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Five-Dimensional Quasispin. Exact Solutions of a Pairing Hamiltonian 
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The matrix elements of a charge-independent pairing Hamiltonian spanning several single-particle states 
have been expressed in terms of the matrix elements of the infinitesimal operators of R$, the rotation group 
in a five-dimensional space. General algebraic expressions for these matrix elements have been calculated for 
states with reduced isospin £ = 0, J, and 1, in a scheme in which both nucleon number N and isospin T are 
good quantum numbers, making it possible to find exact solutions to the charge-independent pairing Hamil­
tonian for states with individual level seniorities v^2. Exact solutions are compared with perturbation-
theory formulas for some simple models. The results indicate that perturbation theory may be used as a guide 
to an understanding of the charge-independent pairing interaction in its dependence on N and T. For 
relatively strong pairing and fixed T, the dependence on nucleon number N is similar to that for configurations 
of identical nucleons; while for fixed N, the T dependence is given mainly by a term of simple T(T-\-l) form. 

1. INTRODUCTION 

THE usefulness of a generalized (five-dimensional) 
quasispin formalism has recently been pointed 

out by several authors1-5 in connection with the classifi­
cation of states of a neutron-proton configuration j N . 
This quasispin formalism based on a rotation group in 
five dimensions R& is particularly suited to the study 
of a charge-independent pairing interaction spanning 
several single-particle states and may be employed to 
find exact solutions to this problem in a J-T scheme. An 
interaction acting only on pair states coupled to angular 
momentum J=0 and isospin T=l, even if charge-
independent, may be an extremely poor approximation 
for a neutron-proton configuration, since the neutron-
proton interaction in the r = 0 state cannot be ignored 
and may in fact be more important than the / = 0, T= 1 
or "pairing" interaction.6 Nevertheless, model studies 
leading to exact solutions of a charge-independent pair­
ing Hamiltonian may be of interest in view of recent 
attempts to generalize the Bardeen-Cooper-Schrieffer, 
Bogolyubov, Valatin formalism to properly include the 
effects of correlations between unlike nucleons.6-8 

The three-dimensional quasispin formalism, appli­
cable to configurations of identical nucleons, has been 
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adapted to the study of nuclei by Kerman9 and em­
ployed by Kerman, Lawson, and Macfarlane10 to obtain 
exact solutions of a pairing Hamiltonian spanning a 
single-particle energy spectrum of several levels. The 
method involves the diagonalization of relatively large 
matrices. However, these matrices are very simple in 
form. Also Flowers et at.11 have pointed out that such 
matrices can be kept to manageable size since the 
strength of the nuclear pairing interaction relative to the 
single-particle energy separations is relatively small, 
particularly in the lighter nuclei, so that the matrices 
can be cut off at excitations corresponding to a small 
number of pairs. The three-dimensional quasispin 
formalism has also been employed to extract the N de­
pendence of nuclear matrix elements in the seniority 
scheme.12 (N= nucleon number.) 

The generalization of the quasispin formalism to the 
five-dimensional case makes it possible to take up analo­
gous studies for configurations involving both protons 
and neutrons. Pairing in a single degenerate level (pure 
configurttion jN) has been discussed by Flowers and 
Szpikowski2 and by Parikh.3 Some of the simpler R$ 
Wigner coefficients needed to extract the N-T depend­
ence of nuclear matrix elements in the seniority scheme 
have been calculated in Ref. 4. Recently Ginocchio5 has 
calculated Wigner coefficients involving the four-dimen­
sional (spinor) representation of R$ to extract the N-T 
dependence of the fractional parentage coefficients in 
the seniority scheme. 

It is the purpose of the present paper to set up the 
machinery for finding exact solutions to a charge-
independent pairing Hamiltonian spanning several 
single-particle states. The matrices of such a Hamil­
tonian can be expressed solely in terms of the matrix 
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83, 335 (1964). B. H. Flowers, J. M. Irvine, I. P. Johnstone, 
Proc. Phys. Soc. (London) 84, 111 (1964). 

12 R. D. Lawson and M. H. Macfarlane Nucl. Phys. 66, 80 
(1965). 
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elements of the infinitesimal operators of R&. I t has 
not been possible to give completely general algebraic 
expressions for these matrix elements in a scheme in 
which nucleon number N and isospin T are simul­
taneously good quantum numbers. However, such ex­
pressions can be derived for specific values of seniority 
v and reduced isospin t. Algebraic expressions for the 
cases / = 0 , J, 1, (arbitrary v and j), are given in Sec. 3. 
Since only small values of the seniority quantum number 
v will be of physical interest in problems in which a 
pairing interaction is the dominant interaction, and 
since small v implies small t, these expressions should be 
sufficient for most problems of actual interest. Perturba­
tion formulas for both the weak-pairing and strong-
pairing limit are derived in Sec. 4. Exact solutions for a 
simple system made up of four Nilsson-like single-
particle states are discussed in Sec. 5. This system is 
simple enough to be easily soluble, and it was hoped 
that it would be complex enough to show the essential 
features of the pairing interaction. Comparison shows 
that the perturbation formulas are in good agreement 
with the exact results over a surprisingly large range of 
the pairing and single-particle energy parameters, so 
that perturbation formulas may in many cases be 
sufficient to give some insight to the action of a charge-
independent pairing force. 

2. REVIEW OF THE QUASISPIN FORMALISM 

In order to establish the notation, a brief review of 
the quasispin formalism will be given. 

A. Three-Dimensional Quasispin 

For configurations of identical fermions (either neu­
trons or protons) the pairing Hamiltonian can be ex-
expressed in terms of the quasispin operators9,13 

m>0 m>0 

S;o=iDV;oP— ( i + J ) ] , where NjOV=JL ajjajm. (1) 

The fermion-creation (annihilation) operators now in­
clude the isospin quantum number mt—+^{—\) for 

13 The fermion creation (annihilation) operators are expressed 
in terms of the single-particle quantum numbers j and m (Condon-
Shortley phase convention). It should be pointed out, however, 
that j serves mainly to specify the degeneracy of the single-particle 
state. In calculations with Nilsson states, for example, set j=\ 
and interpret (— iy~~maj,-m^ as the creation operator for the 
time-reversed partner to the state OjtJ [0). 

These operators satisfy the "angular-momentum" com­
mutation relations 

The eigenvalues of the "angular-momentum" operators 
Sy2, SJO are given in terms of quasispin quantum num­
bers Sj, MSJ> These are related to the seniority v and 
nucleon number N for level j through 

S W O ' + i - i v ) and Msj-hlNj-U+hy}. (2) 

The highest weight, largest possible value of Msj, which 
determines the quantum number Sj follows from the 
largest possible nucleon number in a state with seniority 
Vj, (Nj)m*x=2j+1 — Vj. 

In terms of the quasispin operators, a pairing plus 
single particle Hamiltonian takes the form 

3 C = Z 2e y 5 y o +E c y ( i + * ) - E G3ySj+Sr_. (3) 
3 3 30f 

The coefficients Gjj* are usually taken independent 
of j(f), but this leads to no particular simplifi­
cation in the quasispin formalism. In the scheme 
\S1Ms1S2Ms2'' -SiMsi) the single-particle Hamiltonian 
is diagonal. (To avoid complicated subscripts only the 
labels 1, 2, —-i are used for the quasispin quantum 
numbers associated with levels j \ , J2, * * • j%.) The off-
diagonal matrix elements of the pairing term are given 
by the simple matrix elements of the infinitesimal 
operators 5y± of the group R%. Alternately, in the scheme 
I (5152)51253 • • -SMs) the pairing term is diagonal if the 
pairing strength is independent of j(f). The single-
particle term is off-diagonal, and its matrix elements are 
most easily expressed in terms of Racah coefficients. 
This scheme is of particular advantage only for a 
perturbation treatment in the strong-pairing limit. 

B. Five-Dimensional Quasispin 

Generalization to isospin-^ fermions leads to the ten 
quasispin operators1"3 

neutron (proton) states. The set of ten operators of 
Eq. (4) form the infinitesimal operators which generate 
the group R&. The explicit connection with the genera­
tors of R5 is shown in Table I. The irreducible repre­
sentations of R& can be labeled by (0)1,0)2), the highest 
weights, (Hi eigen, Hz eigen) of the representation. In a 
state with seniority v7 reduced isospin t, the largest eigen­
value of Hi is |iVmax— ( i + J ) , with iV m a x =4/+2—v . 

mt m 

Aj(MT) = \ E Hihmhmt \ 1MT)(- iy-ma3^mmt'ajmmt, 
mt m 

(4) 
LhNj op— (j+h)~] > where NjoP=EE ajmmt

fajmmt, 

m mt 

•!• j±~ 2s &jm±.\ ttjmTh > -* J0~ ~2 2^\^jm^ &jm% &jm—% &jm—\) • 
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TABLE I. The five-dimensional quasispin operators and 
the infinitesimal operators of i?5. 

(a) 
Quasispin 
operators 

i t f o p - C i + i ) 
To 
Ahl) 
A (I) 
AH-D 
A(-l) 
AUO) 
-4(0) 
T+ 

T-

(b) 
5-dimensional angular-
momen tum operators 

Jl2 
Jzi 

K(Ju+J*z) +i(J2l+Jzi)l 
K(Ju+J™)-i(Ju+J*i)l 
%[(Ju—J23) -\-i(Ju—Jzi)3 
K ( J U - J M ) -i(Ju-Jzi)l 

(Jw+iJu)/V2 
(Js2-iJu)/V2 
(Ju -\-iJhz) 
(J^—iJ&z) 

(c) 
Infinitesimal 
operators in 

s t anda rd form 
for B2 (R&) 

Hi 
# 2 

£ 1 1 

E - i - i 
- £ 1 - 1 
-E-n 

JEIO 

i5_io 
V2Eoi 
A/2-EO-I 

(d) 
Infinitesimal 
operators in 

s t andard form 
for C2 (Spi) 

Son -KSOP 

S0n -SoP 
S+n(Fio) 
S_»(F_io) 
S+p(Foi) 
S-?(FQ-I) 

Phh 
F-i-h 
V2Fh-i 
V 2 F _ H 

a The operators as defined in Eqs. (4). 
b The 5-dimensional angular momentum operators satisfy the same 

commutation relations as the operators Jmn= — i(Xmd/dXn — Xnd/dXm), 
m, w ~ l , ••• 5; but no restriction to 5-dimensional "orbital" angular 
momentum is implied. The vector T has been chosen to span the 3, 4, 5 
subspace. 

0 The infinitesimal operators in standard form for root diagrams of Car-
tan's symmetry B2 (the group Rn). The operators Eab step up (down) the 
quantum numbers %N — ( j+5) and Mr by a and b units, respectively. 
The operators Eab are the same as those defined in Ref. 3. 

d The infinitesimal operators in standard form for root diagrams of 
Cartan's symmetry Cz (the symplectic group Spi). These operators are 
natural for the group chain RsDR* ^Rz XRz, where the neutron and proton 
quasispin operators, Sn, SP, are the infinitesimal operators for the two 
commuting Rz groups. The "angular-momentum" operators Sn, S*> were 
denoted by J and A, respectively, in Ref. 4. (The notation has been changed 
here since J is at present reserved for the angular momentum quantum 
number in physical space.) The operators Fab are those defined in Ref. 4. 
They step up (down) the eigenvalues of Son, So? by a and b units, 
respectively. 

