ / dpiKiipqa\ P #**<)——" 7TT • 

s J Jo pi2+qi2~-s gil(p) 
ii'Wis^gtUpWWhKs). (2.14) 

The generalization to the case that a certain partial 
Assuming the validity of (2.14), the p dependence in the w a v e contains more than one resonance is quite obvious. 
" 12 A. R. Edmonds, Angular Momentum in Quantum Mechanics Finally, we shall examine how the equations are 
(Princeton University Press, New Jersey, 1957). simplified when the three particles are identical. In this 
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case, the matrix elements of two different Tl can be 
related to each other. For example, we have according 
to (2.3) 

(fekis1 r | kiTfc V > = (k2k1k31T21 k2
,k1

,k3
/>. (2.17) 

With the aid of these relations the matrix elements of 
T2 and Ts in (2.1) can be replaced by the corresponding 
ones of T1. Furthermore, we also have to take the 
proper statistics into account. I t is readily verified using 
(2.17) that the requirement that the particles should 
satisfy the Bose or Fermi statistics is equivalent to the 
condition 

,<pq|r* |»±>=±.<—pq|r*|»±>. (2.18) 

Here | n±) stands respectively for a totally symmetric or 
antisymmetric wave function with respect to inter
change of any two particles. The condition (2.18) 
simply amounts to the requirement that the matrix 
elements of Tl in (2.18) have only to be symmetric or 
antisymmetric with respect to interchange in the initial 
state of the two particles j and k(?±i). From (2.15) we 
see that (2.18) can be satisfied by imposing on the 
kernel of the integral equation the condition that / 
should be even or odd, respectively. Using this, one 
finds that the Faddeev equations are reduced to only one 
integral equation in one variable which is given by 

- E / dq'K(qa\q'a')<bn±i(qW), (2.19) 

where 

K(qa\qW)= L £ » f o t t | ?'«'). (2.20) 

Up to now we confined ourselves to the case that 
the particles did not have any internal degrees of 
freedom. Since we are concerned in this paper with 
pions, a word should be said about the influence of 
the isotopic spin. The generalization to this case is 
obvious. The three-particle states are now represented 
by (k1k2kzl1llzl2l2zlzlzz\, where Ij, Ijz designate the 
isotopic spin of the 7 th particle and its third component. 
In writing out the Faddeev equations it is now useful to 
take for the representation in which for example particle 
one plays a special role, i(pqIi(IiJz)l2zIIz\. The nota
tion is clear. In these wave functions I2 and 1% are 
coupled together to form i"23 which is in turn coupled to 
11 to form the total isotopic spin / . Since we are dealing 
with strong interactions, the isotopic spin dependence 
can be separated out easily. One finds 

tyn±
l(qal2z) = $n±1(qoJ2z)— Z / dq' 

a' ,I%z' J 0 

X X ( g a / 2 3 | g V / 2 3 , ) ^ ±
1 ( ^ V / 2 3 0 , (2.21) 

where 

K(qaI2z\qfa'I2z') 

XK^iqalqW) (with In=In'). (2.22) 

Here K is defined by (2.20). We have used an additional 
superscript 723 to emphasize that the two-body scat
tering matrix also depends on 723. Furthermore, we have 
for convenience only written explicitly the dependence 
on J23. The matrix elements (• • • | • • •) are directly re
lated to the 6-j symbols (printed in curly brackets) 
according to 

{h{hh)hJIz\{hIi)hihIL) 

= = ( _ 1 ) / 1 + / 2 + 7 3 + / [ ( 2 / 3 1 + l ) ( 2 / 2 3 + l ) ] 1 / 2 

[12 h hz\ 
X 

l / i / /s i J 

The condition for satisfying the statistics should also be 
modified slightly. Instead of (2.16) we now have 

1{vqI1I2lI2l2ZI^zz I T1 J n±) 
= ±i(-pqhIzihhzhl2z\Tz\n±). (2.23) 

In some practical problems the Eq. (2.21) assumes a 
simpler form. For example, one could try to find a 
solution of the homogeneous Faddeev equations for a 
system of three pions in a state with the characteristics 
of the co particle. In this problem the two-body scat
tering matrix can be taken to be dominated by the p 
resonance, i.e., 1=1, 723=1. Moreover, since / = 1 , we 
have Z = 0 , 1, 2 of which only L= 1 is allowed due to the 
odd parity of the three-particle state. With these the 
homogeneous part of Eq. (2.21) becomes 

*(q)=[ dq2K(q;q2-s)*(q2), (2.24) 

where 

12TT r r+l 

K(q;q2;s) = / dp2 d cosdq2P25(q2— qi2) 
q Jo J-i 

p22q22 

Xti(p2;pi;s-q2)— 
p22+q22—s 

XcosdplP2\smdqiP2\\sindq2P2\ . (2.25) 

I t should be noted that the condition (2.23) is auto
matically satisfied since I— 1 and 723= 1. 

