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It is shown in two examples that to measure the momentum of a particle with great accuracy, allowing 
for large uncertainties in the position, it is still necessary to consider additional quantum effects. For the 
case of measurements by electromagnetic means, the uncertainties in the measurability of field strengths 
and of charge-current densities should be considered. Within the framework of the Bohr-Rosenfeld analysis, 
uncertainties in the field measurements do not limit the accuracy of momentum measurements. What 
happens when the Bohr-Rosenfeld approximations are not made is an open question. 

THE concept of local fields is sometimes suspected 
of not being meaningful on the grounds that 

measurements relating to an exact localization in space-
time are not possible. On the other hand, no serious 
doubt has been raised about the measurability of mo
mentum with arbitrary accuracy. The reason behind 
such attitudes is, roughly speaking, that, by the un
certainty principle, any localization in space-time with 
great precision would be accompanied by large un
certainties in the energy-momentum involved, and 
additional particles can be created. On the other hand, 
for a momentum measurement with great accuracy, the 
uncertainty relation requires only large extensions in 
the space and time of measurement. This seems to be a 
limit where classical macroscopic descriptions can be 
used with better and better justification, and un
certainties due to quantum effects can be minimized. 
These intuitive feelings, however, have not been verified 
in detail with respect to either the measurability of 
momentum or the nonmeasurability of space-time locali
zations. In fact, in nonrelativistic quantum mechanics, 
one is used to the complementary nature of x and p, and 
to a certain degree of symmetry with respect to the 
limitations on the accuracies of position and momentum 
measurements. I t may be interesting, therefore, to con
sider in simple idealized experiments how relativistic 
effects such as pair creation can actually change the 
situation. 

In this note we give a brief account of some pre
liminary considerations on momentum measurements. 
In Sec. I it is shown that to obtain great accuracy in 
momentum measurements, one should also consider un
certainties in the measurability of field strengths and 
charge-current densities. In Sec. I I it is shown that, 
within the approximations of Bohr and Rosenfeld,1 the 
uncertainties in field measurements do not set a limit 
to the accuracy obtainable for momentum measure
ments. On the other hand, within the same approxima
tion framework, measurements with respect to space-
time localization are also meaningful. This will be dis
cussed separately. The question as to what happens 
when these approximations are not made is completely 
open. 

* The study was supported by the U. S. Air Force Office of 
Scientific Research Grant No. AF-AFOSR-42-64. 

1 N . Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 12, 8 (1933); also Phys. Rev. 78, 794 (1950). 
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I. THE RELEVANCE OF QUANTUM EFFECTS 
ON MOMENTUM MEASUREMENTS 

We will first define the problem more specifically. By 
a momentum measurement we shall mean the deter
mination of the momentum of a single elementary 
particle, which is approaching a pure momentum state 
with a limitation imposed only by the uncertainty re
lation. We will not be concerned with the measurement 
of the average momentum of a macroscopic uniformly 
charged body. The following idealizations will be made : 
(1) The constants c and h (speed of light and Planck's 
constant) and the particle mass m will be assumed to be 
given parameters. For example, we assume that the 
determination of the velocity of a particle is equivalent 
to the determination of its momentum without inquiring 
into the possibility that one may not be able in principle 
to determine the value of m, as well as c and h, with 
absolute accuracy. Naturally, our measurements refer 
only to stable particles. (2) We shall use electromagnetic 
interactions for measurements, and will at the same time 
neglect gravitational and weak interactions. We also 
neglect cosmological limitations so that, for instance, 
the region of measurement can be extended arbitrarily 
far in a flat space. (3) We will be interested in seeing 
whether the uncertainties in momentum measurement 
can be reduced indefinitely. We will not be directly 
concerned with absolute certainty in the determination 
of momentum. Such certainty may have meaning only 
as the limit of a sequence of approximations by con
sideration of a theorem of Araki and Yanase.2 

(a) First we consider the following simple arrange
ment for the selection of a particular momentum for 
charged particles having a fixed mass. Static and homo
geneous E and H fields are imposed inside a long 
rectangular tube with E x H parallel to the axis of the 
tube and E and H each parallel to two of the walls. The 
condensers and solenoids, say, which serve as the sources 
of the fields, may be assumed to be arbitrarily heavy and 
define the laboratory system. The region outside the 
tube is assumed to be field free (fringe effects turn out 
to be unimportant for later considerations). For par
ticles that enter the tube, only those having a particular 
velocity relative to the laboratory system, parallel to the 
tube axis in direction and equal to E/H in magnitude, 

2 H . Arkai and M. M. Yanase, Phys. Rev. 120, 622 (1960); 
also E. P. Wigner, Z. Physik 133, 101 (1952). 
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Detector 1 Detector 2 

