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The homogeneous Lorentz group and the 4 + 1 de Sitter group are interpreted as the dynamical groups 
of a nonrelativistic and a relativistic "rotator," respectively. In an irreducible representation of the latter 
group we obtain for certain states the mass formula w2 = wo2+X2j(i+l)- The contraction of the dynamical 
groups [Euclidean group in three dimensions and Poincare group, respectively] destroys the energy or mass 
spectrum and can be associated with the limit % —> 0. The model of an elementary particle as a de Sitter 
"rotator" is discussed. 

I. THE CONCEPT OF DYNAMICAL GROUPS 

BY a dynamical group we mean a group (in general a 
noncompact one) which gives the actual energy or 

mass spectrum of a quantum-mechanical composite 
system. The idea is to reduce a theory in flat space with 
an interaction (e.g., Hamiltonian) to a group of motions 
in curved space, i.e., to geometry, in a way similar to 
that done in general relativity. The representation of 
the dynamical group will give us the quantized states of 
the system. That this idea also works in the domain of 
quantum theory is shown explicitly in this paper in the 
case of two simple examples describing the quantized 
energy states of a rotator and the quantized mass states 
of a relativistic "rotator." The latter has a strong bearing 
on the problem of the actual mass spectrum of strongly 
interacting particles. Our aim is to give a group-
theoretical formulation of the so-called broken sym
metries. The unitary symmetries used for the classifica
tion of strongly interacting particles {SU% or SUe) are 
approximate and clearly their experimental success must 
be attributed to the existence of symmetry-breaking 
terms.1,2 These terms are introduced in a phenomeno-
logical way and are treated as a perturbation in the mass 
operator. The possibility that the symmetry breaking 
can be explained within the framework of a larger 
dynamical group containing the group of degeneracy has 
been considered before.3-5 We explicitly show in this 
paper how a mass spectrum may be obtained under the 
assumption of a dynamical group. The attractive 
feature of the model is thus its simplicity with no further 
assumptions being necessary than the group.6 

* On leave from the Institut fiir theoretische Physik, Universitat 
Marburg, Germany. 

1 For symmetry-breaking terms in SUz see M. Cell-Mann and 
Y. Ne'eman, The Eightfold Way (W. A. Benjamin, Inc., New York, 
1964). 

2 For symmetry-breaking terms in SU& see F. Giirsey and L. 
Radicati, Phys. Rev. Letters 13, 173 (1964). M. M. B. Beg and 
V. Singh, ibid. 13, 418 (1964). 

3 A. O. Barut, University of Colorado report, 1963 (unpub
lished). 

4 A. O. Barut, Conference on Symmetry Principles at High 
Energy (W. H. Freeman and Company, San Francisco, 1964). 

5 A. O. Barut, Phys. Rev. 135, B839 (1964). 
6 The dynamical groups used here are among the groups of 

motion of Riemannian spaces. For a classification of such groups 
of motion see A. Raczka (to be published). In the usual mass 
formulas it is not clear whether one should use m2, m, or 1/m2, 
etc. The present model definitely gives m2 from the Casimir 
operator. 

B 

In order to see how the dynamical group is introduced 
we start from a mass formula for mesons of the form3-4,7 

m 2 = m 0
2 + X 2 [ 2 / ( / + l ) - J ( / + l ) + F 2 / 4 ] , (1.1) 

where / , / , and Y represent the spin, isospin, and hyper-
charge of the particles and m is the measured mass. The 
scale factor X can be found from the empirical masses 
to be 

\^14X10 4 (MeV) 2 . (1.1a) 

For further reference we note that this factor can be re
lated to a length l0 by the relation3 

\=h2/e2l0, (Lib) 

with the value Z0~ 10 -12 cm. 
Because m2 is the value of the mass operator PMPM, 

Eq. (1.1) indicates clearly a coupling between P^P^ and 
the other operators J2, I2, Y2. In the limit of exact de
generacy PpP* is an invariant and P / s commute among 
themselves. The assumptions about the existence of 
symmetry-breaking terms really amounts to the non-
commuting PM's and the fact that PMPM is no longer an 
invariant. (In SU% and SU$, P^P^ is assumed to trans
form as a tensor operator of the group.) 

For quantized systems the energy E or m2 are not 
invariants but take definite values as a function of 
quantum numbers. 