The state with Aj+2—v nucleons (v holes) has unique 
isospin t. The largest eigenvalue of H2== To in this state 
is thus /. This leads to the identification of the R$ 
quantum numbers (coi, 002) for level j : 

w i = ( i + ! - ^ y ) , 0)2= tj. (5) 

From the relations Hi=Son+S0
p, H2=$on-S0

p (Table 
I) the quantum numbers coi,co2 can also be expressed in 
terms of the neutron and proton quasispin quantum 
numbers of the highest weight state, coi=5max

n+'5,max:p, 
(In Ref. 4 these were denoted by 

/m+A m , Jm—Am, respectively.) The quantum numbers 
Smax1, Smax25 are most natural for the symplectic group 
in four dimensions. In the present discussion standard 
notation for i?5 will be used throughout. Note that 

S m a X
n = K i + i - i H - 0 , S m a x p = K i + § - ^ - ' ) . A com­

plete labeling of the basis states of the irreducible repre­
sentation (co 1,002) is furnished by the neutron and proton 
quasispin quantum numbers SnSpMsnMSP> (In Ref. 4 
these were denoted by JAMJMA, the quantum numbers 
of the so-called mathematically natural scheme.) The 
operators Hi and # 2 = ^0 are diagonal in this scheme so 
that N and MT are good quantum numbers, but T2 is 
not diagonal in this scheme. Alternately, in the scheme 
] SnSpTMT), built from the former through the vector 
coupling T=S n —S p , T and MT are now good quantum 
numbers, but the number operator is no longer diagonal. 
The states of physical interest are those in which T2, 
To and Nop are simultaneously diagonal. For the com­
plete specification of the states (wi,^) a fourth operator 
is needed. An operator which commutes with T2, To, 

Nop, and the two Casimir invariants for R& must be 
constructed. The simplest such operator involves 
products of four of the infinitesimal operators of JRB. In 
terms of the infinitesimal operators in the form / # , 
(Table I) , such an operator would be 

0 ~ Zl̂  Z-/ JaiJ&jJ&%J a (6) 
x,/3 %3 

where the sums are restricted to i, j= 1, 2; a, /3=3, 4, 5. 
This operator, unlike the operators Sn2, Sp2, for example, 
is not simply related to one of the mathematically 
natural subgroups of R$. I ts algebraic properties are 
very complicated, so that it is very cumbersome to work 
with this operator. In practice an alternate labeling 
scheme, suggested by Racah,14 has been used. This is 
based on the fact that a state of seniority v and total 
isospin T can be constructed by vector coupling the 
reduced isospin t of the v nucleons not coupled in pairs 
to 7 = 0 , with the resultant isospin Tv of the p pairs of 
nucleons coupled to 7 = 0 , T=l, to obtain the total 
isospin T; ( T = t + T p ) . Since the pair creation operators, 
Af of Eq. (4), are commuting isospin-1 operators, the 
values of Tv for the p pairs are restricted to p, (p—2), 
•••with p<jJr\ — \'Q. Since the label Tp cannot be 
associated with the eigenvalue of a Hermitean operator 
(commuting with T2, r 0 , iVoP), a labeling scheme based 
on Tp does not lead to an orthogonal set of basis states. 
In the \(C*)I,O)2)TPNTMT) labeling scheme states with 
the same values of N, T, MTy but different values of Tp, 
are not in general orthogonal to each other. In practice, 
however, this difficulty is easily overcome in almost all 
irreducible representations of actual interest in nuclear 
spectroscopy. Almost all of these fall essentially into 
two categories. The first category includes the irre­
ducible representations (coiO), (wij), and (tt); that is 
those with reduced isospin 2=0, J, and with J=coi. In 
these irreducible representations a given isospin T 
occurs at most once for each nucleon number (eigen­
value of Hi). The quantum number Tp is therefore re­
dundant in this case. The second category is illustrated 
in Table I I by the irreducible representation (coi 1), that 
is one with t=l, and includes also the irreducible repre­
sentations (coif) and (t+l,t). For irreducible repre­
sentations in this category a particular value of T occurs 
at most twice for each nucleon number (eigenvalue of 
Hi). The two independent states, such as those with 
Hi=o)i—2, T== 1 in the irreducible representation (coi 1), 
for example, can be chosen as properly orthogonalized 
linear combinations of states with 7 ^ = 0 and 2, or in 
general with Tp=T-\-l and T—l. Since such linear 
combinations can be chosen in an infinite number of 
ways, it seems that a labeling scheme based on the 
quantum number Tp cannot serve to uniquely specify 
such states. In such cases, however, the self-adjoint 

14 G. Racah, Proceedings of the Rehovoth Conference on Nuclear 
Structure, edited by H. J. Lipkin (North-Holland Publishing 
Company, Amsterdam, 1958). 
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TABLE II . Allowed values of Hi, T in the representation (o>i,l).a Hami l ton ian 

Hi Possible values of T 

-<«i-4) 
-(coi-3) 
-(coi-2) 
- (a , i - l ) 

0 
1 

0, 2 
1, 3 

0, 2, 4 

••, (coi-3), ( au - l ) 
• -, (coi—2), coi 
• •, (wi—3), (OJI—1) 

0, 2, 4 
1, 3 

0, 2 
1 

0 

1 
0 1 2 

12 2 3 
0 1 22 3 4 

12 2 32 4 5 

(au-3)(o>i-2)2(coi-l)coi 
(051-3)2(^1-2) (C01-1)2C01 
(OH-3)(OU-2)2(OH-1)C01 

12 2 33 4 5 
0 1 22 3 4 

12 2 3 
0 1 2 

1 

a In general, in the representation (on,/) the allowed values of H\T are 
given by the possible vector couplings T = T P + t , where Tp=n, n—2, • • • 
for #1 = db | OJI — n\, n=0, 1, 2, ••• (<« i ) ; subject to the restrictions: 
1. r<o)i 
2. T—o)\— m (with m=0, 1, 2, • • •) occurs at most k times for a specific 

value of Hi, where k =min. (m+1, OH— J-f-1). [These rules follow from 
the allowed values of S», SP, Eq. (11) of Ref. 4.] 

property of the rotation group in five dimensions15 can 
be exploited to lead to a unique labeling of the double 
states. The distinction between the double states can be 
made unique by choosing them as built from those 
specific linear combinations of Tv for which the resultant 
states have the symmetry property + or —, respec­
tively, under conjugation (the adjoint or contragredient 
operation which transforms particle into hole, H\ into 
— Hi, MT into —MT)- For such states then, the 
quantum number Tv is used merely as an auxiliary 
label, while the symmetry property under particle-hole 
conjugation serves to specify the states. For particle 
j<\ all irreducible representations of Rz fall into one 
or the other of the two categories discussed here. For 
particle i=-V-, there is only one case in one irreducible 
representation of i?5, the case of the three independent 
states with # 1 = 0 , T=2 in the representation (42), for 
which the auxiliary label Tp, supplemented by the sym­
metry property under particle-hole conjugation, is in­
sufficient for a unique labeling of the states. This is, 
therefore, one of the few cases of interest in nuclear 
spectroscopy where an operator such as 0 of Eq. (6) is 
actually needed. The problem of the fourth quantum 
number, although of great general interest, is thus 
largely an academic problem since the auxiliary label 
Tp, supplemented by the symmetry requirement under 
conjugation, can be used to uniquely specify almost all 
states of practical interest. 

3. MATRIX ELEMENTS OF THE PAIRING 
HAMILTONIAN 

A charge-independent pairing interaction spanning 
several single-particle states leads to the model 

3 e = £ y ejNj-j: G„.[A?(\)ArO) 

+A;(O)AAO)+A;(- I)AA- i)], (7) 
where the pairing term is expressed in terms of the five-
dimensional quasispin operators, the 7 = 0 , T=l pair-
creation and annihilation operators. The coefficients 
Gjj' are usually taken independent of j(f). This Hamil­
tonian commutes with the total number operator 
N=YLjNj, or Hi=J^jHij. I t also commutes with the 
R& Casimir operators for the individual levels 

a, b 
-b)j (8) 

(see Table I) , and the companion quartic R& invari­
ants.16 The Hamiltonian is thus diagonal in the quantum 
numbers N and (coi,oj2)y=(y+|-"^y, tj) where the sub­
script j refers to the individual single-particle states. In 
the uncoupled scheme17 

| (a)lQ)2)lKl(Hi)iTlMTi; (0J10)2)2K2(H1)2T2MT2; 

•••(a>i<02)<Ki(ndiTiMrt), (9) 

the analog of the |-SWs^ifcf s2 • • -SiMsi) scheme of the 
three-dimensional case, the single particle part of the 
Hamiltonian (7) is diagonal, but the pairing term leads 
to matrix elements off-diagonal in KiHuTiMTi- (The 
label Ki is used as the "fourth quantum number." In all 
simple cases, it can either be replaced by the label TPi, 
or be based on this auxiliary label supplemented by the 
symmetry requirement under particle-hole conjugation 
as discussed in Sec. 2.) Alternatively, in the coupled 
scheme 

|{[(cOlC02)l(cOlC02)2](wiW2)l2(cOlC02)3} 

X(o;ico2)i23' • • (COX^KHITMT) , (10) 

the analog of the | [XSi-S^SiA^Sm' ' 'SMs) scheme of 
the three-dimensional case, the pairing term is diagonal 
(provided the coefficient G is independent of j and jf), 
while the single-particle part of the Hamiltonian leads 
to matrix elements off-diagonal in (coi,a>2)i2, • • -(coi,co2). 
The (a?i,W2)i2 are those irreducible representations which 
occur in the Kronecker product of (a)i,a>2)i with (coi,co2)2. 
The final resultant representation (coi,co2) can be associ­
ated with over-all seniority and reduced isospin 
quantum numbers, v and /, coi=]£(i+!)"-"!*>> co2=^; 
where these become good quantum numbers in the 
strong-pairing or degenerate-level limit in which the 
energy differences between single-particle states become 
negligible compared with the pairing strength param­
eter G. 

Since the pairing Hamiltonian (7) is charge inde­
pendent (a scalar in isospin space), the intermediate 

15 F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, Maryland, 1938), p. 262. 

16 H. Micu, Nucl. Phys. 60, 353 (1964). 
17 Again, only the labels 1, 2, • • -i are used for the i?6 quantum 

numbers associated with single parricle levels ji, J2, • • * ji> 
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scheme 

| (coico2)iKi(i3ri)iri; (0)10)2)2^2(^1)2^2; 

X • • • ( u i c o a W f f i ) ^ ; --iTu-'Tik--- TMT) (11) 
is also useful. In this scheme the irreducible representa­
tions of R*> are uncoupled as in (9); but the isospin 
quantum numbers Tiy associated with individual levels 
ji, are coupled to resultant isospin T, making it possible 
to treat the dependence on the isospin quantum num­
bers by ordinary angular momentum coupling and re-
coupling techniques. I t is this scheme which has been 
used in the calculations to be presented here. The 
diagonal matrix elements in the scheme (11) [or (9)] 

This factoring makes it possible to carry out the MT 
sums implied in the matrix element (14) leading to the 
ordinary 6-j symbol in the isospin quantum numbers. 
Further isospin recoupling transformations are, in 
general, needed to express some of the matrix elements 
of the Hamiltonian in the scheme (11) in terms of those 
of Eq. (14). In a • • • (7YTy)7V • • (TkTi)Tkr • • scheme, 
for example, matrix elements off-diagonal in (Hi)i and 
(Hi)k can be expressed in terms of Eq. (14) after a re-
coupling to the •—(TiTk)Tik'—(T3'Ti)Tjv scheme. 
Since the infinitesimal operators transform according to 
the ten-dimensional irreducible representation (11), the 
J?5 Wigner coefficients of interest here are those with 

I t has not been possible to calculate algebraic expres­
sions for such R$ Wigner coefficients in the | KHITMT) 
scheme for arbitrary irreducible representations (0)1,0)2). 
Such expressions can, however, be given for representa­
tions with small values of the reduced isospin. Since the 
states of greatest physical interest in problems domi­
nated by a pairing interaction are those with small 
values of the seniority quantum number v, and since 
small v implies small t, these representations are pre­
cisely the ones of greatest interest. General algebraic 
expressions for the R*> Wigner coefficients which de­
compose the product (0)1,0)2) X (11) have been calculated 
in the | SnSvMsnMsp) scheme based on neutron and 

follow from the relation between the pairing terms and 
the i?5 Casimir operators for individual j's. 