3. THE PION PROBLEM 

In this section we look for a possible solution of the 
homogeneous Faddeev equations for a system of three 
pions in a state of zero total angular momentum, odd 
parity, and isospin one. The two-body amplitude which 
determines the kernel of the Faddeev equation is as-
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sumed to be dominated by the s-wave amplitude with 
even parity and isospin zero. As an approximation for 
this we use the Chew-Mandelstam effective-range 
formula.13 

According to (2.21) and (2.22) the homogeneous 
Faddeev equation in this case can be written in the form 

*(q>- dq2K(q;q2;s)^(q2): (3.1) 

where the kernel K is given by 

8TT f00 f+l 

K(q;q2;s) = — / dp2 d cosdmq2d(q2—q1
2) 

3q J o 7_i 

p22q22 

Xh(p2;pi] s-q2) . (3.2) 
p22+q22—s 

This is readily found by inserting (2.16) together with 
(2.12) and (2.13) in (2.21) and taking / = M =l=L = l' 
= L' = 0. Furthermore, we note that the condition (2.23) 
is also satisfied for this case in view of 1=0, 723=0. 

Although the Faddeev equations are by nature non-
relativistic, we can at least make use of relativistic 
kinematics. In Eq. (3.2) the parameter s represents the 
total kinetic energy of three particles in the over-all 
center-of-mass system. Instead of s we shall use the 
parameter z which is to include the rest energy of the 
three pions. Furthermore, in the nonrelativistic case 
v=s—q2 represents the square of the relative mo
mentum of the two particles. Instead of this relation, for 
its relativistic analog, we proceed as follows. The in
variant energy in the two-body center-of-mass system 
(taking mv=l) is given by £23= (4^>2+4)1/2. The mo
mentum of the third particle in the over-all center-of-
mass system is given according to Eq. (2.4) by ki 
= — 2q/VJ. Thus the total energy in the three-particle 
center-of-mass system is given by 

2 = ( i x 2 + 1 ) l /2 + (^2+4^+4)1 /2 

= ( f ? 2 + l ) 1 / 2 + ( ! ? 2 + 4 ^ + 4 ) 1 / 2 . (3.3) 

From (3.3) in identifying v — p2 one finds 

" = i [ (2 - ( t<7 2 +l ) 1 / 2 ) 2 - f<7 2 -4 ] . (3-4) 

This is now taken to be the relativistic analog of s— q2 in 
the argument of the two-body scattering matrix in 
Eq. (3.2). On the energy shell, the two-body scattering 
matrix is related to the invariant amplitude by 

to(p2;pi;v) = -(l/2v*)Ao(v) with pi*=pf=v.(3.S) 

The off-shell scattering matrix is then taken to be given 
by 

h(p2] pi; v) = -lg(pi)g(p2)/27r2lAo(v), (3.6) 

with g(0) = 1. We expect the form factor to behave as a 

13 G. F. Chew and Stanley Mandelstam, Phys. Rev. 119, 476 
(1960). 

constant near p=0 (threshold behavior for 5 wave) and 
go to zero for large p. Finally, we modify the free 
resolvent [the factor l/(p22+q22—s) in Eq. (3.2)] to 

1 

( ^ l 2 + l ) 1 / 2 + ( ^ 2
2 + l ) 1 / 2 + ( ^ 3 2 + l ) l /2_ 

(3.7) 

where ki, k2, and k3 are given in terms of p2 and q2 in the 
previous section. 

We have already mentioned that the two-body ampli
tude is approximated by the s-wave, isospin zero ir-ir 
effective-range formula. This formula was first written 
down by Chew and Mandelstam13 from the N/D 
formalism and was later used by Booth and Abashian to 
fit the ABC phenomenon.14 I t has also been utilized by 
Scotti and Wong in the nucleon-nucleon problem.15 

Following Chew and Mandelstam we write 

AQ(p) = N(v)/D(i>), 

where we take N (v) = ai and 

(3.8) 

D(u)=l-
ar(v+l) 

V + l / 

X-
(z/-»)0/+l) 

Integrating this equation D(v) is given by 

2ai ai/ v 
D(p)=l + - ( 

7T 7T \ J > + 1 . 