In general, however, the energy or mass spectrum 
(m2) is not simply linearly related to the quantum num
bers as in Eq. (1.1), e.g., H atom. But the simplicity of 
Eq. (1.1) suggests that it can be derived from the 
second-order Casimir operator of a group. In this paper 
we shall concentrate on the first two terms of (1.1), i.e., 

P M P M - \ 2 7 ( / + l ) = p2 (1.2) 

and shall interpret the left-hand side of (1.2) as terms 
entering into the second-order Casimir operator of a 
group, p2 being related to the value of this Casimir 
operator in an irreducible representation of the group. 
The group containing P^P* and J2 (and more generally 
I2, Y2, - - •) must be semi-simple. This is because the in
variant operator of an invariant subgroup of a group is 
also an invariant operator of the group itself,8 and if, 

7 Similar mass formulas involving / ( / + 1 ) terms have now been 
obtained from broken SU& symmetry. See Ref. 2. 

8 A. Bohm, University of Marburg Report, 1964 (unpublished). 
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TABLE I. Passage from a dynamical group to the kinematical 
group. 

System Mathematical representation 

Composite quantum 
system with mass spectrum 

System without internal structure 

Irreducible representation of 
the dynamical group 

group 
contraction 

Representation of the kine
matical symmetry group 

for example, PM or J (or I) would generate an invariant 
subgroup, they could not enter into the Eq. (1.2). 
Thus, as far as the mass-spectrum problem is concerned, 
P / s do not form an invariant subgroup. This is not sur
prising because in the problem of mass states of a 
quantum-mechanical composite system we do not have 
translational in variance. For example, there is no 
translational invariance in the H-atom problem. There 
is however, a translational invariance if we consider the 
motion of an H atom as a whole. 

The passage from a dynamical group giving the mass 
spectrum of the system to what one may call the "kine
matical group" of the system describing single mass 
states will be done by the process of group contraction.9 

The contracted kinematical groups are indeed classical 
groups, and it is interesting that the contraction can be 
associated in a natural way with the limit h —> 0. We 
obtain thus the situation shown in Table I. 

In Sec. I I we discuss first a nonrelativistic model 
which contains all the ingredients of the idea of a dy
namical group and its contraction, but is mathematically 
much simpler. From a realistic model of a particle we 
shall require that the contraction contains the Poincare 
group. Such a model is discussed in Sec. I l l together 
with its implications for the structure of strongly in
teracting particles. 

II. DYNAMICAL GROUP OF THE NON
RELATIVISTIC ROTATOR 

We shall now interpret the homogeneous Lorentz 
group L as the dynamical group of a system. This model, 
which is described by the irreducible representations of 
L, will be called, for reasons which will be seen later, a 
rotator. 

(1) The well-known commutation relations of L: 

goo=l; £*»=--1, t = l , 2, 3; g„M=0, V^/JL, (2.1) 

may be written in the following form: 

IH+,H{] =-H+, IH_,H,] = H_, 

[H+,F+-] = [ff_,F_] = [ t f s , ^ ] = 0 , 

[_F+,F{] = H+, CF_ ,F , ]= - f f_ , 
IF+,FJ]=-2H3, (2.2) 

[ H + , F , ] = - F + , IH-,F,1=F-, 

£H+,FJ]=-£H_,F+1=2FS, 

IF+,H{]=-F+J [ F _ , H , ] + F _ , 

where we have introduced the notations10 

H+=H1+iH2, H_=H1-iH2, 

F+=F1+iF2, F„=F1-iF2, 

M^—i 

0 F\ Fi 
0 # 8 

0 

^ 3 ' 

-H, 
# 1 

0 

(2.3) 

The irreducible representations of these commutation 
relations in Hilbert space can be written as follows10: 

H9f,
k = vf,k, 

F + / , * = [ ( * - i O ( * - i ' - i ) ^ 

where 
Ak=ik0c/k(k+l), 

Ck = i/kt(P-ko2Kk*-cZ)/(4k*-l)J!z (2.4) 

v=—k> —k+1,' —,k; k = ko, &o+l, &o+2,- • • . 