L A*(MT)Aj(MT) = h{Cj-T*-(HdJ*+3(H1)i} (12) 
MT 

giving diagonal matrix elements 

ejNj-^G{u>lj(cclj+3)+tJ(ti+l)-T3{Tj+l) 

-KiVy-2 j -1 ) ( iV ,— 2 j - 7 ) > . (13) 

In the scheme (11) the off-diagonal matrix elements of 
the Hamiltonian (7) can be expressed in terms of re­
duced (R5/R3) Wigner coefficients and ordinary 6-j 
symbols involving the isospin quantum numbers 

(wi",co2") = (H)- The Kronecker product (coi,w2)X(ll) 
contains the irreducible representation (o)i,o)2) twice. 
The matrix elements of an operator with R& tensor 
character (11) between states (o)i/,o)2/) and (co 1,0*2) 
= (o)i/,o)2

/) must thus, in general, be expressed in terms 
of two independent R§ Wigner coefficients and two 
reduced matrix elements4 to be denoted by subscripts 
1 and 2. The two Wigner coefficients have been chosen4 

so that the reduced matrix elements of the infinitesimal 
operators are different from zero only in states 1. There­
fore, only J?5 Wigner coefficients with subscript 1 are 
needed for the matrix elements of the pairing Hamil­
tonian. The nonzero matrix elements of the operator 
A1f(l)(=En), for example, can be written 

proton quasispins in Ref. 4. In Ref. 4, a technique has 
also been developed for the calculation of the trans­
formation coefficients from the \SnSpMs»Msv) to the 
\KH\TMT) scheme. In particular, explicit algebraic 
expressions are given for the transformation coefficients 
(SnSpMsnMSp\TpHiTMT) for irreducible representa­
tions with t—Q and t=%. These have been extended here 
(Appendix 1) to include the case t= 1 needed for sen­
iority 2 states. The unitary transformation coefficients 
(SnSpMsnMSP\KHITMT) can then be used to transform 
the R& Wigner coefficients from the \SnSpMs

nMs
p) 

scheme to the \KH\TMT) scheme of actual interest. 
Although this process can in principle be generalized to 

((o)io)2)t(o)io)2)y, K/, Hu+1, 77 ; K/, Hy—1, T/; TV • • |3C| (0)10)2) {(0110)2) jfaHuTi; KJHIJTJ; TV • •) 

= - G [ c o i ^ o > i d - 3 m ^ 

X ((0010)2)iKiHuTi] (11)111|(coia>2)^/, Hu+1, Ti)i((o)io)2)jKjHijTj; (11) — 11||(COICO2)JK/, Hy—1, T/)x 

{ T- T- T) 
" * ' . (14) 

1 T/ Ti'\ 

The matrix elements of the infinitesimal operators have been expressed in terms of R& Wigner coefficients which 
can be factored into products of reduced (Ri/Rs) Wigner coefficients, denoted by a double bar, and ordinary (i?3) 
Wigner coefficients which carry all of the dependence on the quantum number MT, 

((coiVVffiT'JIfr ' ; (a>1'Wy'H1"T"MT"\ (O>ICO2)KHITMT) 

= ( ( w i W H i T ; (aiWyS1"T"Uaiut)KH1T)(rMT'T"MT" I TMT) • (15) 

{(W1U2)KH1TMT\A^I) I ( w i W f f l T ' J f / ) = 5M1(o1'5„2a)2-8Hl',ffl_l5Mr',MJ.-l[cOl(cCl+3)+C02(ct)2+l)]l/2 

X<(«i«,V, # 1 - 1 , T'; (n)H^=\\\{w^i)KH1T)x{T'{MT-\)n\TMT). (16) 

file:///kH/TMt
file:///kH/TMt
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TABLE III. The R5 Wigner coefficients ((j+i, 0)Hi'T'; (U)Hi"T"\\(j+h 0)HiT). 

Hi' V Hi" T" Hi T ((j+h 0)Hi'T'; (U)Hi"T"\\ (j+i, 0)HiT)**> 

Hi-i r - i 1 1 Hi T 

Hi-1 

Hi+1 

# i + l 

Hi 

Hi 

T+l 

r - i 

T+l 

V 

T 

1 

- 1 

- 1 

0 

0 

1 

1 

1 

1 

0 

Hi 

Hi 

Hi 

Hi 

Hi 

T 

T 

T 

T 

T 

rr(j+|-g1-r)Q-+l+Hi+r)l1/8 

L 2(2T+l)(j+i)U+3s) J 
r(.T+l)U+i-Bi+T)(j+i+Bi-T)-y. 

L 2(2T+l)(j+i)(j+i) J 
'j+i-Bi+ryv-

L 2(2r+i)0"+i 

-(T+VU+i+Hi+rXJ+i-Ht-TW* 

2(2T+l)U+i)U+i) J 

8TT' 
T(T+l) 

* When not needed, as in the representations (j+h* 0) and (11), the fourth quantum number K is omitted. 
*> The Kronecker product {j+h 0) X(l l ) contains the representation (j+h 0) only once. 

irreducible representations with higher reduced isospin, 
the resultant algebraic expressions for / ^ 1 become so 
complicated that the method becomes very tedious. In 
practice, therefore, it has been possible to calculate 
general algebraic expressions for R$ Wigner coefficients 
in the physically interesting scheme, based on nucleon 
number and isospin T, only for those coefficients in­
volving irreducible representations with reduced iso-
spins of 0, J, and 1. Coefficients involving irreducible 
representations with o>\=t again become simple,5 and 
the technique outlined here can be used to calculate all 
other coefficients numerically. 

The R$ Wigner coefficients needed for the matrix 
elements of the infinitesimal operators [see Eq. (16)] 
are given in Table I I I for irreducible representations 

U+h 0)> t n a t i s t n o s e w i t n / = 0 > a n d i n Table IV for 
representations ( j i ) , that is those with t=\. In these 
representations the values of Tp are uniquely deter­
mined by the values of Hi and T, so that the label 
K(=TP) is not needed to specify the states. Expressions 
for the Wigner coefficients, however, are functions of 
this fourth quantum number in the irreducible repre­
sentation (ji). States with TV^=T+^ and TP=T— % 
lead to different algebraic expressions for the Wigner 
coefficients so that the fourth quantum number cannot 
be ignored. The quantum number Tp has been defined 
in Sec. 2 as the resultant isospin of the p pairs of 
nucleons coupled to J=0, T=l, with p = \(N—v). 
In Ref. 4, the transformation coefficients from the 
| SnSpMsnMsp) to the \KHITMT) scheme have been 
derived by techniques involving step-down operators, 
starting with the state of highest weight or &J+2—V 
nucleons. In this process a state of N—2p—\ nucleons 
and t—\ was constructed by operating on a state of 2p 
nucleons with an appropriate annihilation operator 
(stepping down H% by | unit). The quantum numbers, 

TPy associated with these p=i(N+v) nucleon pairs 
differ from those associated with the p = ^(N—v) 
nucleon pairs for states with odd seniority (half-integral 
/). To avoid confusion between the two types of quantum 
numbers Tp, the fourth quantum number K for states 
of the irreducible representation (j | ) have been denoted 
by e and o. The labels e and o refer to states with 
j+i—Hi—T equal to an even or odd integer, respec­
tively, or alternatively with %(N+v— 1)+T equal to an 
even or odd integer. For states with integral t (even 
seniority), the quantum numbers Tp associated with 
p = ^(N+v) 7 = 0 — coupled pairs have the same set of 
values as those associated with the p = ^(N—v) pairs, 
and the label Tp will be used in such representations. 
The possible values of Tp are n, n—2, for 
# i = ± | a > i - » | (Table I I ) . 

In the irreducible representation (an 1), with reduced 
isospin t~ 1, the states with TP=T are single, while states 
with Tp= Tdol are in general double (Table II) . The 
transformation coefficients (SnSpMsnMsp\TpHiTMT) 
for the representation (coi 1) are given in Appendix 1. 
Since the states 

| Tp= T+1, HITMT) and | Tp= T-1, HXTMT) 
are in general not orthogonal to each other, the label Tp 

must be replaced by the fourth quantum number K, 
based on the symmetry requirement under particle-hole 
conjugation. In the representation (coi 1) = (j— J, 1) the 
quantum number K has been chosen in the following way: 

1. 

\u-• J , l > = 0 , f f i r i f r > 

= IO'-i,i)rp=r,jffirArr). (i7a) 
2. For states with K = 1, or 2: 

\(j-h l)KHiTMT) = xK\(j-h l)Tp=T-l,HiTMT) 

+y*\U-i,VTp=T+l,HiTMT), (17b) 
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TABLE IV. The R6 Wigner coefficients ({ftyBi'V; {11) HJ'T"\\( ft) KHXT)I. 

Hi' T Hi" T" K Hi T (UiWHi'T'; (U)Hi"T"\\(ji)KHiT)i 

e Hi-1 T-l 

e # i - l T+l 

e Ih+1 T-l 

e Hi+1 T+l 

o # i - l T 

o Ih+1 T 

e Hi V 

e Hi T 

o Hi-1 T-l 

o # i - l T + l 

o Ih+1 T-l 

o # i + l T+l 

e # i - l T 

e # i + l T 

o Hi V 

o Hi T 0 0 

With«= 

e Hi T 

e Hi T 

e Hi T 

e Hi T 

e Hi T 

e Hi T 

e Hi T 

e Hi T 

With*= 

o Hi T 

o Hi T 

o Hi T 

o Hi T 

o Hi T 

o Hi T 

o Hi T 

o Hi T 

r(2r-i)(j+f-#i-r)(i+|+#i+r)-i^ 
L 82Ii(i+3)+i] J 
r(2r+3)(i+f-#i+r)y-|+#i-r)-|i/2 

L 8(r+i)[i(i+3)+|] J 
r(2r-i)(i+|-#i+r)(i+|+#i-r)-ji / 2 

L 8r[i(i+3)+t] J 

r(2r+3)(i+j-#i-r)(i+|+#!+r)T/2 

L 8(r+i)[i(i+3)+f] J 
rU+i+Hi+T)(j+i-Hi+T)-]^ 

L 8r(r+i)[i(i+3)+|] J 
rU+l-Hi-T)(j+i+Bi-T)-\l* 

L 8r(r+i)Ci(i+3)+f] J 
r T(T+i) ~|l/2 

LiO'+3)+iJ 
Hi 

r ( 2 r - i ) Q - + i - f l i - D ( j + | + g i + r ) i ' / ' 

L 821JU+3)+H J 

r(2r+3)q+}-g1+r)(j+i+gi-r)-i' /1 

L 8(r+i)Ci(i+3)+|] J 

r (2T-1) y + i + f f i - r ) y + i - g i + r ) - ! " 2 

L 8rci(i+3)+}] J 
r ( 2 r + 3 ) ( j - i - g i - D Q - + i + g 1 + r ) - i i / « 

"L 8(r+i)[yy+3)+H J 
r(i+t-»i-r)0'+J+i?i-r)7« ' i -DT-

I] J . 8r(r+i)Cj(i+3)+a 

. 8r(r+i)Ci(i+3)+f] J 
r(r+i) -p* 

&TT> J Li(i+3)+ 
# 1 

Ci(i+3)+f]^ 

where the coefficients #*, yK are chosen such that states Since the over-all phase under conjugation is arbitrary 
with K = 2 or 1, and MT=T, have the symmetry property to within an coi- and /-dependent phase factor, only 
+ or - , respectively, under the adjoint, particle-hole relative phases have any real significance. The above 
or conjugation ^operation which transforms Rx into c h o i c e o f p h a s e s i s fixed b y n o t i n g t h a t t h e s t a t e o f 

-Hh MT mto -MT. highest weight (a state with K = 2 ) has the symmetry 
\(J—2 9 1)KHITMT)* property +- under the conjugation operation. The 

= (— 1)*+-T-MT\ (y—i, 1)K, —HI, T, —MT) . (17c) explicit expressions for the coefficients xK, yK are 
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[2(r+l)]*/»{ff1»[r(2i+2^ 
x2— , 

{2T+mi+§+Hi+T)f(-HhT)g(HhT)yi* 
[T<j+i-Hl-T)U+i-Bi+T)f(nuT)<p{H1,T)Ji* 

yi= . 
(2r+i)[(i+f+H1+r)/(-ff1)rMF1)r)]i^ 

K = 1 : 

i2T(j+i-H1-T)(j+i-H1+T)J^ 
X{Bi(j+l)ZT(2j+2)Mj+*)l+U+M+l-T)LT(2j+2)+U+ffl} 

X\= 

yi 

(2r+i)[(i+i)(j+|)(i+j+F1-r)/(-ff1,r)g(F1,r)]1/^ 
[(T+l)f(HhT)<P(H1,T)Jimj+mj+i-T)-H1(j+^} 

0 

0 

0 

0 

2 

Hi-1 

Hi-1 

# i + l 

Hi+1 

# i - l 

r - i 

r+ i 

r - i 

r+ i 

r 

l 

l 

- l 

- l 

l 

l 

l 

l 

l 

l 

0 

0 

0 

0 

0 

Hi 

Hi 

Si 

Hi 

Hx 

T 

T 

T 

T 

T 

[ 
-0 

2T(2T+l)U+i)U+i) 
T(T+2)U+§+H1+T)U-i-H1-T)-V>* 

2(r+i)(2r+i)(i+»(i+l) J 

(18a) 

(2T+i)l(j+^U+i)U+i+Bl-T)f(-HhT)g(Hl,T)J" 
where 

f(HuT) = 2{n£T(2j+2)+U+l)-]+U+h-T)ZT(2j+2)+(j+ffl), 
g(HhT) = {(j+§)(j+i-T)(j+i+T)-(j+mi2}, (18b) 
V(Hl,T) = {HJOr(2J+2)+(J+in+U+i+T)ZT(2j+2)+(j+i)3}. 

