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For meson-meson scattering special properties of some submatrices of the total crossing matrix are derived. 
These properties are applied to the study of the bootstrap of 2+ mesons in the scattering system of two 
pseudoscalar octets. We find that self-consistency can be sustained by a 1~ octet, a 2+ singlet, and a 2+ octet. 
We assign /°(1250) to the 2+ singlet, and A2(1S 10) and K*(1415) to the 2+ octet, leaving an / = 0, 2+ particle 
yet to be found. Consequences of this assignment are discussed. 

I. INTRODUCTION 

FOR some years now the importance of the crossing 
matrix has been recognized,1'2 and some of its 

properties, e.g., its diagonalizability and that its eigen­
values are ± 1 , have been found and exploited in the 
consideration of various dynamical problems.3,4 How­
ever, these properties refer to the total crossing matrix, 
which oftentimes couples too many states to be of much 
use in actual calculations for problems where only a 
subset of all the possible states is involved in the scat­
tering process. I t is then of interest to investigate 
whether some submatrix of the total crossing matrix 
may possess special properties which can shed some light 
on these problems. In this paper we find these properties 
and show that they can effectively be used to facilitate 
the understanding of scattering problems where only a 
subset of all possible scattering states is involved. 

More specifically, we consider meson-meson scatter­
ing where representations of the internal symmetry are 
either symmetric or antisymmetric under the inter­
change of the scattering particles. The crossing matrix 
can then be written in block form as shown in Eq. (2.1). 
We show on general ground that S and A can be di-
agonalized separately and that the columns of M form 
eigenvectors of S. 

We then use these properties to study the scattering 
of two pseudoscalar octets in the Jp= 2+ state. Our aim 
there is to determine which multiplets in the SU(3) 
symmetry the 2+ mesons are most likely to form. To 
this end we adopt a crude dynamical model which pre­
serves the qualitative features of the problem. We find 
that a singlet and an octet in the 2+ state together with 
an octet in the 1~ state bootstrap themselves. 

Assigning the experimentally observed5,6 /°(1250), 
42(1310), and the newly discovered7 K*(U15) to the 2+ 
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singlet and octet leaves an 1=0, 2+ resonance yet to be 
found. We then consider some of the consequences of 
this assignment, such as masses and decay widths, and 
find them to be in good agreement with the experimental 
results. The assignment of these 2 + mesons in the SU(6) 
symmetry is also discussed. 

II. THE CROSSING MATRIX 

We consider the scattering of meson by meson, where 
the particles involved all belong to the same representa­
tion of some internal symmetry. Our attention is on 
those problems where the scattering states can be sepa­
rated into purely symmetric and purely antisymmetric 
parts. In this section we derive some general properties 
of the crossing matrices that relate the scattering ampli­
tudes in the three s, t, and u channels of such meson 
systems. 

Since Bose statistics requires that particles in a 
symmetric (antisymmetric) state can only be in even 
(odd) angular-momentum states, we can deduce some 
relations between the crossing matrices by studying the 
relationship between angular-momentum states of the 
three channels. Let us start by writing down the scat­
tering angles in terms of the usual scalar variables s, t, 
and u: 

cos0s= 1+21/(s-A) = - l - 2 V C ? - 4 ) , 

cos0*= l + 2 V ( * - 4 ) = - l - 2 « / ( J - 4 ) , 

cos0„= 1+21/(u-A) = -l-2s/(u-4), 

where the masses of all the particles are taken to be 
unity, and the subscript of the angle 0 refers to the 
channel in which the scattering angle is defined. We note 
that with the above definition of the angles there exist 
the following relationships under the interchange of any 
two variables: 

t <-» u: cos0s —» — cos0s, cos0* <-» — cos0w, 
s <-» u: cosdt —» — cos0*, cos0s <-> cos0w, 
s <-» t: cos0M —» — cos0w, cos0s <-> cos0*. 