Here /„* are elements of the irreducible representation 
(Hilbert) space 3C(k0,c) where (k0,c)—k0 integral or 

9 E. Inomi and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 39, 
510 (1953); 40, 119 (1954). 

half-integral non-negative, c arbitrary complex number 
—characterize the irreducible representation. These 
representations are unitary representations of L for 
C=ia and (ko,a)^X where X is the following set: 

X={(k0,a)\ko=hhl'-,-«><a< + co} 
_________ U{(£oA) |*o=0, 0<ia<l}. (2.4a) 

10 M. A. Naimark, Linear Representations of the Lorentz Group 
(Pergamon Press, Inc., New York, 1964) and references given 
there. 
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(The irreducible unitary representations belonging to 
the first set of X are called representations of the main 
series; those belonging to the second set are called rep
resentations of the supplementary series.10) 

The irreducible representation space of L is the direct 
sum of irreducible representation space of the rotation 
group 

3C(k0,a)= £09TCy. 

The invariant operators of L, 

Q = WvM,lv, Q = lelxvp<TM(iVMp 

(2.5) 

(2.6) 

have in an irreducible representation 3C(ko,a) the fol
lowing values: 

QfhKKa) = k0afh
JXko,a) 

QfhKKa^il+a^-k^f^K^a'^AKa). (2.7) 

(2) To perform the contraction of L with respect to 
its rotation subgroup9 we introduce the following trans
formation of the Lie algebra 

Pi=\Fiy Ji=H{. (2.8) 

Then the commutation relations (2.1) become 

lPhPi] = i\^ijkJ
k 

[PM = U*lJi (2.9) 
lJi,Jkl = ieiklJi, 

and the Casimir operator (2.6) can be written in the 
form 

\ 2 < 2 = i y ^ - \ 2 J 2 . (2.60 

For X —> 0, Eq. (2.9) goes over to the commutation rela
tions of the 3-dimensional Euclidean group E3 , and the 
Pi and Ji represent the momentum and angular-
momentum operators. 

To obtain the representations of the contracted group 
Ez, we choose a sequence 9 of irreducible unitary repre
sentations of L in such a way that X2a2 —» e2 as X —> 0, 
whereby e2 can be chosen arbitrarily and character
izes that representation of E% to which the representa
tion of L is contracted. Because of (2.7) this means 
X2a2==X2(1_|_a2_^o2)_^ €2# W e r e s t r i c t ourselves to the 
case where k0 remains constant during the contraction 
process. Since ko is the smallest spin occurring in an 
irreducible representation 3Z{k^a) of L, this means that 
the irreducible representation spaces 9fTCy of the rotation 
group contained in 3£(ko,a) are also contained in the 
contracted representation. Then X2ce2 —» e2 as X —> 0 
means X2a2 —» e2. 

From (3.4) we obtain the contracted representation 

Jzfh'=hfh*\ /+/^=[(i+i3+D(i-i3)]1/2/i3+iy, J-fnj-L(j+jz)U-^+mi2h-ij (2.10a) 
P*M=wzfh'=tu-j*)UH*)J'^^ (2.10) 
P l / 3 ^ X ( F + + F _ ) / y 3 ' ^ ^ 

-^{[(i-isXi+ia+l)]^^^^^^ 
+ic^ [ ( i+y 3 +i ) ( i+^^^ (2.10b) 

2% 2i 

2% 
-{[( i- i3)( i+i3+i)]1 /Vi3+ iy-[( i+i3)( i- i3+i)]1 / 2 /y3- iy} 

Q + i 

2i 
{[(i+i3+i)(i+i3+2)P^^^ 

where 

dj= l im Xy4y=lim 
\ako ko 

i(i+l)J j(j+l) 
and11 

iff-ko2-]112 

Cj= l im XCy= e-
X2a,->62 7*l_4:72 

irf-k0
2V 

6 7L47 2 —1J 

(2.11) 

11 For groups like £3, in which the translations form an invariant 
subgroup, one usually has representations in which the transla
tions are diagonal: 

/sin0 cos<A 
Pi\Php2,Ph£)^Pi\pipiPh%), Pi = P[ sm0 sin<p ) 

^»|0,0,M> = $|0,0,M>. \cos0 / 
The transformation from the basis (2.10) to this basis \pi,p2,pz,£) 

Those irreducible representations of L for which a2 = 0 
(or some fixed value in the process of contraction) go 
under the contraction into the representations of the 
rotation group (2.10a), for in this case aj=Cj—0 and 

which lies outside the Hilbert space (Ref. 15), i.e., 

I M » M ) = 2 fjj (he) {ehjzj I pip2pzZ) 
hi 

will be performed by the transition coefficients given explicitly 
{£,Ps,p2,Pi\j,Jhh,e)= (2j+l)DJdkQ?(<f>,e, -<p)8ik08(e-\p\), 

where Dj3k0
1' are the well-known rotation matrices pVL E. Rose 

Elementary Theory of Angular Momentum (John Wiley & Sons, 
Inc., New York, 1961)]. 

file:///cos0
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the momentum operators will be represented by the 
zero operator. 