TABLE V. The Rb Wigner coefficients {(J-h IWHi'T; (U)Hl"T"Uj-i, V)KHIT)X with K=0.» 

-(r-i)(r+i)(i+!-ffi-r)0'+l+Hi+r)-jl* 

2r(2r+i)(/+*)(i+l) J 

L 2(T+l)(2T+l)(j+i)(j+i) J 
(r-1) (r+i) <j+i+Bi-T) U+i-Hi+Ty 

r 2 ( i+f -g 1 - r ) (y+j+g l +r) -JW 

Lr(r+i)(y+i)/(ffi-i, r ) / ( -g ,+ i , r)«(ffi-i, r)J 
XiLT(2j+2)+j+iTH?-Hl(T+2) + (T+m 

-imj+Q+u+iw+vu+i-T)) 
r 20+f+g1-r)0-+j-g1+r) -iw 

2 fli+1 r - 1 1 0 Hi T -
Lr(r+i)(i+l)/(ffi+i, r)/(-fli-i, r)«(gd-i, r)J x{Cr(2y+2)+i+i][g12+g1(r+2)+(r+i)] 

-Cr(2i+2)+(i+f)](i+|)( i+i-r)) 

1 g , - i r 1 1 

1 #1+1 

0 Hi 

0 Hi 

T 

V 

T 

- 1 1 

0 1 

0 0 

0 Hi T 

0 Hi T 

0 Hi T 

r 2 ( i+ | -g 1 +r) ( i -H- f f i - r ) T f l 

0 Hx T 
L(/+i)/(ffi-i. D / C - ^ + I , r>«Cffi-i, D J 

x{7'(2y+2)-r(2y+i)(i+l)-(j 
r 2 ( i+ i+g 1 +r ) (y - i -g , -y ) -!•>» 
LO'+i)/(ffi+l, T)f(-Hx-\, T)g(Hx+\, T)\ 

-T(2j+l)(j+i)-(j 
r r(r+i) -]'/» 
L y+»(/+» J 

x{7'(2y+2)-r(2y+i)(i+l)-0 ,+i)1+ffiCr(2i+2)-0"+i)]} 

x <.T*(2/+2) - r(2y+i) y+l) - U+W-BitWj+i) - u+i)l) 

Hx 

CO"+i)W+l)]l/1 

•/(Hi.D-2{iri[r(2i+2)+«+«3+a+i-DCr(2i+2)+C;+i)]) «(Si.r)-{w+j)a+i-D(i-n+r)-a+i)Hi«). 



B802 K. T . H E C H T 

P 
tq 

tq 

p 

H 

fcq 

fcq 

fcq 

fcq 

fcq 
I 

4-

tq + 
eo|N 

+ 

I 

tq 
I 

4-

ro|cq 

4" 

fcq 
I 

4" 

P 
+ 
fcq 

I 

4~ ^) 
P 

fcq 

+ 
fcq + 
4-

p 
I 

fcq 
I 

^5 + 

I 

P 

fcq 

P 

+ 
bs 

+ 
P 
4-
tq + 
P3]d 

fcq 

4-

+ 

7 

p 
tq 

P 
fcq 

4-

+ 
fcq 

I 

I 

fcq 
! 

4-

7 

P 
fcq 

4-

+ 
fcq 

4-

7 
fcq 

tq 

P 

7 

4-

I 

tq + 
4-

4" 
tq 

4-

7-

P 
fcq 

+ 

tq 

4-

T-T 

4-

p 

7 
fcq 

bs 

4-
fcq 

+ H « 

4-

bs 

| 
fcq 
1 

W | N 

1 

^ 
4-
^ 

^ 
4-
bs 

*-< 
| 

fcq 
i 

^ 
T—1 

4" 
5x 
,_T 
4~ 
fcq 

^ 
t>n 

4-

4-

4-

4-
4-
^D 
P 
4-
fcq 
I 

4-
^D 
P 

I 

fcq 
I 

4-

P 
4-
fcq 
4-
4-

P 
4 -

fcq 
I 

I 

fcq 
4-
U5|N 

4-

I 

7-

p 
fcq 

4-

fcq 
4-
4-

P 
4-
fcq 

I 
P5|N 

4-
4-
tq 

4-

4-

4-

»-*lN 

4-
•^ 

H | N 

4-
•'̂  

4-

H 
fcq 
te*> 

1 l-i 

1 

fcq 
1 

4-
W | N 

4-
• * - > 
HlN 

4-
, , ? -> 

1 

1 

4-

I 

^ H 

1 

fcq 
4-
4-

+ 
tq 
I 

4-

fcq 

P 

4-

4-

H | N 

4-
•*•* 
1 

1 
•**» cs 
4-
CNI 

bs 
| 
1 

s 
1 

^ 
+ ^ 
t-« 

1 

I 

4-
•^ 
rtlN 

4-

i 

^ 
1 

fcq 
i 
i 

4-
•<>•> 

hs 
4-
tq 
4-
4-

1—1 

^ 

5 
cuo 

^ 
^ 

fcq 
( 

• ^ 

^ 
^ 

4-

fcq 

eo|<N 

4-

4-

fcqfcq fcq fcq fcq fcq fcqfcqtqfcqfcqfcq 

I I I I I 

tq 

4-

I 

fcq 

CN 

4-

1 

fcq 

n 

4-

4-
fcq 

( M 

bs 

fcq 

^ 

1 
bH 

4 -

tq 

cs 

1 

4 -

fcq 

T—1 

^ 

4 -

fcq 

o 

bs 

1 

fcq 

o 

tq 



P A I R I N G H A M I L T O N I A N I N J-T S C H E M E B 803 

With these coefficients and the transformation coeffi­
cients of Appendix 1, R& Wigner coefficients, involving 
the irreducible representation (j—J, 1) can be trans­
formed from the neutron, proton quasispin scheme to 
the physically interesting scheme based on nucleon 
number and isospin T. The R& Wigner coefficients 
needed for the matrix elements of the infinitesimal 
operators in the representation (j—%, 1) are given in 
Tables V, VI, and VII. The algebraic structure of these 
coefficients is very complicated in those cases in which 
K = 1 , or 2 for two of the irreducible representations 
involved in the R& Wigner coefficient (Tables VI and 
VII). I t does not seem worthwhile to continue with 
general algebraic techniques to even more complicated 
irreducible representations. Coefficients for representa­
tions with t>l, (and coi>/), are best calculated nu­
merically. 

With the symmetry quantum numbers K, the R& 
Wigner coefficients satisfy a symmetry property if the 
transformation H\ —>— Hi, MT—*—MT, is applied 
simultaneously to all three representations. In particu­
lar, the reduced (double barred) Wigner coefficients 
have the symmetry property 

(U-h DKHITI (ii)±i, l i io- j , lyBx'T') 
= (-i)M ' (-i) r f l- r '<0"-i, IV, -Hh r;(ii)=Fi, i 

x | | ( i - i , i K - # i ' , r > , (19) 
where the T-dependent phase factor balances the phase 
factor of the R% Wigner coefficient under the trans­
formation MT~> —MT for all three T's. Another sym­
metry property, involving interchange of the first and 
third representation, is also useful. In particular 

((j-h VicHiT; ( l l ) ± l l | | ( i - J , 1WHST') 

r 2 r + l " ] 1 / 2 

L 2 r + i J 

x | | ( i - i , i ) ^ i r ) , (20) 

where the phase factor follows from Eq. (33) of Ref. 4. 

4. PERTURBATION THEORY 

Since exact solutions of the charge-independent pair­
ing Hamiltonian can be obtained only through the 
diagonalization of relatively large matrices, it may be 
of interest to develop perturbation-theory formulas, 
both in the weak and strong pairing limits. 

Weak Pairing Limit 

If the pairing strength G is small compared with the 
single-particle energies, the scheme of Eq. (11) furnishes 
a good zeroth approximation, and the effect of the off-
diagonal matrix elements in the form of Eq. (14) can be 
treated as a perturbation. The lowest energy states will 
be those for which the single-particle levels are filled in 
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order with the nucleons in the partly filled levels coupled the second-order perturbation terms, of order G2/e, 
to Vj=0 or vj=l for even or odd nuclei. Figure 1 illus- merely lead to a renormalization of the single-particle 
trates the single-particle level structure for the two energy and pairing strength parameters. For both the 
types of nuclei of importance. In case 1 (light nuclei), in case fla=0 (/a=0), and va— 1 (/«=§) the second-order 
which neutrons and protons are filling the same level or, corrections to the energy can be given by 

p,i S(ep—ei) 8 * ea~e{ 8 I * €«—€» v ep—€a 

X{Ua+h-iVa)U«+i-iVa) + ta(ta+l)-Ta(Ta+l^^ (21a) 

Comparison with Eq. (13) shows that, except for a constant term, the second-order terms merely lead to a re-
normalization of the single-particle energy and pairing strength parameters. 

««-> ea+iG*Xi(2ji+l)/(6a-ei) (21b) 

G-> G+lG^Zi(2ji+l)/(ea-ei)+Zp(2jP+l)/(eP--€a)} . 

In case 2 (heavier nuclei) it will be assumed that level a is partly filled with protons, but levels a and fi are com­
pletely filled with neutrons, while level y is partly filled with neutrons. The perturbation formulas are somewhat 
more complicated. For even-even nuclei, with both va=0 and vy — 0, the second-order corrections to the energy are 

(2jp+l)(2ji+l) (2 i ,+ l ) (2j i+l) 
A£<2> = - | G 2 E |G2 E 

P,i (p—ti P>i iff—it 

(2ji+D _ (2 i ,+ l) 
-\G*Ta(2ja+3-2Ta)>Z lGH3(2ja+l)+(2ja-3)Ta-2TJ}Z 

* €a—€i P €p—€a 

(2ji+l) (2jp+l) 
-$G*{3(2jy+l)+(2jy-3)Ty-2Ty*}j: |G 2 2\ (2 . / 7 +3-2r T )E 

* €y-—€i P 6p—€y 

(2j/>+l) (2jf+l) 
-jG2(r7+i)(2iY+i-2rr)E |G2(ra+i)(2ja+i-2ra)E 

0 ty— tp ? €0— ea 

G2 

-{(2ja+l)(2jy+l)(Ta+Ty+3)-2(2ja+l)Ty(Ty+2)-2(2jy+l)Ta(Ta+2)+4TaTy} 
&(ey—ea) 

(2je+l)(2jp+l) 
- | G 2 E , (22) 

p,P eP—ep 

where Ty= (l/2)Ny, with A^7=neutron number for level 7; Ta=ja+%— (|)Za, with Za=proton number for level 
a. For odd nuclei, the results are best expressed in terms of the energy differences between odd and even nuclei. 
For an odd number of neutrons in state 7 (vy= 1) 

^ i ^ i - ^ H ^ e y + G N y + i G > (Ny+3)Z +Ny £ 
f . (2i<+l) . „ _ ( 2 i P + l ) 

I * € 7 — € i P €p—6y 

(2j„+i) 1 1 
+ (Ny+2)j: + l(2ja+l)(Ny+2)+Za] . (23a) 

0 €y—ep ey—ea J 

For an odd number of protons in state a (»«= 1) 

f (2id-l) (2jo+l) 
£*-+i .*- i- £a,,«-o= «a+G(Z a - i )+iG 2 (Z a+2)E +Za E -

3 e<j— ea 

(23b) 
(2j ,+ l) 1 

+(£«-i)E + C(2i7+i)(z«-i)+iv7] 
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PS. Empty — - p f Empty 

Partly f i l led ff Partly f i l led, 
o( With both neutrons only 

protons, neutrons 

fs Filled with neutrons, 
— I no protons 

Filled 
oC Filled with neutrons, 

partly fiHed 
*\ with protons 

- i f Filled 

CASE I. CASE 2 . 