FIG. 1. Schematic diagram of the arrangement for momentum 
measurements by using crossed fields. 

will follow a straight line. These will emerge from the 
other end of the tube. Particles with different velocities 
will perform trochoidal motions, and those that strike 
the wall are assumed to be completely absorbed. In this 
arrangement, therefore, any particles that emerge from 
the other end will be accepted as having the desired 
momentum. This is of course an extremely crude 
method, simplified so as to illustrate the essence of the 
problem. In this example, particles that have velocities 
slightly different from (E x E)/H2 can also emerge from 
the other end, as illustrated in Fig. 1. With R> 2wp/eB, 
and the distances between the walls both equal to d, the 
resolutions are given by : 

Apz~Bed+l/R, 

Apx~Bed+l/d, 

Apy~l/d+(pd*)/(2R2). 

(1) 

(2) 

(3) 

Additional uncertainties in the momentum due to 
radiation will be considered later, but it is already clear 
from Eq. (2) that in order to attain great accuracy, one 
must let both d and R become large, and at the same 
time let the field strengths become arbitrarily weak. The 
question naturally arises as to whether it is possible to 
have an arbitrarily weak field whose action on a charged 
body obeys the classical calculations, and whether un
certainties in the measurability of field strengths will 
cause deviations from classical expectations as the field 
gets weaker and weaker. The words italicized in the 
last sentence serve to emphasize the reasons why this 
question is at all relevant. One may feel, for example, 
that as the applied fields get weaker, the behavior of a 
charged particle approaches that of a free particle, and 
no uncertainties should arise. However, a null field 
clearly cannot be used to discriminate different mo
menta. I t is the ratio of field effects to the deviations of 
field effects from classical expectations that is at issue. 
Furthermore, while in dealing with relatively strong ap
plied fields one may neglect a weak stray field, coming, 
say, from the outer space, in dealing with weaker and 
weaker applied fields one must make sure that no such 
unwanted fields are present. The question of the 
measurability of the field strengths is therefore relevant, 
and disturbances due to measurement should be con-

FIG. 2. Schematic diagram for velocity measurement 
by the time of flight. 

sidered. Before we examine this problem, however, let 
us consider another standard measurement procedure. 

(b) Let us now consider a velocity measurement by 
the time-of-flight method. Two detectors, 1 and 2, are 
placed a distance R apart as shown in Fig. 2. The 
particle passes detector 1 at time h, and detector 2 at 
time h. A velocity relative to the detectors, which can 
be assumed to be very heavy, is defined by the ratio 

v = R / ( / 2 - * i ) . (4) 

One grants that the detector may have a finite size, 
represented by a linear dimension d, and that there is a 
corresponding uncertainty in the time when the particle 
passes through a detector. The resulting uncertainty in 
v will be denoted Av. On the other hand, as R becomes 
larger and larger, while d is kept fixed, Av will become 
smaller and smaller, and v becomes better defined. I t 
would seem that such an arrangement circumvents the 
consideration of quantum effects. 

I t must be noted, however, that when v becomes very 
well defined, then the uncertainty in momentum rele
vant to the problem is given by Ap= 1/d, irrespective of 
how large R is. This is because, when 1/d is larger than 
| mA\ |, the v defined by Eq. (4) does not correspond to 
the velocity of the particle when it is between the two 
detectors. The particle has a distribution in momentum 
as a result of passing through the first detector, and it is 
only when it interacts with the second detector that a 
particular Fourier component is picked out. This can 
be seen by imagining that the two detectors are enclosed 
in a tube of diameter d with perfectly absorbing walls. 
If a particle passing through both detectors is taken to 
have velocity v defined by Eq. (4) while inside the tube, 
and if | mA\ | is less than 1/d, the uncertainty principle 
is violated. Similarly, the velocity of the particle after 
it passes through the second detector also deviates from 
the v defined by Eq. (4) because of interactions with the 
second detector. So eventually the limit on the accuracy 
of momentum determination is set by the interactions 
with the detector, and the question is whether the un
certainty arising from this can be made arbitrarily small 
by extending the detector dimension d. I t is clear that 
when d becomes larger and larger, the passage of a single 
charged particle corresponds to a smaller and smaller 
current density. One can ask whether uncertainties in 
the measurability of charge-current densities will cause 
difficulty in the measurement of an arbitrarily small 
current density without disturbing it. (It may seem 
absurd that, if a small cloud chamber can detect the 
passage of a charged particle with certainty, a large 
cloud chamber should have any difficulty doing it. I t is 
to be noticed, however, that in ionizing even just one 
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atom the particle receives a finite amount of un
predictable momentum transfer. In interacting with an 
atom, the test particle gets localized to a size of the 
atomic dimension, and the large extension in the 
chamber size is no longer relevant. Clearly, this is not 
the optimal arrangement.) We see therefore that in 
order to measure momentum with arbitrary accuracy, 
one must deal with arbitrarily weak field strengths and 
arbitrarily small charge-current densities. Consequently, 
uncertainties in the measurability of these quantities 
should be investigated. Since part of these uncertainties 
are due to virtual or real pair creation during the 
measurement process, one sees that the effects of particle 
creation should be considered not only for localization 
measurements, but for momentum measurements as 
well. 