X{2 1 n [ ^ / 2 + ( ^ + l ) 1 / 2 ] - i 7 r } ; ^ > 0 

4v'. (3.9) 

2ai 2aIf-v\llz 

= 1 +__ 
7T 7T \V-\-\/ 

fv+\\1'2 

Xtan-M J ; - K K 0 

2ai/ v \ 1 / 2 2<2j 2ar 

= 1 — + 

Xln[ ( -

+ 1 
v)l/2+(- •1)1 / 2]; v<-\ (3.10) 

and D(—1) = 1. Equations (3.4) through (3.10) are 
utilized in Eq. (3.1) which now determines the kernel. 
We have thus defined our use of the relativistic kine
matics as well as a prescription of using the effective-
range formula off the energy shell. As for the form 
factors g(pi) and g(p2), we shall use them as 

g(p) = l if p<pa 

= 0 if p>pni (3.11) 

14 Norman E. Booth and Alexander Abashian, Phys. Rev. 132, 
2314 (1963). 

15 A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963); 
also Phys. Rev. 138, B145 (1965). 
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which means that we use a cutoff in the integrations 
over p2. This cutoff obviously has a physical significance. 
We shall call pm the cutoff parameter. 

We are now in a position to discuss the solution of 
Eq. (3.1). The kernel in this equation is now a function 
of the parameters ai and pm as well as z. We now write 
Eq. (3.1) as 

where we have defined a0=ai/(l — 2ai/7r). The quan
tity a0 is the conventional scattering length. The kernel 
is approximated by a finite NXN matrix by choosing 
finite mesh sizes in the integration. The number of steps 
N in the integration was taken to be 30. Varying this 
number to ^ = 6 0 did not change the result. The 
problem amounts now to solve the resulting eigenvalue 
equation by appropriate variations of the parameters 
z, pm, do, such that there is an eigenvalue one obtained. 
I t turns out that this eigenvalue was the largest one in 
the region of the parameters we were considering. 

Since we are interested in the question whether it is 
possible to find a three-particle bound state with the 
same mass of the pion, we have taken z— 1 varying only 
pm and a0. The result is shown in Fig. 1. I t was also 
found that for a given pm, a0 this was the only bound 
state. The position of the bound state, however, turned 
out to be very sensitive to these parameters. 

The scattering length a0 is determined by Booth and 
Abashian from the ABC experiment to be given by 
(2zbl). (Scotti and Wong15 recently found from the 
nucleon-nucleon problem the value a 0 = 2.7.) Taking the 
value a 0 = 2 , we find according to Fig. 1 that the cutoff 
parameter of the form factor should be pm=5.3. 

4. DISCUSSION 

In Sec. 2 we have made a new separation in angular 
momentum of the Faddeev equations. With this separa
tion and the assumption that the two-body amplitude 
off the energy shell factorizes into terms containing the 
initial and final momenta we have been able to reduce 
the Faddeev equations to an integral equation in only 
one variable. Moreover, in the separation the statistics 
for identical particles can easily be taken into account. 
The method of separation adopted here differs from that 
of Omnes8 in the choice of variables, and, depending on 
the particular problem under consideration, one or the 
other separation may be more convenient. The reduc
tion to an integral equation in one variable is not, how
ever, an exclusive feature of the separation used here. 
As shown by Basdevant,11 once the two-body amplitude 
is assumed to factorize in terms consisting of the initial 
and final momenta, the Omnes separation of angular 
momentum also gives rise to integral equations in one 
variable. This simplification is of considerable practical 

7 1 1 1 - i 1 1 r 

6h 

5h 

4.1 I 1 l I I 1 l _J 
0 2 4 6 8 

ao 

FIG. 1. The dependence of the cutoff parameter pm on the scat
tering length aQ for z= 1. 

importance and under this condition the numerical solu
tion can be carried out with reliable accuracy. 

In the previous section we have considered a model in 
which the pion is a bound state of a system of three 
pions in the Faddeev equations. We have thus utilized a 
notion often discussed by Chew, namely, that the 
strongly interacting particles are composite of one 
another. We have, however, neglected all other channels 
to which the pion is coupled. This approximation is 
quite analogous to that in the current bootstrap prob
lems in which only the contribution of the nearby 
singularities are taken into account. Here it is the free 
resolvent as well as the two-body scattering matrix 
which suppress the effect of the more massive particles. 
The pion is, for example, also strongly coupled to the 
NN system. I t would in fact be interesting to consider as 
a model for this the TTNN system in which the two body 
amplitudes irN, irN, and NN are approximated by ap
propriate bound states and resonances. A situation in 
which the eigenvalues_ of the Faddeev kernel corre
sponding to such a TTNN model are considerably smaller 
than unity would be in support of our three-pion model. 
One would, of course, like to have a way of combining 
all these effects. Such a problem is, however, not a 
simple one in practice. Furthermore, in our three-pion 
model we have, for example, neglected the p contribu
tion to the two-body amplitude since the ir-p system is 
considerably more massive than the ir-ABC system. 