FIG. 1. Single-particle level schemes for typical nuclei. For case 
1, see Eq. (21). For case 2, see Eqs. (22), (23a), and (23b). 

Strong-Pairing Limit 

If the energy differences between single-particle states 
are negligible compared with the pairing strength 
parameter, the coupled scheme of Eq. (10) furnishes a 
good zeroth approximation. The pairing term is diagonal 
in the final resultant R*> irreducible representation 
(wi,co2) = (0—%vy t) where ft = 2* ( iH-§ ) ; but the single-
particle part of the Hamiltonian is off-diagonal in the 
over-all seniroity v and reduced isospin t. In the scheme 
(10), these off-diagonal matrix elements can be expressed 
easily only in terms of generalized R$ Racah coefficients. 
These have not been calculated, so that an alternate 
technique will be used for the strong-pairing perturba­
tion theory. 

I t will be sufficient to consider the case of 12 Nilsson 
or " j = | - l ike" single-particle states with energies €i, 
€2, • • * €*, • • • €Q. By letting these become degenerate in 
groups of ji+% any arbitrary single-particle spectrum 
can be constructed. The greatest interest is in the state 
of over-all seniority zero, R$ representation (00). Since 

where the first term, proportional to ^iNi, is totally 
symmetric in the level indices and thus transforms ac­
cording to the representation [12], while the 12—1 terms 
in the k sum transform according to the (12— 1)-dimen­
sional representation [12— 1, 1]. In particular, the terms 

C(Z Ni)-(Q-k)NW-kl 

J2 k 

= 2C(Z #M)-(Q-A)ffi(<H-i_ t )] (25b) 

with k=l, 2, •••12—1 have been constructed to have 

this can be obtained from the 12 single-particle levels 
with individual R& represent a ions of (10) in only one 
way, the possibility of degeneracies of the c»- plays no 
essential role. [Similarly, states with over-all seniority 
one or Rb representation (12—§, J) can be obtained by 
coupling 12— 1 states of representation (10) with a single 
state of representation (J,J) in only one way.] 

The perturbation technique to be employed makes 
use of the fact that the zeroth order or pairing part of 
the Hamiltonian 

- G Z i : Z AHMT)A^(MT) (24) 
i==l i'=l MT 

is symmetric in the 12 level indices i. The zeroth order 
wave function can thus be classified not only according 
to irreducible representations of R$, but also, according 
to irreducible representations of the symmetric group 
of order 12. The latter are characterized as usual by the 
partition numbers of 12 objects, [_fifr '' Jk] with 
Yl A = 12, or by Young tableaux with fk nodes in the 
Mh row. Although the 12 objects are here not particles 
but individual energy levels with R$ transformation 
properties (10), the decomposition of the irreducible 
representations [/1/2 • • • ] into irreducible representa­
tions of R?> is identical with that met in d-shell spec­
troscopy.18 Totally symmetric states [12], for example, 
contain the 7̂ 5 representations (120), (12—2, 0)-•-(10) 
or (00); while states of [12—1, 1] symmetry contain Rt> 
representations (12—1, 1), (12—3, ! ) • • -(21) or (11) and 
(12-2, 0), (12-4, 0)- • -(10) or (00). The representation 
(120) is found only among the totally symmetric 
states [12]. 

The single-particle part of the Hamiltonian is off-
diagonal not only in the over-all R*> irreducible repre­
sentation (12—J, /), but also in the representations of the 
symmetric group. The single-particle part of the Hamil­
tonian can be written 

transformation properties which can be described by the 
Yamanouchi symbols19-20 {2111- • -1}, {1211- • • ! } , 
{1111- • -121}, respectively. Since the total number of 
nucleons is a good quantum number, matrix elements of 
the totally symmetric part, [12], are trivial. Matrix 

18 H. A. Jahn, Proc. Roy. Soc. (London) A201, 516 (1950). ^ 
19 M. Hamermesh, Group Theory and its Application to Physical 

Problems (Addison-Wesley Publishing Company, Reading, Massa­
chusetts, 1962), p. 221. 

20 Yamanouchi symbols are enclosed in curly brackets, 
{pfi,PQ_i,- • • ,pi). Square brackets are used for the representation 
of the symmetric group, while parentheses are retained for 
representations of R$. 

( E « ) ( E Ni) [ ( Z ^)-(a-k)en+i-kT(J:^)-^-k)Na+l_k-] 

E (uNi) = + E , (25a) 
i-i G *-i (U-k)(Q+l-k) 
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elements of terms with symmetry [Si—1,1] can be 
expressed in terms of a Wigner-Eckart theorem, for 
example, 

<«T/o']{po'- • 'Pi'} I r{u...m...) IO-1-1I |a[/o]{po- • -Pi}) 

= («T/a']||r
[S2-1'1]ll«M) 

X<[/ a ]{p a - • -pi); [ 0 - 1 , 1 ] { 1 1 - • -121- • -1} 

X | [ / O ' ] { P D ' - - - P I ' } > , (26) 

where the reduced (double-barred) matrix element is 
independent of the Yamanouchi symbols but carries the 
dependence on [ / ] and all other quantum numbers, 
such as the R& quantum numbers, which are here 
denoted collectively by a. The dependence on the 
Yamanouchi symbols is given by the last coefficient, a 
Wigner coefficient for the inner product of the sym­
metric group.21 To determine the values of the reduced 
matrix elements, it is sufficient to consider a single term 
of [12—1, 1] symmetry. I t is most convenient to choose 
the terms of {2111 • • • 1} symmetry, the term with k—1 

in Eqs. (25). In normalized form, this can be written 

2 a-i 
[ ( E Hli)-(Q-l)Hm~] 

[ ( f t - l )O] 1 / 2 *-i 
2 o 

= [ E ^ K - G ^ I O ] , (27) 

where the totally symmetric part 2 E ;= i n Hu is diago­
nal, with trivial eigenvalue N— 212, so that the only 
matrix elements which have to be calculated are those 
of Hm, essentially the number operator for the Oth level. 
These are best calculated by expressing the 12-level func­
tions of definite permutation symmetry Q/a]{pa,* • -,pi} 
and R& irreducible representation (Q—^vn, to) through 
a fractional-parentage expansion involving functions for 
the (12—1)-level system coupled through R§ Wigner co­
efficients to the function for the 12th level where the 
latter must have R$ irreducible representation (10). 
In particular, 

| C/O]{PO,PO-I,- * - P I X O - J w n , h)KHiTMT) 

= E E l [ / O - I ] { P O - I , P O - V ' • p i X O - l - i v Q . i , t^KfE{T'MT') 

K'T' 

X | [ l ] { l } ( 1 0 ) F i , , r , A f r
, , > ( ( 0 - 1 - J v o - i , t^KfE{TMT'\ mHifT"MT"\ (12—^a, I^KH^MT) 

X([/a-i]{pa-i,PQ-2,- • -pi}(12— l — J^Q-i, /«-i)f[/fi]{pfi,Pfi_i,- • -pi}(12—%VQ, /a)), (28) 

where the ( f ) coefficients of the last line are fractional 
parentage coefficients which insure the [ /a ] symmetry 
of the 12-level function built from products of (12—1)-
level functions of [ / a - i ] symmetry and one-level func­
tions for the 12th level. The (12— 1)-level functions with 
R5 representation (12—1 —J^a-i, fa-i) are coupled to the 
(10) function for the 12th level through the R<s Wigner 
coefficients of the second line. The operator Hm simply 
multiplies the terms in the expansion by the number 

Since the technique depends on knowledge of a new 
type of fractional parentage coefficient as well as the 
Wigner coefficients for the inner product of the sym­
metric group, for which general expressions are not 
known for arbitrary 12, not very much progress seems 
to have been made. For the seniority zero state, of 
greatest interest, however, the only such coefficients 
actually needed have the trivial value unity, so that the 
technique becomes very simple. The seniority zero 
state, R$ representation (120), belongs to the one-dimen­
sional totally symmetric representation [12] of the sym­
metric group. Thus, only Wigner coefficients for the 
inner product [12]X[12— 1, 1] are needed, and these 

have the value unity: 

< [12]{ l l l . . . l } ; [12 - l , l ] {pa , - - -p 1 } 

X | [ 1 2 - l , l ] { p a , • P i » = l (29) 

21 Ref. 19, Sees. 7-13, 7-14. 

for all {pa,* • -pi}. The operator of Eq. (27) transforms 
according to the [12—1, 1] representation of the sym­
metric group and the (11) representation of R$. I t can 
thus connect functions of [12] symmetry, (120) R$ repre­
sentation, only to functions of [12— 1, 1] symmetry, and 
(12—1, 1) R$ representation. [The Kronecker product 
(120)X (11) contains the representations (12+1, 1), (12,1), 
(12—1, 1), and (120). Of these only the representation 
(12—1, 1) is found in [12—1, 1].] The fractional parent­
age expansion of Eq. (28) is thus needed only for the 
simple states [12](120) and [12-1 , 1] (12-1, 1). For both 
of these the fractional parentage expansion collapses to 
a single term since the parent states have a unique 
daughter. Thus, 

( [ O - l ] { l l - - - l } ( n - l , 0 ) f [ O ] { l l l - - - l } ( O 0 ) ) = l , 

< C n - i ] { i i - - . i } ( a - i , o ) (30) 

x | [ [ f l - i , i ] { 2 i i - - - i } ( a - i , i ) > = i , 

and no complicated calculations are needed for either 
the coefficient of fractional parentage (c.f.p.) of Eq. (28) 
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or the Wigner coefficients of Eq. (26). The reduced Hamiltonian, [Eq. (26)], follow from the matrix 
matrix elements for the single-particle part of the element 

2 [ ( E HU-QHMI 

< [ Q - l l l ] { 2 1 1 - - - l } ( 0 - l , l ) i c f l r i r J l f r | — — IZQlim-'-lKQObHxTMr) 
[ ^ ( O - l ] 1 / 2 

- 2 0 
_= { ( ( 0 - 1 , 0 ) ^ 1 - 1 , TMT; (10) 1001 (Q0)f i r i r i f r><(O- l ,0 )F i - l , TMT\ (10)1001 ( 0 - 1 , \)KE{TMT) 

[ 0 ( 0 - l ) ] 1 ' 2 

-< (o - i , o )# i+ i , rM^(^^ 

This matrix element has been expressed solely in terms of R$ Wigner coefficients involving the Kronecker product 
(0—1, 0)X(10). These have been calculated in the \KH\TMT) scheme by the techniques discussed in Sec. 2. The 
results are shown in Table VIII, where the reduced (double-barred, R$/R%) coefficients are tabulated. [The isospin 
Wigner coefficients (TMT00\ TMT) of Eq. (31) are all unity.] The only nonzero matrix elements in Eq. (31) are 
those with /c=l and 2. With K = 0 the R& Wigner coefficients of Eq. (31) are zero. [The /c=0 states of (0—1, 1) 
with Hi=ti—n have even (odd) T for n odd (even), while the # i__ l = 0—w__l states of (0—1, 0) have odd (even) 
T for n odd (even).] Equation (31) combined with Eqs. (25), (26), and (29) gives the matrix elements for the single 
particle part of the Hamiltonian connecting the (O0) correlated ground state with the (0—1, 1) excited state. The 
zeroth order energy difference between these states is GO. The pairing energy can be expressed through terms of 
second order (e2/G) by 

E= -iGZN(2Q+3-m-2T(T+l)-]+(N/Q)Y,i * ( * + _ ) 

- 8 / ( € ) { [ 0 ( J i \ r - l - T ) + O T ^ 
_____ (32) 

Go2(o-i)(2o+i)[(2o+i)(2r+i)(iiv-r)+(2o-iiv-r)] 

where 

/(«)=[_ «*-(i/o)(_«)*:i, 

which becomes 

/(«)=E(iH-i)«Mi/o)(_C7d-§)«)*] 
i i 

for a set of degenerate levels jV The T values are re­
stricted to T even for _-_V even, T odd for \N odd. The 
perturbation term, of order e2/G, has a seemingly very 
complicated N, T dependence; but, if plotted for fixed 
T as a function of N, its behavior is similar to that found 
in configurations of identical nucleons. The depression 
of the v=0 state is greatest for the half-filled system and 
approaches smaller values for the nearly filled or nearly 
empty system. For fixed N, the T-dependence is also 
relatively simple. For the half-filled system, (iV=20), 
the second-order ,e2/G, term of Eq. (32) collapses to the 
very simple form 

-4/(e)[0(0+l)-r(r+l)] 
A £(2) =- . ( 3 3 ) 

G O ( 0 - l ) ( 2 0 + l ) 

In this case, therefore, the T dependence has exactly the 
T(T+1) form, not only for the zeroth-order term, but 
for the second-order term as well. For N arbitrary, 

(N9£2Q), the T dependence deviates somewhat from the 
simple T(T+1) form owing to the second-order term, 
but the deviations do not appear to be very large. In the 
strong pairing limit, therefore, the charge-independent 
nature of the pairing interaction makes itself felt largely 
through a T(T+1) -dependent term, a result which has 
recently also been predicted by Elliott and Lea8 through 
a generalized Bardeen-Cooper-Schrieffer type of treat­
ment of the charge-independent pairing interaction. 