From (2.10) we see that the representation space ob
tained by contraction from 3C(ko,a) which we denote by 
3C(&0,e) is again a direct sum of irreducible representa
tion spaces of the rotation group 

CO 

3£(k0,e)= E SfTCy 

and each basis vector fj2
j(ko,a) goes over into fjs

J(ko,e).12 

(3) According to our general concept formulated in 
Sec. I we can now give the following physical interpreta
tion. Our physical (model) system is described by the 
representation 3Q,(k0,a) of the dynamical group L. By 
contraction this goes into the representation 3C(&0,e) 
of the Euclidean group or into the representation 
3C(&o,0) of the rotation group. A system, which is de
fined by the representation of the rotation group, is 
called rotator; therefore the representation 3C(ko,a) of 
the dynamical group L must give us the actual energy 
levels of the rotator. As we have seen in Sec. (2), the Pi 
correspond to the momentum operators and it is natural 
to interpret the expectation value p2 of PiP1 as the 
momentum square and hence E = p2/2jji (p, a constant 
with dimension of mass) as the energy. The energy spec
trum can then be calculated from the Casimir operator 
(2.60 as follows: 

2pE=p*= (/y, W / y . O = ^2+nhj,J2fnj) 
or 

E=(l/2p)\2a2+(\2/2p)j(j+l), (2.12) 

and for the special case a = 0 

E=(\>/2MU+1). (2.12') 
This is indeed the well-known energy spectrum of a 
rotator with \=h/p0, where p0 is a quantity with the 
dimension of a length. The first part in (2.12), \2a2/2p 
= const, represents some translational energy and is 
without significance because E is only defined up to a 
constant. 

Because X= h/po the limiting process X —> 0 from the 
dynamical group to the kinematical symmetry group 
can be taken to be the limit h—>0. 

III. DE SITTER MODEL OF A RELATIVISTIC 
"ROTATOR" 

The (4+1) de Sitter group (NR&4) as dynamical 
group furnishes us with a relativistic generalization of 
the rotator model. 

(1) The commutation relations for the de Sitter 
group are 

[_Lap)Lyf\= -—ii(gayLp$-\-gfi$Lay—gasLpy—gp7La8) 

a,ftT,«= 5,0,1,2,3 (3.1) 

g55= — 1 , g o o = l , ga= — 1 , i= 1,2,3, 
12 The reason for this is that we have chosen the representation 

conveniently in such a way that the subgroup with respect to 
which the contraction is performed is diagonally represented. 

and its invariant operators 

W=-waw
a, wa = ̂ ea^8PL0yL8p. (3.2) 

The contraction of the de Sitter group with respect to 
the homogeneous Lorentz group leads to the Poincare 
group. We define 

P^—XL^n, Mp,v=Lnv; p,v~0,l,2,3. (3.3) 

Then (3.1) reads 

[_M»v,PP1 = i(-g»pPv+gVpP») (3.10 

[M „V,M p<f~] = -iigppMpa+gnMpp 

-gvpM^-g^Mvp). 

The invariant operators can be written as 

X2(2-PMP^+X2N2~X2M2 

(3 4:) 
X W = - X 2 ( M N ) 2 - w M w " / ' 

For X—»0, (3.1') gives the commutation relations 
of the Poincare group, PM gives the momentum opera
tors, M=(M2hMn,Mi2) the angular momentum, and 
N = (MQI,MO2,MQZ) the energy of the center of mass. 

