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the static values of the total magnetic moments of the 
particles should be directly related [as in equation (39)] 
rather than the anomalous moments. 

It is perhaps pertinent to conclude by emphasizing 
the point of view put forward in this work. No re­
definition of the spin of a particle is involved. The 
"spin" transformations23 denned in Eqs. (1) and (2) and 
under which invariance is postulated are the intersec­
tion of the two "little groups" of the basic £7(4) group 
defined in Eq. (1) corresponding to the momenta p 
and p'. Thus the momenta specify the allowed set of 
transformations, but the transformations themselves do 
not contain the momenta explicitly. In contrast to this, 
the PU(4) transformations from which the couplings 
are formed are the generalization of the "spin" trans­
formations when explicit dependence on the momenta 

23 See similar attempts for the free particle case: F. Giirsey, 
Phys. Letters 14, 330 (1965). Y. Ne'eman, ibid. 14, 327 (1965). 
K. T. Mahanthappa and E. C. G. Sudarshan, Phys. Rev. Letters 
14, 458 (1965). L. K. Pandit and Riazuddin, ibid. 14, 462 (1965). 

1. INTRODUCTION 

ONE of the greatest successes of the SU(3) sym­
metry has been the prediction of the ft based on 

a decuplet representation for the excited 3,3 baryons.1 

The mass of the ft, predicted from the well-known mass 
formulas of Okubo and Gell-Mann, is predicated on a 
specific transformation property in unitary space for 
the interaction which breaks the symmetry, viz., that 
the symmetry-breaking interaction transforms like the 
T=0, F = 0 component of an octet.2'3 Many relations 

* Part of this work was performed while both authors were at 
the University of Wisconsin, Madison, Wisconsin. 

f Supported in part by the U. S. Atomic Energy Commission. 
| Supported in part by the Wisconsin Alumni Research 

Foundation. 
1 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. 

Mod. Phys. 34, 1 (1962). 
2 M . Gell-Mann, Phys. Rev. 125, 1067 (1962). 
3 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 

is allowed. Notice that some such generalization has to 
be made, because the generators of the basic invariance 
group itself do not form a sufficient basis with which to 
specify the interactions. 

Finally, it should be noted that since the allowed 
"spin" transformations are determined essentially 
uniquely by two independent four-momenta there is 
no similar U(2) group denned for four- (or higher) 
particle vertices. Any restrictions which the theory may 
place on such interactions are the implicit effects of 
the three-point functions on these interactions (e.g., 
through unitarity, or the decomposition of the ampli­
tudes into single particle exchange contributions). The 
study of these effects and the associated problem of con­
sistently and uniquely specifying the three-meson vertex 
are clearly matters for further detailed consideration. 
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between coupling constants follow from the assumption 
that the strong interactions are ££7(3) symmetric; 
these relations are often used to estimate experimentally 
unknown coupling constants. The question arises as to 
how reliable these estimates of coupling constants are 
when a symmetry-breaking octet interaction is taken 
into account. Based on the knowledge of the trans­
formation property of the interaction together with the 
assumption that first-order perturbation theory suffices, 
sum rules similar to those for the masses have been 
obtained for the coupling constants4 but a dynamical 
calculation is necessary to discover how individual 
coupling constants are affected. One such calculation 
by Wali and Warnock5 has already been carried out 
with the result that the coupling constants show large 

4 V. Gupta and V. Singh, Phys. Rev. 135, B1442 (1964). 
5 K. C. Wali and R. L. Warnock, Phys. Rev. 135, B1358 (1964). 
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In this approach to SU(3) symmetry breaking we adopt the point of view that perturbation theory may 
be used to calculate the corrections to the B*(10)BP coupling constants. The symmetry breaking is intro­
duced via Gell-Mann-Okubo mass splittings of both the internal and external lines of the third-order 
vertex diagram. In this manner we obtain coupling constants which obey the sum rules of Gupta and Singh. 
This approach seems consistent with the notion that the Gell-Mann-Okubo formulas are themselves based 
on first-order symmetry breaking in the masses. Our results are compared with those of other authors. 
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P(m5) 

FIG. 1. Third-order diagram on which this calculation is based. 
The masses (or mass squares) in each of the lines are given by 
Gell-Mann-Okubo mass formulas. 

deviations from their values predicted by unitary 
symmetry. The present calculation is an effort to 
determine whether the large deviations obtained by 
Wali and Warnock were peculiar to their model. 