For small values of 0, the strong-pairing perturbation 
techniques introduced in this section can quite easily be 
applied also to states with v, t^0. Some results for the 
case 0 = 4 are shown in Figs. 6, 7, and 8. A few of the 
details of this calculation are given in Appendix 2. 

5. EXACT CALCULATIONS 

To investigate the effects of the charge-independent 
nature of the pairing interaction further, a few simple 
model studies were undertaken, particularly in order to 
compare the exact solutions with the perturbation 
theory formulas. A simple system of four Nilsson or 
" i ^ i - l i k e " single-particle states was chosen. This sys­
tem is simple enough to be easily soluble. The biggest 
matrices which have to be diagonalized for the exact 
solutions are 24X24. Also, it was hoped that the system 
would be complex enough to show the essential features 
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TABLE VIII. The R5 Wigner coefficients « j + i , Q)Hi'F; (10)F1
,,r,||(a>ico2)/ci7ir).a'b 

Hi' T Hi" T" («!«*) = (i+},0) (»iw2) = ( i - - j , o) 

H i - i r 1 o 

jffi+i r - I O 

//i r - i o I 

Hi r + i o l 

Hi' V Hi" T" 

L (2j+3)(2i+4) 
rU+i-Hi-T)(j+i-Hi+Ty 

L (2i+3)(2i+4) 

TO'+i+gi+DO'+i-gi+r)" 

(2r+l)(i+f)(2i+4) 

( r+i ) ( i+ j+Hi- r ) ( i+}-Hi- r ) -

(2r+l)tf+*)(2i+4) 

"( i+i-Hi-rxi+f-Hi+rn^ 
(2i+5)(2i+4) J 

(2i+5)(2j+4) J 
r r y + i + H i - r H i + i - H i - r n ^ 
L (2r+l)(i+|)(2i+4) J 
(r+1) (j+i+Hi+T) U+i-Hi+T)' 

(2r+l)(i+f)(2i+4) 

(coio>2) = (i+J, 1), if=l 

Hi+1 T 

Hi T-l 

Hi r + i 

Hi' r 

1 0 

- 1 0 

0 1 

0 1 

Hi" r " 

[2(j+i~Hi-r)( i+>+gi+r)J^ 

[(i+f)/(#i, T, j+l)f(-Hl9 T, j+lMHu T, i+l)]1/2 

tfU+i+Hi-THj+i-ni+w 

ZU+§)f(Hh T, j+l)f(-Hi, T, i+l)*(£Ti, T, i+l)J/2 

- 2 H i [ r ( 2 i + 4 ) + ( i + j ) ] [ r ^ 

{(i+f) (i+f - r)[r(2i+4)+(j+i)l 

+[H lr-Hi»xr(2i+4)+y+})]} 

{0'+f)(i+J-r)[r(2i+4)+(i+j)] 

-[Hir+H1
2jr(2i+4)+(i+f)]} 

[(i+-l)(2r+i)/(Hlj r, i+i)/(-/fi , r, j+i)*(Hi, r, j+i)j* 

2 H 1 { ( j + | - r ) [ ( j + i ) 2 ( 2 r + i ) - p ^ ^ 

C(i+l)(2r+i)/(Hi, r, i+i)/(-Hi, r, i+i)g(Hi, r, i+i)]1/2 

(coico2)=(i+il), /c = 2 

[2r(r+i)( i+f+// i -r)( i+i-Hi+^^^ 
H i - l T 

Hi+1 T 

Hi T-l 

Hi T+1 

1 0 

-1 0 

0 1 

0 1 

[( i+f) / (#i , T, j+l)f(-Hh T, j+l)g(Hi, T, i+l)]i /2 

- [ 2 r ( r + i ) ( j + } - H i - : n ( i + ^ ^ 

[(i+f)/(tfi, T, j+l)f{-Hi, T, j+l)g(Hi, T, i+1)]^ 

2{(j+t-r)?(j+-f+r)[r(2j+4)+(j^^^ 

[(i+f)(2r+i)/(Hi, r, y+i)/(-Hi, ri, i+i)g(H!, r, i+i)]1/2 

2( j+ l - r ) [ r (2 j+4)+( j+f ) ] [ r ( i+ i+Hi+r) ( i+ i -Hi+r) ( j+ |+Hi- r ) ( i+f -H 1 - r ) j^ 

C0*+f)(2r+l)/(Hlj 7\ j+l)f(-Hlt T, j+l)g(Hh T, i+l)]1/2 

a/(i?i, r,i+i)=2{Hi[r(2i+4)+(i+f)3+(i+f-r)cr(2i+4)+ c/+5/2)3} 
«(flrifr,i+i)-{(i+s/2)(i+t-r)(i+s/2+T)-(i+i)HiM. 

tFor (coico2) = ( i + i , 1), «=0, all but the coefficient <( i+ i , 0)£fiT; (10)01 \\(j+h 1)K=0,HIT)=-1 are zero. 

of the pairing interaction. Figures 2, 3, 4, and 5 show 
the exact results for the case where the single particle 
spectrum is that of a j=% level whose degeneracy has 
been removed by a quadrupole field. Figures 2, 3, and 4 
show the spectra for eight nucleons, the half-filled sys­
tem. Figure 2 shows the levels for states with individual 
level seniorities of zero, Vj=0 or (wi,co2)j=(10), for all 
four levels. These are the only states which contain the 
state of over-all seniority zero, (flO). The lowest energy 
states for even T become the (40) states with over-all 
seniority ^ = 0, £=0 in the limit of large pairing strength 
G. The next group of states must be compared with the 
so-called 2-quasiparticle states. Their energies are com­
parable to those for states with ^2jV3 = 2. One set of 

states of this type is shown in Fig. 3, those for which 
Vj= 1 for both single-particle levels 2 and 3, while v3=0 
for y = l , and 4, the lowest and highest single-particle 
levels. There are five other sets of states of this type; 
those with v3-= 1 for j= 2 and 4, 3 and 4 ,1 and 2,1 and 3, 
1 and 4, all with comparable energies, particularly in the 
large G limit, but none of which are shown in the figures. 
Another class of 2-quasiparticle states are those with 
Vj—2 for one level, (coi,co2)y=(00). Examples are shown 
in Fig. 4 for the cases vz—2 and v2—2. Finally, Fig. 5 
shows the states with individual level seniorities of zero, 
all fly=0, for the case of six nucleons. The lowest energy 
state for a given T is separated from the next group of 
states by an appreciable "energy gap" in general only 
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for the states with J2JVJ=0 and with natural isospin, 
that is, even T for an even number of pairs, (Fig. 2), and 
odd T for an odd number of pairs, (Fig. 5). For eight 
nucleons, (Fig. 2), the lowest T—0 and 2 states, for 
example, lie appreciably below the next group of states. 
The lowest T= 1 eight-nucleon state on the other hand 
forms a member of a triplet, particularly in the limit of 
large G. For the half-filled system, N = 8 , strong-pairing 
perturbation theory predicts a simple T(T+1) depend­
ence for the low-lying v=0 states of natural isospin. The 
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FIG. 2. Pairing-energy spectrum for eight nucleons distributed 
over a single-particle spectrum of four Nilsson or " j= | - l i ke" 
levels (£2=4, N = S). Individual level seniorities are zero, ^ = 0 or 
(wi,co2)i= (10), for all four levels. The single-particle Nilsson 
spectrum, shown in the insert, is that of a j = J level whose m 
degeneracy has been removed by a quadrupole field. The solid 
lines show the spectrum for the case e = G. The dotted lines show 
the energies as a function of e/G in the limit in which G —> oo. 
Energies are plotted in units of G. In the strong-pairing limit 
(e/Cr = 0), the states can be characterized by the degenerate level 
quantum numbers (4— §y, t), the R& irreducible representations 
for a j = J level. 

ratio of the energy differences [E(T=4)-E(T=0)y 
ZE(T=2)-E(T=0)1 should thus be 10/3 in the limit 
of large G. For the value e/G=0.5 this ratio is found to 
be 3.36 for states with the single-particle spectrum 
shown in Fig. 2. Even for e/G= 1 this ratio has the value 
3.48, suggesting that the main dependence on isospin T 
may be given by the simple T(T+1) form. 

In order to see how far the perturbation-theory results 
might be used as a guide to the N and T dependence of 
the energy expressions, exact, and second-order per-
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FIG. 3. Pairing-energy spectrum for iV = 8, 12 = 4, 2 / ^ = 2; eight 
nucleons distributed over the single-particle spectrum of four 
Nilsson levels shown in the insert to Fig. 2. The case shown is 
that with ^ = 1 , or (0)1,0)2) j = (M)> for levels 2 and 3, while Vj = 0, 
(001,0)2)j= (10), for levels 1 and 4, the lowest and highest single-
particle levels. 
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FIG. 4. Pairing-energy spectrum for N = 8, Q = 4, 2 ^ - = 2; eight 
nucleons distributed over the single-particle spectrum of four 
Nilsson levels shown in the insert to Fig. 2. The cases shown are 
those with Vj — 2, (OJ1,CO2)j= (00), for one level, while Vj = 0 for the 
three remaining levels. Only the cases v$ = 2 and v2 = 2 are shown. 
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turbation theory results are compared in Figs. 6, 7, and 8 
for the r = 0 , 1, and 2 levels, again, for the half-rilled 
system of eight nucleons, this time for a single-particle 
spectrum of four equally spaced Nilsson or "y=!- l ike" 
states. With TV = 8 and four equally spaced levels, the 
system has a higher symmetry. Some of the states be­
come doubly degenerate, and the strong-pairing pertur­
bation calculations for states with over-all ^ 0 , t^O 
are somewhat simplified (see Appendix 2). The agree­
ment between the exact solutions and the second-order 
perturbation-theory results, though not particularly 
good for some of the highly excited states, is quite 
striking for the lowest energy states with even T in both 
the weak and strong pairing limits, even for values of 
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FIG. 5. Pairing-energy spectrum for N — 6, fi = 4, S ^ = 0; the 
case of six nucleons distributed over the single-particle spectrum of 
four Nilsson levels shown in the insert to Fig. 2. 