II. ACCURACIES OBTAINABLE IN THE 
BOHR-ROSENFELD FRAMEWORK 

We will now consider the uncertainties in the measure
ment or preparation of electromagnetic field strengths. 
For this we will use the results of the work of Bohr and 
Rosenfeld. I t is to be remembered that the Bohr and 
Rosenfeld analysis neglects completely the atomic 
structure of the test bodies that are used for field 
measurements; thus the considerations below are valid 
only within this approximation framework. On the 
other hand, the Bohr-Rosenfeld analysis does take into 
account the effect of pair creation during a measurement. 

Within this framework, there are only two sources 
of uncertainty in the determination of average field 
strengths over a space-time region. First, there are field 
fluctuations. Second, there is the lack of commutativity 
for the average field strengths over two regions situated 
such that a signal can go from one region to the other. 
I t has been shown by Corinaldesi3 that for two space-
time regions of linear dimension L (T^L/c), and dis
placed from each other by a distance of the same order, 
the magnitude of the commutator is either of the same 
order or smaller than the square of the fluctuation fields. 
For T^L/c the latter is given by 

(AF„)2 = [ (k*+k*-2g„k,fc)BQ*)d*k 
2(2T)W2J 

X dAxd4x'exp[ik(x— x')~] 
J v 

- l / L S (5) 

where V is a space-time region of dimension L. When 
the applied fields become weaker than this magnitude, 
the classical description of their effect on the particle 
trajectory becomes unreliable. 

I t may seem already obvious that in this framework 
the uncertainties in field measurements have negligible 
effects. One may argue that since with the Bohr-
Rosenfeld arrangement the dominant uncertainty is due 
to field fluctuations, and since fluctuations give pre-

3 E. Corinaldesi, Nuovo Cimento, Suppl. 10, 83 (1953). 

diet able renormalization effects, no deviation from a 
classical trajectory should occur if one uses renormalized 
quantities. This is not quite correct because, due to 
interactions with the measuring apparatus, real un
predictable deviations are introduced. Their magnitudes 
can be estimated only from a consideration of the size of 
the test bodies to be used for field measurements, which 
determines the value of L in Eq. (5). 

Suppose one determines directly the field strength in 
the region described in Fig. 1 by an actual measurement 
of the Bohr-Rosenfeld type; one then encounters two 
difficulties : 

(i) If a large uniformly charged test body which fills 
the whole region is used, it can only measure the average 
field strength over the whole region, and does not ensure 
that the field is homogeneous in space and static in time. 
If smaller test bodies are used to measure fields in sub-
regions in order to determine the homogeneity of fields, 
the value of L to be used in Eq. (5) must be much 
smaller than d or R in Fig. 1. 

(ii) If the field measurement is completed before the 
particle whose momentum is to be measured enters the 
region, the field intensity experienced by the particle is 
not the same as that previously measured. The field and 
its time derivative do not commute. On the other hand, 
if the measurement is carried out simultaneously during 
the passage of the particle, it can be shown that the 
particle trajectory will be strongly disturbed by the 
measurement. Even though the test body for the field 
measurement is immersed in an oppositely charged, 
fixed background so that the field due to the test body 
is neutralized, the reaction field due to field measure
ments4 has a non-negligible effect on the particle 
whose momentum is under measurement. 

I t is clearly necessary, therefore, to make use of one's 
knowledge of the charge-current distributions which 
serve as sources to the fields in the measurement region. 
This knowledge must in turn come from measurements. 
An actual measurement of the charge-current density 
will also involve uncertainties due to fluctuations, which 
become infinite when the boundary of the source region 
becomes sharply defined.5 Thus there will be some 
uncertainties in the positions of the charge-current dis
tributions which serve as the sources. Without elaborat
ing on the tedious details, one may state that it can be 
shown that by letting the region depicted in Fig. 1 be
come arbitrarily large and by choosing heavy masses for 
the charged bodies which form the sources, it is indeed 
possible to prepare static and homogeneous E and H 
fields, subject to an uncertainty in field strength due 
only to fluctuation effects of the order | AE | — | AH | 
< l /d 2 . This is of crucial importance because it is now 
a trivial matter to compare the rate of decrease of the 
applied fields with that of the fluctuation fields, as the 

4 An estimate of the magnitude of field actions of the test bodies 
can be found in Ref. 1. 

5 W. Heisenberg. Leipzig. Ber. 86, 317 (1934). 



B1106 C H I N G - H U N G W O O 

required momentum resolution becomes better and 
better. 