In this work we assume that deviations of coupling 
constants from their SU(3) values for decays of the 
decuplet baryon resonances JB*(10) into baryons B and 
pseudoscalars P may be approximated by introducing 
the exact Gell-Mann-Okubo (GMO) mass splittings 
into each line of the third-order vertex diagram and by 
using Feynman techniques to calculate the changes in 
the amplitudes to first order in the mass splittings Am 
(Am2 for bosons). This approach seems to be consistent 
with the notion that the mass formulas themselves 
follow from the assumption that the symmetry breaking 
occurs in first order. 

2. DESCRIPTION OF THE MODEL 

The general form of the amplitude for the coupling 
of a spin-f particle on its mass shell to a spin-J and 
pseudoscalar particle is given by 

MB*^BP= (MB*mB/2a>pEB*EBy12 

X iKpUp (MB*)UP (mB)FBpB*, (1) 

where KM= J(5M—PM), using the convention of denoting 
the 4-momentum of a particle by its name. U^MB*) is 
the Rarita-Schwinger spinor in momentum space which 
describes a particle of spin f. I ts properties are6-7 

u/xBf*=0, 

UM=0. (2) 

If we adopt the phenomenological interaction 
Lagrangians8 

XBa
c(mB)dlxPb

d(fxp)+U.c., (3) 

£BBP=Wlgl(l-2f)Bc
ay5BJPb

c+Bc
ay,Bb

cPJ2, (4) 
6 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941). 
7 P. G. Federbush, M. T. Grisaru, and M. Tausner, Ann. Phys. 

(N. Y.) 18, 23 (1962). These authors give the relation Eq. (18) 
between the resonance width r and the square of the coupling 
constant for spin f+ —•» | + + 0 ~ . 

8 The parameter f=F/(D+F). A. W. Martin and K. C. Wali, 
Phys. Rev. 130, 2455 (1963). 

which are consistent with our assumptions that the 
couplings are kept symmetric while the symmetry 
breaking is introduced via the masses, the lowest order 
amplitude has the obvious form 

MB*->BPV= {MB*MB/2O>PEB*EB)112 

XCBpB*(G0/M)iK,u»(MB*)u(mB), (5) 

where CBpB* is the appropriate SU(3) symmetric 
Clebsch-Gordan coefficient for the particular decuplet, 
baryon, pseudoscalar state considered.9 

The object of this calculation is to obtain broken 
symmetric corrections to the coupling constants 
CBpB*G0/M which are first order in the deviations of 
the masses from their symmetric values. The model 
used is to take the lowest order perturbation-theoretic 
correction to the above coupling constants which 
contains the symmetry breaking. This of course occurs 
in the third order; and by expanding in the deviations 
of the masses from their degenerate values, one obtains 
a symmetric term plus terms proportional to the mass 
differences. The symmetric term, which may contain 
divergences, contributes to the unrenormalized coupling 
constants CBPB*GQ/M; but if we imagine that the 
proper counter terms have been added to cancel any 
divergences, we obtain simply the renormalized sym­
metric coupling constants to third order. There are no 
divergences in the terms proportional to the mass 
differences, so that this method seems to provide a 
consistent means of calculating changes in the coupling 
constants due to symmetry-breaking interactions. 

Since the calculation is to be carried out in third order 
it is necessary to evaluate the matrix element for the 
contribution from the third-order diagram, shown in 
Fig. 1 to establish notation. Since there are internal 
masses to be varied as well as those in the external lines, 
it is more convenient to relabel the masses, as shown in 
the figure, in the expressions to be expanded in the 
masses. The m± and m*> in reality are mass squares 
because the mass formulas for the pseudoscalars are 
expressed in terms of mass squares rather than masses; 
but to treat them on the same footing as the baryon 
masses it is convenient to use a similar symbol. Then 
in terms of mv • *we the third-order matrix element is 
given by 

1 / MB*mB V ' 2 Go 
M ^ 5 p ( 3 ) = CBP

B*— 
(2<jry\2a>pEB*EB/ M 

X2gHKMMB*)u(mB)FBPWB*(mt), (6) 

where FBp®)B*(mi) is evaluated by the usual Feynman 
methods.10 

We have chosen to derive the effect of mass splittings 
on the coupling constants by assuming that the particles 

9 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 
10 Cf. S. S. Schweber, An Introduction to Relativistic Quantum 