G/e (e/G) approaching unity. To gain some notion of 
the importance of the relative strengths of the pairing 
parameter G and the single-particle energy separation e, 
the expansion coefficients of the ground-state T— 0 wave 
function are plotted as a function of e/G in Fig. 9. The 
expansion scheme is that of Eq. (11) based on the indi­
vidual level occupation numbers Nj. In the weak-pairing 
limit the lowest T=0 state is that with levels 1 and 2 
completely filled with four nucleons, (Af 1AW3N4 = 4400). 
For e/G= 1, the 4400 state still accounts for 45% of the 
wave function (relatively weak pairing); but by 
e/G=0.5, the strengths are shared more or less equally 

EXACT 
2nd ORDER 
PERTURBATION THEORY 

t 

FIG. 6. Comparison between exact and perturbation theory 
results. The T = 0 levels. The spectra are those for eight nucleons 
distributed over the single-particle spectrum of four equally 
spaced Nilsson-like levels, shown in the insert. The states are 
those with individual level seniorities of zero, all Vj = 0. Some of the 
states, labeled D, are doubly degenerate as a result of the higher 
symmetry of the system of four equally spaced single-particle 
levels, with N = 8. The energies for the weak-pairing limit, 
(G/e< 1), are plotted as a function of G/e on the left, with energies 
measured in units of e. The energies for the strong-pairing limit, 
(e/G<l), are plotted as a function of e/G on the right, with 
energies measured in units of G. The weak-pairing limiting 
quantum numbers shown are the occupation numbers of the four 
levels, NiN2N'6Ni. The strong-pairing limiting quantum numbers, 
the over-all seniority and reduced isospin for a degenerate level 
with 12 = 4, are indicated in terms of the R$ representation labels 
( 4 - I M ) . 

EXACT 
2nd ORDER 
PERTURBATION THEORY 

FIG, 7. Comparison between exact and perturbation-theory 
results. The T~ 1 levels. See caption for Fig. 6. 
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by all of the possible single-particle configurations, 
(strong pairing). 

The good agreement between the perturbation theory 
and exact results for the correlated ground state may be 
due partly to the simplicity of the example chosen. 
However, the exact results do support the following 
conclusions about the correlated ground-state energies. 
For fixed T, the dependence on nucleon number N is 
similar to that for configurations of identical nucleons; 
while for fixed AT, the T dependence is given mainly by 
a term of simple T(T+1) form, a result which has 
recently also been predicted by Elliott and Lea.8 Pairing 
in the J-T scheme is thus essentially quite simple. The 
J-T scheme sheds no light on the competition between 
pairing and "fouring" effects.22 For this purpose studies 
in light nuclei, involving a generalized eight-dimensional 
quasi-spin23 with its T=0 and T= 1 interaction may be 
of greater interest. 

-EXACT 
-2nd ORDER 
PERTURBATION THEORY 

6-6 
_l L-

(4-V/2,t) 

FIG. 8. Comparison between exact and perturbation-theory 
results. The T — 2 levels. See caption for Fig. 6. 

N N N N 
1 2 3 4 

FIG. 9. Expansion coefficients for 
the T—0 ground state. The coefficients 
CN1N2N3N4, plotted as a function of 
e/G, are those for the lowest energy 
T—0 state of Fig. 6. The expansion is 
in terms of the scheme of Eq. (11). 
In place of the full set of individual 
level quantum numbers, (coi,w2)j = (10), 
KJ, # v = ( l / 2 i V y - l ) , Tj, only the 
nucleon numbers Nj are indicated. 
In almost all cases, the quantum 
numbers NiN^N^N^ are sufficient to 
fully specify the states. When needed, 
the additional quantum numbers Tu 
and Tu are indicated by subscripts, 
(NiNiNtN^TuTti- In the limit G -> 0, 
C4400 —* 1. 
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APPENDIX 1. TRANSFORMATION COEFFI- niques outlined in Ref. 4. In particular, for the irreducible 
CIENTS FOR *=1 STATES representation 0 ' - § , 1), and states with MT=T, the 

c . r i i • r ,i x r ^ transformation coefficients (Sn(u)Sp(a)Ms4b)Msp(aib) 
Specific algebraic expressions for the transformation w i 7 1 M r T / ,N^, lyr v ^ / T\ W

U 1
 v ' ; 

coefficients from the |SWMs-M s , ) to the | TJBLXTUT) WMBi(aJ,)T=MT) = C,(afi)^^^dthiau^ 
-, i i J j • -n r ,1 / • J ^i "the parameters a, 6, and /x, (all with integral values). 

scheme were calculated m Ref. 4 for irreducible repre- r ' ' ' v & " 
4. A« V L ^ n J ^ l VT -n r /. xi î  where t he p a r a m e t e r s a a n d Z> a re defined b y 

sentations with /=0 and t=%. (In Ref. 4 the quantum r J 

numbers / and A were used in place of Sn and Sp.) jj1=j—A—<j—2&, Tp=a. 
These calculations have now been extended to irre­
ducible representations with t=\ by the general tech- The integer JX is a running index, M = 0 , 1, 2, 

Case A. {j-\, 1). 7 > = r . 

1. Coefficients with 5n=|j—J—ju, Sp=§y— i~ft. 

C(2 i+ l ) ( i+§) ( i+ i -2„ ) (2 i+2-25) ] 1 ' 2 

C J , (a ,J )=-(- l )*-* 

- (2a+l)l(g+&)Bl(g+ft- / t ) l(2/ i) l(2i+l-2 / i ) l(y-^-a-ft) iq+f-ft) l( i-§-ft- /«)l 1 

. ( a+ l ) ! ( a - l ) I (2a+2J+ l ) l ( J - / *) ! (2 j+3 -2J ) ! ( i - J - a - f t - / B ) ! ( i - l -2 /« ) ( i+ t -2 / i ) J 
X 

2. Coefficients with Sn=i/+f—M, •S,p=fi—i~/*• 

2[(2i+2-26)] 1 ' 2 

C„(a,ft) = - ( - ! ) » - * 

X 

(M-l)!(i+i-M)! 
(2a+l ) ! (a+&)!6!(a+6-M)!(2 J u- l ) ! (2 i+2-2 M ) ! ( i - i -a -6) ! ( i+ | - J ) ! ( i+ | - J - M ) ! - i 1 / 2 

r (2a+l 

L (« ( a+ l ) l ( a - l ) ! (2a+2 i+ l ) l (6+ l - / i ) ! (2y+3-2J ) l ( i - i -« -» -M)! ( i+§-2M) 

3. Coefficients with Sn=%j-\~n, S ^ - b ' + f - j u . 

2l(2j+2-2b)J'* 
C„(a,b) = (-l)^-

X 

( M - l ) ! ( j+J_ M ) I 

r(2a+l)!(a+6)r6!(ff+J-r- l-A)!(2M-l)!(2i+2-2M)!(i- i-a-&)!(i+|-6)!0 '- | -6-M)!-l1 / 2 

0 + 1 ) l(a-1) !(2a+26+1) l(J-M) !(2i+3-25) | ( y + J - a - J - M ) ! ( j+ f - 2M) 

c<we s. ( j - i i ) r p=r-i . 

1. Coefficients with S"=4,/+£—ju, S^ l j+5 /4—;U. 

(2M- l )[(2i+l)(2a+3)]i '2 

C,(a,6)=(-1)6-"-

X 

a!(M- l)!( i+|-M)!C(i+f-2 iu)]1 '2 

- (2a+l) ! (a+J)!6!(a+J+2- M ) ! (2M-2)! (2 i+3-2 M ) ! ( i - i -a-6)! ( i+f-6)! ( i+ | -6-M)!- i 1 / 2 

L (2a (2a+26+l ) l (A- /* ) ! (2 i+3-2 i ) l ( j+ i -a - J -M) lC(2 i+2) (2 t f+3) ( i - l - a - J )+ i ] J 

2. Coefficients with S n = i i + J - M , 5 3 ' = J j - | - / i . 

(2i+2-2M)[(2y+l)(2a+3)J/2 

C„(a,i) = (-!)>-*-
«!M!(i+§-M)!Ci+|-2M]1/2 

r(2a 
: — 
L(2a 

(2 a+l)!(a+&)!6!(a+6--M)!(2M)!(2j+l-2M)!(i- |-a-5)!(i+f-6)!(i+|-&-M)!- |1 / 2 

( 2 a + 2 * + l ) ! ( J - M ) I ( 2 y + 3 - 2 J ) I ( i - f - a - i - / i ) I [ ( 2 i + 2 ) ( 2 a + 3 ) ( y - i - a - 6 ) + i ] J 
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3. Coefficients with Sn=%j+l—(i, Sp=^j+l~ti. 

C ( j + f ) ( 2 a + 3 ) ( i + f - 2 M ) ] ^ 
C,(a,b)=-(-l)^-

a!0»—l) i(j+4—M) C0"+4—2M)(J- -2M)]1/2 

X 
r(2a+1)!(«+&) lb l(a+b+ 1-M) !(2M-1) ! (2 i+2 - 2/i) I(j-•|-a-6)!(i+f-6)!(i+i-6-M)!-

(2a+26+ l ) ! (6 - / t ) ! (2 i+3 -26 ) ! ( i - i - f f -A- M ) l [ ( 2 i+2 ) (2a+3) ( i - i - o - J )+6 ] 

1/2 

Case C. (j — J, 1) Tp=T-\-l. 

1. Coefficients with 5" = | j + S / 4 - J u , S ^ f j + i - y u . 

{Cl+( i+ ! ) f t+ (2 i+2)a -a f t ]+ /* [ ( i - i ) -2 i - (2 i+ l )a+2a i ]} 
C (a &)= — (—l)6-" 

a lO*-l)! ( i+f- /*) l [ (2a+l)( i+f-2M ) ] 1 ' s 

f(2j+l)(2i+2-26)(2a+l)!(«+5)!*!(a+6-M)!(2M-2)! i ^ 

X(2i+3-2M)!(i+i-a-6)!(i+t-i)!(i+i-6-M)!| 
X 

(2a+2J+l) !(i+2-/i) ! (2j+3-2i) ! ( i + * - a - J - / * ) ! 

X{a [ (2 j 2 +2 i - i ) -K2 i+2 ) ] - ( j+ i ) ( j+ i -Z>)}J 

2. Coefficients with 5 n = | j—f- ju , 5 " = | J ' + | - M -

{Ca[ (2 i*+2 i -4 ) -6 (2 i+2 ) ] -0 '+ i ) ( i+J - J ) ]+ / x[ ( i - i ) -26 - (2 i+ l ) a+2f lA]} 
CM(a,J) = (-!)»"* 

X 

a!M!( i+|-M)![(2a+l)( i+i-2 ;u)]1 / 2 

(2y+l)(2i+2-26)(2a+l)!(a+S)!*!(a+6-At)!(2Ai)! 

X(2j+l-2/,)!(y+i-a-i)!(i+f-i)!0-t-i -M)! 

(2a+26+l ) ! (&- M ) ! (2 i+3-26) ! ( i+ i -a -6- M ) ! 

X{a[(2i»+2i-J)-6(2i+2)]-(i+i)(;+i-6)}J 

1/2 

3. Coefficients with S"=§./+i—/i, S p =§j '+i -M-

2 { a ( 2 i - l - 2 6 ) - ( i + i ) } [ ( 2 j + 2 - 2 6 ) ( i + f - 2 M ) ( i + | ) ] 1 ' 2 

0 , 6 ) = ( - l ) ^ -
a!(M-l)!(i+i-M)![(2a+l)(i+|-2M)(y+f-2M)]i^ 

X 
(2a+ l ) ! ( a+ i ) ! i ! ( a+ i - / . ) ! (2 / i - l ) ! (2 i+2 -2 / i ) ! ( i+ | - a - f t ) ! ( i+ i -6 ) ! ( i - i - i -M) ! 1 1/2 

( 2 a + 2 J + l ) ! ( J + l - , t ) ! ( 2 i + 3 - 2 6 ) I ( i + i - a - i - / * ) ! 

X { a [ ( 2 i 2 + 2 j - i ) - 6 ( 2 i + 2 ) ] - ( j + | ) ( i + i - 6 ) } 

APPENDIX 2. STRONG-PAIRING PERTURBATION THEORY FOR 41 = 4, N=8 

The strong-pairing perturbation technique outlined in Sec. 4 has been applied to calculate second-order perturba­
tion formulas for all of the states (Q—^va, to) in the special case £2=4; individual level seniorities of zero, that is 
(011(1)2)i= (10), j=l, • • -4; and # i = 0 (the case of eight nucleons needed for Figs. 6, 7, and 8). 