(2) The Hermitian representation of the commuta
tion relations (3.1) of the (4+1) de Sitter group in the 
Hilbert space—in which the maximal compact sub-
algebra (D2) is diagonal—were given by Thomas13 and 
Newton.14 Newton gives four classes of irreducible 
representations, of which class I and class I I can be 
contracted to physical (PMPM=m0

2>0) representations 
of the Poincare group. The Hilbert-space basis of 
Thomas and Newton is not suitable for our purpose; 
we need a basis of the irreducible representation space, 
in which the subgroup L, with respect to which we con
tract, is diagonal. Such a basis will be given by the 
vectors defined in (2.4) 

fji3Xko><*) = I hh&M efi), (3-5) 

where a and ko are now variable and vary over a subset 
Xf of X [see (2.4a)] and e and ft characterize the irredu
cible representation of NR?>A. The irreducible representa
tion space 5C(e,]S) is then a continuous direct sum15 of 
Hilbert spaces 3C(ko,a) of which each is an irreducible 
representation space of the Lorentz group P1 6 : 

3Q,(e,0)= ®3C(ko,a)dn(k0,a). (3.6) 
J X' 

13 L. H. Thomas, Ann. Math. 42, 113 (1941). 
14 T. D. Newton, Ann. Math. 3, 730 (1950). 
15 J. M. Gelfand and N. Ja Vilenkin, Obobshchennye Funktsii 

(Moscow, 1961) (translation in preparation in Academic Press 
Inc., New York), Vol. 4. A. Bohm, International Center for 
Theoretical Physics Report No. ICTP-9, 1964 (unpublished). 

16 We note that the basis vectors (3.5) are eigenvectors of un
bounded operators with continuous spectrum and no longer ele
ments of the Hilbert space but its rigging (Ref. 15). 
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A complete set of commuting operators of NR&A is 
formed by 

M2-N2 ,M.N,L5ML8"=l/X2PMP",Tr. { * } 

This set has the following eigenvalues on the basis 
vectors (3.5): 

M2|ii3^o^)=i(i+l)|); Mz\)=j%\) 
( M 2 - N 2 ) | ) = ( £ O 2 - G 2 - 1 ) | > , M.N|>=*ofl|> (3.8) 

U,L^\) = e2\)y W\)=p\). 

The eigenvalues of the second-order Casimiar operator 
Q on the space X(e,/3) is given by 

The contraction of the irreducible representation of 
NR^ into representations of the Poincare group (P is 
again performed via a sequence of representations 
a —> oo such that 

l im\2a2=lim\2e2=wo2 , (3.80 

a value, which characterizes the irreducible representa
tion of (P. In the contraction process a and k0 are kept 
fixed and the contracted representation space contains 
therefore the same subset Xf of representations of L as 
3Q,(e,P). By the contraction process (3.80 W go e s to 
a(a+ l)m0

2, (o-=0, §, l, f, • • •) and the contracted repre
sentations are characterized, as is well known, by 
3C(w0,o-). 3C(wo,o") is again a continuous direct sum of 
representation spaces 3C(ko,a) of L: 

3C(w0,cr)= / ®3C(k0}a)dfji(ko,a) (3.9) 

and each basis vector \j,Jha,k0;e,/3) goes into 
\j,jz,a,k0;m0a).17 

(3) An "elementary particle" (EP) (without intrinsic 
degrees of freedom as isospin and hypercharge) is 
characterized by an irreducible representation of the 
Poincare group as its (kinematical) symmetry group. A 
composite physical system, which is described by repre
sentation of the de Sitter group as dynamical group 
goes therefore by contraction into an EP. Its mass spec
trum is described by the de Sitter group as the dynamical 
group in the following manner: 

According to what we have said previously it appears 
17 This is a representation of the Poincare* group in which the 

homogeneous Lorentz group is diagonal (compare Ref. 11). The 
transformation of this basis to the well-known canonical basis 
Ref. 19 \pi,sz;m,s): 

| pi,Sz; m}s) = X | j,jsakomoa){<rmo,koajzj \ pi,sS)ms) 
jj3ak0m,cr 

will be performed by the transition coefficients 
{(rmQajsj | pi,s3; m,s) = SsaS im^—m) (hajzj \ piSS), 

where (koajsj \ piS%) are given by Joos [H. Joos, Fortschr. Physik 
10, 3 (1962), Sees. 4.2 and 4.3 (see also Chou Kuang-Chao and 
L. G. Zastavenko, Zh. Eksperim. i Teor. Fiz. 35, 1417 (1959) 
[English transl.: Soviet Phys.—JETP 35, 990 (1959)] and refer
ences given there)]. 

natural to interpret PMPM as the "mass operator" of the 
composite particle. If the physical system is in the state 
described by [ jjzako,ej3), the expectation value (=eigen
value) of the mass operator is given according to 
(3.4) by 

m2= (fie\ kofljzj\PflP»\jjzako; e(3) 