Field Theory (Row Peterson & Company, New York, 1961). 
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involved are composed of fundamental triplets such 
that the mass of only the third component of each 
triplet is perturbed from its SU(3) symmetric value: 

Am(N) = A, Am(2) = 0 , 
Am(S) = B, Am(A) = l(A+B). (7) 

This choice introduces a spurious scalar part into the 
symmetry-breaking terms and a consequent over-all 
shift in every coupling constant which is easily sub­
tracted out at the end of the calculation. The contribu­
tions from mass splittings in the external lines are 
directly proportional to the Aw's of these lines. The 
contributions from the AM'S in the internal lines are 
proportional to factors given by11 

8 (Bb
aBd

c) = {8d
a8b

c (Am) b
a 

-\8b
a8d*l(Am)b

a+(Am)d
c--\ E (Am)/ ]} 

X[—(—~)] ' (8) 
Ldm xiy • p—ml J m 

where, for baryons, 

(Am)b
a=8saB+8b*A, (9) 

and Bb
a is the (traceless) SU(3) baryon destruction 

operator. The treatment for internal bosons is analo­
gous. The propagator in Eq. (8) is equivalent to the 
mass operator 

Am=ABz*Ba*+BBa*B?, (10) 

which is obviously not traceless and therefore contains 
some scalar part. 

By expanding Fis) of Eq. (6) in the mass differences 
Ami (mi=mi°+Ami)y we can write 

FBp{z)B*(mi) = Fo(m») 

+Hi (dF0/dmi)Xi(B"BP)Amiy (11) 
where 

F0(mi)=- / dxj dy d*kx2y 
iJo JQ J | 

k2+b2(mi,x,y) 

Zk2+a2(miixJy)y 
(12) 

with a2 and b2 algebraic functions of x, y, and the 
masses. The Xi(B*BP) are group-theoretical coeffi­
cients which depend on the particular particles in both 
the external and the intermediate states as well as the 
mass being varied. While Fo(mi°) is divergent it is 
SU(3) symmetric, and if the counter terms are present 
it combines with the G°/M in Ma) to give the re-
normalized coupling constant GoR/M correctly up to 
third order. The terms involving the dFo/dmi are all 
convergent and represent the broken symmetric con­
tributions to the coupling constants. If we make the 
assumption that GoR/M does not differ much from the 

1 1M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys. 
(Kyoto) 22, 715 (1959). 

FIG. 2. Contributions to coupling constants in a diagonal-
unitary-symmetry representation in units of the renormalized 
coupling. For pure SU(3) these constants are all zero. The Gi2 

give the relative probability that (BP) in the SU(3) multiplet 
(i) will interact with £* via the T=0, 7 = 0 octet interaction. 

unrenormalized coupling constant G0/M, then the 
correct matrix element up to third order is given by 

/ MB*mB \ 1 / 2 G0
R 

MB*-»BP^[ CBpB* kfMniMB^uimB) 
\2O)PEB*EB/ M 

{ X 1+ 
1 

4x (2w*) i dmi 

dF0 \ 
£ —Xi(B*BP)AmA , (13) 

where g2/47r^l5 is the wN coupling constant. The y 
integrals of 

dFQ 

dm. 

r1 r1 

-=7r2/ dxj 
i J 0 J 0 

* ( — 
\a2(m} 

dy x2y 

db2 3a2(mi°)+b2(mi
0) da2' 

(mf) dmi a4(m*°) dm* 
(14) 

can be carried out analytically and the remaining x 
integration is easily computed by machine. The choice 
of (Am)b

a in Eq. (9) and its counterpart for bosons 
implies the degenerate mass choice of mB°=m(E) and 
HP°2=tn2(ir).12 Consistent removal of the scalar part 
however dictates the choice mB°=^[m(X)+m(A)2 and 
MP°2=iC^2W+w2(r ?)] . 