For small values of 0 it is actually not necesssy to calculate the c.f.p. of Eq. (28) since it is easy to express the 
strong-pairing eigenfunctions \p(Zfa]{pa,pa-i,- • -pi}(fi—|i>a, ta)nHiTMr) in terms of linear combinations of the 
weak pairing eigenfunctions of Eq. (11). 
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For the T=0 states, the results are 

*([4]{l l l l}(40)ff i=r^^ 

* ( [ 4 ] { l l l l } ( 2 0 ) f f i = r = 0 ) : = ( y ^ 

* ( [4 ]{ l l l l } (<»)F i=r=0)=(^^^ 

^a(C31]{2111}(31)ffi=r=0)=^8([31]{2111}), 

^&([31]{2111}(31)F1=r=0)=(l/V7)(^i(C31]{2111})+2^([31]{2U (A2.1) 

* ( [ 3 1 ] { 2 1 1 1 } ( l l ) f f i = r = 0 ) = ( l ^ ^ 

^([211]{3211}(ll)^1=r=0)=iA([211]{3211}), 

* ( [22 ]{2211}(22) f f i= r=0)=( l /V6)^ 

* ( [ 2 2 ] { 2 2 1 1 } ( 2 0 ) F i = r = 0 ) = ( l / V ^ 

^([22]{2211}(00)^1=r=0)=(l/VlO)(^i([22]{2211})+(V6)^2([22]^ 

where functions \̂ (Q/sJ{P4p3p2Pi}) of definite permutation symmetry have been constructed from single functions 
\f/(N1N2NsN4), such as ^(4400) or ̂ (4220), by the Young-Yamanouchi techniques.19'24 

^i ( [4]{ l l l l» = (1/V6)(^(4400)+^(4040)+^(4004)+^(0440)+^(0404)+^(0044)), 

^2([4]{1111}) = ( 1 / V 1 2 ) ( ^ ^ 
+^(2402)+^(2042)+^(2420)+^(2024)+^(2240) +^(2204)), 

^ ( [ 4 ] { 1 1 1 1 } ) = (A/5 /3)^ (2222; r 1 2 =r 3 4 =0)+#(2222 ; r 1 2 = r 3 4 = 2 ) , 

^i([31]{2111})KVV6)W4^ 

^2([31]{2111}) = ( 1 / ^ 6 ) ^ ( 4 2 2 0 ) - ^ 

^3([31]{2111}) = (l/Vl2)(^(4022)+^(0422)+^(4202)+^(0242)-^(4220)-^(0224) (A2.2) 

+^(2402)+i^(2042)-^(2420)-^(2024)-^(2240)-^(2204)), 

^([211]{3211}) = K^(4202)~^(0242)-^(4220)+^(0224)+^(24O2)-^(2042) 

~^(2420)+^(2024)+2^(2240)-2i/<2204)), 

^i([22]{2211}) = ( 1 / 2 V 5 ) ( 2 ^ ( 4 4 0 0 ) - I A ( 4 0 4 0 ) - ^ ( 4 0 0 4 ) - I / / ( 0 4 4 0 ) - ^ ( 0 4 0 4 ) + 2 ^ ( 0 0 4 4 ) ) , 

^ 2 ( [ 2 2 ] { 2 2 1 1 } ) = ( 1 / 2 X / 6 ) ( 2 ^ ( 4 0 2 2 ) + 2 ^ ( 0 4 2 2 ) - ^ ( 4 2 0 2 ) - ^ ( 0 2 4 2 ) - I A ( 4 2 2 0 ) -

-^(2402)-^(2042)-^(2420)-^(2024)+2^(2240)+2iA(2204)), 

^3([22]{2211}H#(2222; r1 2=r3 4=0)-(V
/5/3)^(2222; T12=TU=2). 

In general, the weak pairing scheme of Eq. (11) is fully specified only by the quantum numbers (coi,a>2)y, KJ, NJ, TJ\ 
j—ly • • -4; and the additional quantum numbers 7\2, r34, T, MT in the four-level case. For the representation 
(wi,co2)y= (10), however, the individual level quantum numbers Nj are in most cases sufficient to fully specify the 
state. In the state with AfiA^2Ay\f4=4220, for example, the quantum numbers Tj, 7\2, T34 follow unambiguously 
from the values of Nji Zi=0, r 2 = l , T3=1, 7"4=0, 7\ 2=1, 7"34=l. The quantum numbers KJ are not needed for 
(o?i,co2)y= (10). In the few cases where needed the quantum numbers 7\2, T34 are identified explicitly in Eqs. (A2.2). 

D. E. Rutherford, Substitutional Analysis (Edinburgh University Press, Edinburgh, Scotland, 1948). 
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Similarly, for the T=2 states 

^( [4]{l l l l}(40)F 1 =0,r=2)=(V7/3)^([4]{l l l l})+(v2/3)^([4]{l l l l}) , 

^ (C4]{l l l l} (20)F 1 =0,r=2)=(^ /3)^(C4]{l l l l} ) - (V7/3)^( [4]} l l l l} ) , 

^([31]{2111}(31)F1=0,r=2) = <A2([31]{2111}), 

^6([31]{2111}(31)F1=0,r=2)=(^/V'5V3([31]{2111})+(v5/v/5)«A4(C31]{2111})) (A2.3) 

rA([31]{2111}(20)/f1=0,r=2)=(\2/V5)^(C31]{2111})-(^/v /5¥4([31]{2111}), 

^([211]{3211}(21)£Ti=0, r=2)=^([211]{3211}), 

lA([22]{2211}(22)^1=0, r=2)=(l/\^)^2([22]{2211})+(\5/vJ)iA4(C22]{2211}), 

^([22]{2211}(20)F1=0,r=2)=(v2-M)^([22]{2211})-(lM)^(C22]{2211}), 

where all but the functions ^4([/a]{p4P3P2Pi}) are defined as in Eqs. (A2.2) with the exception that functions 
^(NiNiNsNi) now imply a coupling to an over-all T of 2 rather than 0. The functions '/,4([/a]{p4P3P2Pi}) 
are defined by 

iM[4]{llll}) = <y7/3v2)[>(2222; T12=0, TM= 2)4-^(2222; T12=2, r84=0)]+(v2/3)f(2222; Ti 2=r 84=2), 

tf<4([31]{2111}) = (1/^6)^(2222; r i 2 = 0 , r3 4=2)-^(2222; 7\2=2, 7/34=0)] (A2.4) 

-(2/^6)^(2222; 7/l2=2, T34= 1), 

<h([22]{2211}) = (1/3)^(2222; T12=0, Tu= 2)4-^(2222; r 1 2 =2, r34=0)]-(V7/3)^(2222; J 1 2 = r 3 4 = 2 ) . 

Finally, for the T— 1 states, 

^([l^{4321}(10)Fi=0,r=l)=^([l*]{4321}), 

«K[22]{2211}(22)#i=0, T= 1)=^([22]{2211}), 

^(C211]{3211}(21)F1=0,r=l)=(lM)^1([211]{3211})4-(v2M)^([211]{3211}), 

^6([211]{3211}(21)flr
1=0, r = 1)=^2([211]{3211}), (A2.5) 

^([211]{3211}(ll)^1=0,r=l)=(v2/vJ)^([211]{3211})-(lM)^([211]{3211}) ) 

^(C31]{2111}(31)Jff1=0,r=l)=(V5/\/7¥1(C31]{2111})4-(v2/v'7¥2(C31]{2111}), 

^(C31]{2111}(ll)JB-1=0,r=l)=(v2/V7)MC31]{2111})-(V5/v'7)^(C31]{2111}), 

where the functions ^A([/K]{P4P3P2PI}) of Eqs. (A2.5) are denned by 

tf([l«]{4321}) = (l /vl2)(^(4022)^^ 

+^(2402)-iA(2042)-^(2420)+^(2024)+^(2240)-iA(2204)), 

^([22]{2211}) = ( l / 2v2 ) (^ (4202 ) -^^ 

^i([211]{3211}) = K2^(4022)+2^(0422)-iA(4202)-^(0242)+^(4220)+^(0224) 

-iA(2402)-^(2042)+iA(2420)+^(2024)), (A2.6) 

^2([211]{3211}) = (l/2v2)(-^(4202>^ 

^3(C211]{3211}) = (1/V6)[^(2222; T12=0, r84=l)+(v
/5)lK2222; 7\2=2, r 3 4=l)], 

^i([31]{2111}) = (l/V6)(*(4M^^ 
TA2(C31]{2111}) = ( 1 / 3 ^ ) [ V 5 ^ ( 2 2 2 2 ; r u = 0 , r 3 4=l)+2v^(2222; r1 2=r3 4=2)+^(2222; 7\a=2, r 3 4 = l ) ] . 

From Eqs. (A2.1) through (A2.6), functions with the needed, since the functions of Eqs. (A2.1) through 
remaining Yamanouchi symmetries could be con- (A2.6) are sufficient to calculate the reduced matrix 
structed by using the transformation properties of the elements of Eq. (26). The Wigner coefficients for the 
Yamanouchi functions25 under the permutations P(12), inner product of the symmetric group have been calcu-
P(23), and P(34); but these additional functions are not lated by the technique developed by Hamermesh.26 

25 Reference 19, pp. 224-5. 26 Reference 19, Sees. 7-14. 
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Specifically, Wigner coefficients for the products 
[31]X[31], [211]X[31], and [22]X[31] are the only 
nontrivial ones needed for the four-level calculations. 
With these, all matrix elements of the single particle 
part of the Hamiltonian can be calculated. 

In the zeroth approximation of the strong pairing 
limit, the only nondegenerate states are the states of 
[4] symmetry, R§ representations (40), (20), (00), and 
the state of [ l 4 ] symmetry, R$ representation (10). The 
remaining states are at least two or three-fold de­
generate, so that degenerate perturbation theory must 
be used. For the special case 12=4, N= 8 (Hi=0), almost 
all matrix elements of the single-particle part of the 
Hamiltonian are off-diagonal in the R$ quantum num­
bers (4—J^, i). The exceptions occur in those representa­
tions in which a given value of T occurs more than once 
for # i = 0 , specifically for states with T= 1 in the repre­
sentation (21), and for states with T=2 in the repre­
sentation (31). These are, therefore, the only states 
with first-order corrections to the energy. Neglecting the 
higher order contributions of the off-diagonal matrix 
elements, the first-order corrections to the T= 2 states 
of representation (31), for example, are eigenvalues of 

a 6X6 matrix which can be split into two 3X3 matrices 
which are identical except for an over-all sign. 

Tv2a/V5 ± 0 / v l O 

± A V 1 0 ±(a-v2/3)/\/10 

±Y/V10 ± Y / \ / 5 

± y / V l 0 

± 7 / V 5 (A2.7) 

±(a+v2/3)A/10, 

where 

a=( l /v5) (€ l+62+€3-3€ 4 ) , 

£=(V2/V3f)(ei+ 62-263) , T = ^ ( € l - 6 2 ) . (A2.8) 

In the case of four equally spaced single-particle levels, 
(Fig. 8), both the matrices (A2.7) lead to the simple 
eigenvalues, 0, =t(\/6)€. 

For the remaining states, the single-particle part of 
the Hamiltonian can lead only to second-order correc­
tions to the energy. These can be calculated by bringing 
the first-order off-diagonal corrections into the ^-fold 
matrices on the diagonal by standard perturbation 
techniques. For the 3-fold degenerate T=0 states of 
representation (31), for example, this leads to the follow­
ing 3X3 matrix, correct to order e2/G 

1 | a2 32(/32+72) 

G115 105 

13 
{a/3+v2(£2-T

2)} 
105G 

13 

105G 
-{ay-2y/2l3y} 

13 
{a/3+v2(/32-72)} 

105G 

1 f32a2+6/32+1972+26v2o:/5 

Gi 105 

13 
{j3y+2^ay} 

105G 

13 
{ay-2^l3y} 

105G 

13 

105G^ 

1 

G 

-{£7+2v2«7} 

f 32a2+19/32+672- 26v2a/3l 

105 

(A2.9) 

where a, 0, and y are defined in Eq. (A2.8). In the case of four equally spaced single-particle levels, this matrix 
can be split further and leads to the simple eigenvalues: —8/7, —8/7, —60/7, all in units of e2/G. Similar 2, 3, 
and 6-fold matrices for the remaining states can be split into smaller matrices in the case of four equally spaced 
single-particle levels. The results of the calculations are shown in Figs. 6, 7, and 8. 