= \ V + \ 2 < | M 2 | ) - \ 2 < | N 2 | > , (3.10) 

and for those states for which 

^ 2 - ( ^ o ^ 3 i | N 2 | ) = 0 (3.11) 

we obtain the mass formula 

m 2 = \ V + \ 2 i ( i + l ) , (3.12) 

which is in agreement with the phenomenological mass 
formula (1.1). So we see, using (1.1b), that the limiting 
process X —> 0 from the dynamical group to the kinemati
cal symmetry group can be interpreted as the limit 
h —> 0. We have started from a representation of the de 
Sitter group characterized by one a (or e) and one p. 
One could also have started from a reducible representa
tion characterized by several /3. This would be the case 
if the de Sitter group is embedded into a larger dynami
cal group, an irreducible representation of which then 
contains many irreducible representations of the de 
Sitter group. 

(4) Some remarks are necessary with regard to the 
(3.11) and (3.12): The expectation values of M2 and N2 

are the same before and after the contraction because 

j(j+1) = (fiekoajsj | M21 jjzaktfp) 

= (<Ttn0koajzj \ M2 \ jj^akontaa) (3.13) 

and similarly for TV2. 
From the properties of the transition coefficients 

(koajdj\piSZ)18 one can see, using (4.18), (4.21), (4.24), 
(4.27), and (4.36) of Ref. 19, that for the rest states 
|^ = 0, Ss] m, s) there is a one-to-one correspondence 
between j and s:j<r^-s, because (koajsj\p = 0, sz, ms) 
^hSj as one should expect. Thus only the states 

\jjzako;ma) with j=s (3.14) 

contribute to the rest states. If we could show that for 
these states n2— 0, we would have proved that the mass 
formula (3.12) is valid for states which correspond to 
rest states after contraction, then we could call m2 the 
"rest mass,20" what we actually want, as the phenomeno-
ogical formula (1.1) holds for rest masses. 

But as long as we do not know more about the repre
sentation of NRhA we can only make some plausibility 
arguments with respect to this point. The equation 

w a = j ( i + l ) + * o — « 2 — 1 = 0 (3.15) 

^ Reference 16. 
19 H. Joos, Fortschr. Physik 10, 3 (1962). 
20 Still the question, what this "rest mass" has to do with the 

experimentally measured mass, remains unanswered. 
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is possible for (koya)eX (III.4) as is easily seen (and 
n2—>oo could only be possible for j —><*>). We suppose 
that those (ko,a), for which (3.15) is fulfilled are also in 
X'<Z.X (III.2). The set X' of course depends on e and 
(3; X'(e,(3), and we could hope that only those (k0,a) 
fulfilling (15) and corresponding to rest states are in the 
set X'{e&). 

(5) The (4+1) de Sitter group is the group of motion 
in the de Sitter spherical world21 with finite extension in 
space-like and infinite extension in time-like directions. 
Its curvature tensor is 

Rvv\P= —WUtfigvp—gfipg*) (3-16) 

and Einstein's law reads 

Gvx=3\*g9X, (3.17) 

where X is the parameter introduced in (3.3). The 
radius of the de Sitter world is21 R= 1/X, and if we use 
for X the empirical value (1.1a) converting MeV into 
cm - 1 we obtain for our de Sitter world a radius of 
i£~10 - 1 3 cm.22 Thus we can consider a strongly inter-

21 A. S. Eddington, The Mathematical Theory of Relativity 
(Cambridge University Press, New York, 1963), 10th ed., Chap. V 

22 A geometrical interpretation of the contraction process is 
difficult, as it does not simply mean R-*°o but a/R —•> mo. 

acting particle as a de Sitter "spherical" world of 
10~13 cm with finite space-like and infinite time-like 
extension,23 a picture which is not too far from our usual 
image of a particle, which might indicate that our model 
is not too far from reality.24 
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of (3.12), which is in obvious disagreement with experimental 
facts. It should be remarked that the use of the 3 + 2 deSitter 
group in the large [see, e.g., C. Fronsdal, Rev. Mod. Phys. 37, 221 
(1965)] is a completely different idea from the present one. There 
a single mass point is embedded in a large curved universe and 
has a discrete spectrum which in the limit R—><x> goes over into 
the continuum states of the mass point in flat space; it is a change 
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24 For a discussion and interpretation of de Sitter rotator in 
which the compact subgroup R± is diagonalized see A. O. Barut, 
in Seminar on High Energy Physics and Elementary Particles, 
Trieste, 1965 (unpublished). 
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