The Faddeev equations, although basically non-
relativistic, are here assumed to be applicable to strong 
interactions. We believe that such an approach is 
justified because these equations have at least a correct 
nonrelativistic foundation and offer a good starting 
point. Furthermore, although these equations are de
rived in potential theory, once the two-body amplitudes 

¥(<?)= / dq'K{q,q',z,pm,a*)*(q'), (3.12) 
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are given no further knowledge of the potentials is 
required. In our model for the pion we have at least 
made use of relativistic kinematics in order to make the 
treatment more reasonable. 

A drawback in this sort of calculation is our lack of 
detailed information about the form factors. For sim
plicity, we have taken here the form factor to be a 
constant up to a certain value pm and zero after that. 
The fact that our results strongly depend on the cutoff 
parameter pm makes a study of form factors highly 
desirable. I t should be stressed that this cut-off parame
ter is not merely a mathematical artifice, but that it can 
in principle be determined from the two-body inter
actions. We would like to make the passing remark that 
instead of Eq. (3.11) one can introduce a form factor of 
the type16 

1 

In so doing, for #o=2 we obtain f3~3.5. 
With the approximations mentioned above we may 

conclude that the pion can be understood as a bound 
state of three pions in the Faddeev equations. We intend 
to make a detailed study of the co particle along the same 
lines. 
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APPENDIX 

In this appendix we shall indicate how to reduce 
(2.11) to (2.12). All the equalities we thereby shall use 
can be found in Ref. 12. One relation we need is 

y m \ypij(Ppi)== 2^i •JJm'm \0Lflp2-) typi) ^ m' \Pp2Ply^) • vU 

Here S)m'mz(a,0P2,^P2) are the well-known rotation 
matrices and 6P2P1 is the angle between p2 and pi. The 
relation (I) corresponds to a rotation from a coordinate 
system with the z axis parallel to p2 and the x axis in the 
plane through pi and p2 to the space-fixed coordinate 
system. The same rotation is now being used for the four 
Ym

l's in (2.11). Moreover, in (2.11) we have to integrate 
over the angles 6P2, <pP2, 6q27 (pq2. Instead of these vari-

16 See, for example, M. Bander, Phys. Rev. 138, B322 (1965). 

ables we may as well use a, dP2, <pP21 and 6Q2P2. So we find 

4 T T 1 / 2 ( 2 / + 1 ) 1 / 2 

K2=- 2-u ^ni,nL,nL' 
<J ni, UL 

ni', ni! 

with 

X d cos6>92P25(g2~?1
2)/V(^; pi) s-q2) 

X F , I
w f e i M , 0 ) F n 1

L * ( ^ i M , 0 ) F , ^ ' ( ^ 2 M , 0 ) , (II) 

J I L\ /Jf V U 
Ani,nL,nL'— 2-/ ^ 

{m} \M mi mLi J \M' mv ML'/ 

X dco£>nlm
l*(u) 

XlDnL»L X i *(a>)a)0mi . , ' (« )aOnL^L» L , (co) , 

where we have denoted the angles a, dP2, <pP2 by co and 
do) = d cosdP2dad<pP2. The computation of the expression 
A can now readily be carried out. With the aid of the 
relation 

SDmi^1
il(w)3)m2'«,*(co)= L (2j+l)( * J ) 

(31 j'2 A 
W i W2 ml 

A can be reduced to an expression in which there are 
only two rotation matrices involved. Using subsequently 
the orthogonality relations for the rotation matrices 

/ 

8TT2 

do) 3 W ( ^ ) £ W V * (CO) = 8mm>5nn>&ji> 
2j+l 

and for the 3-j symbols 

w i , m 2 W i W2 W 3 / W i m<i mz/ 

1 

273+1 
(jlJ2Jz) 

we find for A as a result 

Anl,nL,nL.= &*2hj>dMM>(-l)l+l'-L-L' 

l L J \/V L' J 
X 

tl L J \/V L' J \ 

\ n i fiL — W L ' / \ 0 flu —UL>' 

Inserting this in formula (II) gives at once the ex
pression (2.12). 