A look at Eqs. (1) through (3) shows that to make 
Api —* 0, it is only necessary to let 

B<l/dL+t
9 R>d1+A, 1 > A > € (6) 

with € and A real and positive, and to let d become 
arbitrarily large. 

Thus eventually 

(applied B « l / d 1 + € ) » (fluctuation flelds<l/d2). 

There is an additional uncertainty in the momentum of 
the particle due to radiation of photons during the 
passage, which is given by 

Ap-{a2/m2)B2R. 

Clearly this also decreases steadily with increasing d. 
One can further convince oneself of the negligibility of 
fluctuation effects that are averaged over a whole region 
of linear dimension d by the following qualitative con
sideration, which was used by Welton6 to obtain an 
estimate of the Lamb shift. For a charged particle of 
mass m moving with nonrelativistic velocity, the ac
celeration due to a fluctuating field E is 

x = (e/m)E, 

so that for a given Fourier component 

e2 | E | 2 

(A*)w* = . 
m2 co4 

Since 
<£) a v

2 -aMo, 

(A*) 2 ^— In . 
M2 C0min 

The upper cutoff comax for the frequency is of the order of 
m by a consideration of retardation effects,6 and the 
lower cutoff can be chosen to be 1/d. Thus 
(Ax)2^ (a/m2) ln(dm)«d2 . One sees that because of the 
oscillatory nature of the field fluctuation, the deviation 
from classically computed trajectories is not serious. 
Within the framework of Bohr and Rosenfeld for the 
measurability of fields and charge-current densities, 
therefore, it is possible to achieve arbitrary accuracy in 
momentum resolution by the arrangement of Fig. 1. 

Similar considerations apply to the second method 
using time of flight. In order for the detector to register 
the fact that a particle has passed through, the latter 
must be made to interact with something. To reduce 
the amount of momentum transfer during the inter
action, one might, for instance, make the average inter
action distance very large as d increases, as shown 
schematically in Fig. 3, where the particle interacts only 
with other particles in the shaded regions. I t will not be 
satisfactory to use elastic scattering as the required 
interaction for this purpose because it will then be 

• T . Welton, Phys. Rev. 74, 1157 (1948). 
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FIG. 3. Symbolic sketch of a detector, where only the shaded 
regions contain particles capable of being excited by a passing 
particle. 

necessary to know the target momentum before and 
after the collision with arbitrary accuracy. This would 
be a "Zanzibar" in the sense of Cohen et al? So some 
target particle must undergo a recognizable change as 
the result of the interaction. For simplicity one might 
take this to be a transition in a two-level system. As d 
becomes larger and larger, the energy between the two 
levels must become smaller and smaller, decreasing at 
least at the rate AE^l/d. I t will also be necessary to 
have arbitrarily narrow natural line widths. This can 
be achieved, for instance, by Zeeman splitting a ground 
level, and letting the applied magnetic field B decrease 
as 1/d as d increases. Detection of a transition, which 
signals for the passage of a charged particle, can be 
effected by a Stern-Gerlach experiment. The main con
clusion of the previous consideration is that the un
certainty in the determination of the field strength is of 
the order AB^l/d2. Hence, here it is also possible to 
achieve arbitrary accuracy by letting d—><x>. 

Thus, within the approximation framework of neg
lecting the structure of test bodies that are used to 
measure field strengths, it is possible to measure the 
momentum of a charged particle with arbitrary ac
curacy. But the considerations involved indicate a 
close connection between the measurability of momen
tum and such quantum effects as the zero-point 
oscillations of a field or a lattice.8 I t is an entirely open 
question how the removal of the Bohr-Rosenfeld ap
proximation will affect the local field measurements as 
well as the momentum measurements. 
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8 There is a third method of selecting a particular momentum, 
by diffraction-scattering off a lattice and selecting particles that 
come out at a fixed angle. For an indefinite increase in accuracy by 
this method, one must consider the zero-point oscillations of the 
lattice, which in the case of x-ray diffraction are known to con
tribute to the Debye-Waller factor. The author has not yet 
analyzed this case in detail. 