In Eq. (13) the terms in parentheses multiplied by 
CBPB*G0

R are the B* —> BP coupling constants. Divid­
ing out this factor for convenience we are left with the 
(normalized) Gupta-Singh5 coefficients, 

X(B*BP) = 1 + (g2/47r) (1/2TT3) 

dFo 
X E Xi(B^BP)Ami, 

i dmi 
(15) 

12 The integrals are rather insensitive to the choice of degenerate 
masses. For instance, taking niB° = ni(2) and (/xp°)2 = w2(7r) gives 
results which are quite similar to those quoted herein. MB*0 is 
taken to be M(Yi*). 
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FIG. 3. Experimentally observable couplings normalized to 
X(N*Nir) as a function of / with a = 1.00. The experimental 
values along with their uncertainties are shown by the vertical 
error bars. 

which by definition all equal one for unbroken sym­
metry. Gupta and Singh5 (G.S.) have shown that, 
when SU(3) is broken to first order by an interaction 
transforming like the T = 0 , 7 = 0 component of an 
octet, the coefficients X(B*BP) may be written in 
terms of five independent parameters a, p, q, r, s, where 
a= 1, and p=q=r=s=0 correspond to unbroken sym­
metry. Altogether there are 12 B*BP coupling constants 
so that among them there exist seven relations in the 
form of sum rules. Coupling constants calculated to 
first order in the mass splittings of any of the particle 
multiplets involved automatically obey these sum 
rules provided the masses in the multiplet obey the 
appropriate GMO mass formula. 

3. RESULTS AND DISCUSSION 

The principal result of this calculation is an enumera­
tion of the group-theoretically arbitrary G.S. param­
eters p, q, r, s (setting the scalar part a= 1.00). These 
values obviously depend upon the parameter / occurring 
in the B —* BP Yukawa vertices. We obtain 

a=1 .00 , 

£=0 .56- -0 .61 /+1 .21 / 2 , 

q=- 0 .046- 0 .28/+0.57/ 2 , 

r = 0 . 2 2 - 0 . 1 6 / - 0 . 3 0 / 2 , 

s = 0 .13+0 .28 / -0 .57 / 2 . (16) 

I t is perhaps more illuminating to consider instead the 
parameters Gi/GoR, 

G27/G0
R=(5/3)p, GS2/GoR = S^ry 

G8l/GoR=5q, G10/GoR=2^2s, (17) 

Fig. 2 in which the G« are plotted against / , it is evident 
that the symmetry-breaking effects are considerable. 

Figure 3 contains a plot of experimentally observable 
coupling constants, normalized to that of N*Nir, 
against the parameter / . Also indicated are the current 
experimental values along with their uncertainties, 
obtained from the data of Ref. 13 and the relation7 

G2(B*BP) = MB*2T (B*BP)/ 

Q*l{MB*+ntB)2-iiP^, (18) 

where Q is the c m . momentum of either of the decay 
particles. 

The range of / near 0.4 is of particular interest. 
Martin and Wali8 have shown on the basis of an N/D 
calculation that a decuplet baryon resonance is expected 
to be more strongly bound than any other in this region 
of / . This is also the range favored by the Cabibbo 
theory of weak interactions.14 In addition / ~ § is a 
unique prediction of SU(6)n and of £/(12).16 I t is 
encouraging that our results agree more closely with 
experiment for this region of / than for any other. 

The results of Wali and Warnock,5 with the assump­
tion / = 0 . 3 5 , suggest that the dominant symmetry-
breaking contribution to the coupling constants comes 
from the coupling of the B* to the 27-fold (BP) states 
(referred to as "27-dominance")- One sees from Fig. 2 
that our calculations show a similar effect, insofar as 
the probability of 27-type coupling-constant splitting 
is predicted to be approximately four times larger than 
that of any other type for this range of f.17 

In Table I our results are compared with those of 
other authors. The coupling constants (normalized to 
the N*NT coupling constant) rather than p, q, r> s, are 
used since those of Wali and Warnock contain non­
linear contributions and therefore do not satisfy the 
sum rules. Referring to the experimentally observable 
couplings in the first four columns it is evident that our 
method gives comparable results and is in principle 
simpler to evaluate. Wali and Warnock's calculation of 
broken couplings contains a subtraction constant and 
the coupling constant g2/47r which they have chosen so 
as to give best agreement with experiment for their 
simultaneous calculation of the B* masses. We also 

where G? gives the relative probability that (BP) in 
the SU(3) multiplet (i) will interact with B* via the 
usual symmetry-breaking interaction. Referring to 

13 Proceedings of the 1964 International Conference on High-
Energy Physics at Dubna (Moscow, 1965). 

14 N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). 
15 F. Gtirsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 

13, 299 (1964); B. Sakita, ibid. 13, 643 (1964). 
16 A. Salam, R. Delbourgo, and J. Strathdee, Proc. Royal Soc. 

284, 146 (1965); M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 
267 (1965); B. Sakita and K. C. Wali, ibid., p. 404. 

17 All group-theoretical effects, which slightly favor 27-type 
coupling for most values of / , enter this calculation linearly; hence 
strong 27-dominance arises only if forced by the choice of / . 
Based on our calculation alone there is no a priori reason to choose 
a different / than the one which gives best agreement with 
experiment. On the other hand, Wali and Warnock obtained 
strong 27-dominance because their 27-fold channels were closer 
to binding than any of the other nonresonant channels for their 
natural choice of / , that which gives the binding of the decuplet 

resonances. 
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TABLE I. Comparison of our coupling constants with those of other authors. 

XDBP 

VmeSU (3) 
Wali and Warnock 
Freund and Nambu 
/ = 0.4, a = 1.0 
/=0 .4 , 0 = 0.8 

N*Nv 

•1.00 
1.00 
1.00 
1.00 
1.00 

F*ATT 

1.00 
0.78 
0.88 
0.93 
0.90 

Y*2ir 

1.00 
0.66 
0.58 
0.53 
0.45 

S Sx 

1.00 
0.64 
0.66 
0.65 
0.59 

Y*2rj 

1.00 
0.58 
0.58 
0.43 
0.34 

E*H?? 

1.00 
0.58 
0.66 
0.55 
0.48 

N*2K 

1.00 
0.63 
0.59 
0.14 
0.00 

Y*ZK 

1.00 
0.56 
0.67 
0.26 
0.23 

7*NK 

1.00 
0.87 
0.98 
1.24 
1.27 

E*AK 

1.00 
0.75 
0.86 
1.16 
1.19 

Z*2K 

1.00 
0.63 
0.57 
0.76 
0.73 

mK 
1.00 
0.64 
0.64 
0.89 
0.87 

obtain agreement similar to Freund and Nambu18 who 
have made a two-parameter fit to the four observable 
coupling constants. These authors introduce another 
parameter when comparing their results with Wali 
and Warnock for the non-measurable couplings. 

I t is to be emphasized that the difference between the 
bare and renormalized coupling constant has been 
ignored in the calculation of p, q, r, s. Had this not been 
done the effect would have been to reintroduce the 
scalar part a^ 1 which would then have to be taken as 
another parameter leading to a two-parameter fit. 
Alternatively, one could assume a reasonable value of / 
and again make a one-parameter fit to the experimental 
data. As an example, we choose / = f and consider the 
effect of a variation in the parameter a. The results are 
plotted in Fig. 4 where it is evident that we obtain 
agreement with experiment similar to that with 
a—1.00 and / ~ 0 . 4 implying that our assumption 
GORC±LGO is reasonable. 

Neither of our comparisons, nor those of the other 
authors, agree with the experimental ratio X(Y*A.TT)/ 
X(N*NT) which casts doubt on all of the procedures. 
A possible two-parameter fit does not improve this 
situation, for in order to obtain X{Y*Air)/X(N*Nir) 
— 1.05 it is necessary to have a^ — 3, in which case it 
is impossible to fit any of the remaining experimental 
values. 

Up to this point deviations of the BBP coupling 
constants from their SU(3) values have been ignored. 
In order to account for them within the framework of 
this approach it would be necessary to first properly 
renormalize the perturbation theory explicitly, which is 
too ambitious since the viewpoint has been adopted 
that perturbation theory is only capable of treating 
deviations from unitary symmetry. The problem then 
in dealing with internal variation of coupling constants 

18 P. G. O. Freund and Y. Nambu, Phys. Rev. Letters 13, 221 
(1964). 

is the treatment of the symmetric part which this 
method is incapable of handling. However, the work 
of Freund and Nambu18 suggests that the BBP cou­
plings remain within 15% of their symmetric values 
with the implication that is it not a bad approximation 
to ignore the deviation and account for the change in 
B*BP coupling constants by the mass splittings alone. 

X(B*BP) 
X(N*NII) 

0.8 

0.4 

_ _ J L _ 

1 I 1 1 

Y*ATT 

Y*2i r 

~\ 

_J ! I 1 
0.5 0.9 13 1.7 Q 

FIG. 4. Experimentally observable couplings normalized to 
X(N*Nir) as a function of a with /=0 .4 . The experimental values 
are indicated as in Fig. 3. 
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