Associated with the scattering amplitude in the angular 
momentum state U of the ith channel, i=s, t, u, is the 
Legendre polynomial P^(cos0»)> which changes in a 
definite way under the interchange of any two variables, 
according to the above relationships. If we write the 

amplitudes in the form f j , where the ones in the 
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symmetric states S (even k) are partitioned from the 
ones in the antisymmetric states d (odd k), then we 
have 

•"-(V(')' (Xs)-
W , \—a/s \a/t \—a/u 

•"" CM')•( ')-( ')• 
Let the crossing matrix Cst be defined as follows: 

0rc-0; cHl 1)- (2'1) 
Crossing symmetry requires that Cst

2= 1; consequently, 
we have C8t=Ct8. To get Csw from C««, we merely have 
to interchange t and w, and in view of the above rela­
tions among amplitudes under such an interchange, we 
obtain 

/ l 0\ / l 0 \ / 5 ~M\ 
Csu=( )CJ ) = ( ) . (2.2) 

\ 0 - 1 / \ 0 - 1 / \-N A J 

I t follows immediately that Csu
2=l and CSW=CWS. In 

a similar way we find that 

/ S M\ /S -M\ 
Ctu=( , C«,= ( . (2.3) 

\-N -A J \N -A J 

Note that although CtuCut=CutCtu=l, Ctu
2 and Cut

2 

are not equal to unit matrix (unless M=N=0, which is 
unacceptable). This is a feature of the crossing matrix 
that is not generally recognized. 

We now proceed to show several properties of the sub-
matrices S, A, M, and A7 of the total crossing matrix. 

Proposition 1. S and A are separately diagonalizable. 
From the condition Cst

2=Csu
2 = 1, we have 

S2+MN=l, A2+NM=1, (2.4a) 

SM+MA = 0, AN+NS==0. (2.4b) 

On the other hand, from Ctu=CtsCsu we obtain 

S2-MN=S, A2-NM=-A, (2.5a) 

SM-MA = -M, AN-NS=N. (2.5b) 

Thus, 5 and A satisfy the following polynomial 
equations: 

2 S 2 - 5 - l = 0, (2.6a) 

2A2+A-1 = 0. (2.6b) 

Following the procedure given in Ref. 3, it can then 
easily be established that S and A can separately be 
diagonalized. The eigenvalues are 

S: X.= l , - £ (2.7a) 

A: X a = - l , i . (2.7b) 

Proposition 2. Column vectors in M are eigenvectors of 
S with eigenvalue —J. 

This follows immediately from (2.4b) and (2.5b) 
which give 

SM=-W, AN=IN. (2.8) 

Thus we also have 

Proposition 2a. Column vectors in N are eigenvectors of 
A with eigenvalue \. 

In the reduction of the direct product of two regular 
representations of SU(n), the number of antisymmetric 
states is never greater than the number of symmetric 
states. If we denote the dimension of S by p and the 
dimension of A by q, then we have p>q. While it is 
possible that all column vectors of M are linearly inde­
pendent, in the case p>q not all the column vectors of 
A7 can be linearly independent, on account of proposi­
tion 2a. 

Proposition 3. All the eigenvalues of A are \ if and only 
if all the column vectors in M are linearly independent. 

From (2.4b) and (2.5b) we can also obtain MA =\M. 
Clearly, if all the column vectors in M are linearly inde­
pendent, A must be diagonal and each diagonal element 
must be \. Conversely, if all-eigenvalues of A are | , A 
must already be diagonal itself. From (2.4a) we have 
NM—%. Suppose that the &th and Ith column of M are 
linearly dependent, i.e., Mu=cMik, l<i<p, k^l, where 
c is a constant. Then we have (NM)ki = c(NM)kk, a 
contradiction to NM being diagonal, if c^O. If c=0, 
then (NM)u=0, also a contradiction. Generalization of 
the proof to more than two linearly dependent column 
vectors in M is straightforward. 

From the second equation of (2.8) we can obtain a 
companion proposition on the row vectors of A7. 

Proposition 3a. All the eigenvalues of A are \ if and 
only if all the row vectors in N are linearly independent. 

There seems to be no reason on general grounds, i.e., 
based on the kind of considerations made here, that A 
must be diagonal with eigenvalue \ only, although this 
is, in fact, the case for the crossing matrix8,9 in SU(n). 
Presumably one must go into the detailed properties of 
the crossing matrix to derive this result. 

III. BOOTSTRAP IN SU(3) 

We now apply the results of the preceding section to 
the problem of the scattering of two pseudoscalar octets 
in SU(S) symmetry. The decomposition of the direct 
product is 

8 X 8 = l + 8 s + 2 7 + 8 a + 1 0 + 1 0 * , 

where the first three states on the right-hand side are 
symmetric under the interchange of the two scattering 
particles, while the last three are antisymmetric. Ac­
cording to Bose statistics the former can only occur in 

8 D. E. Neville, Phys. Rev. 132, 844 (1963). 
9 See also the discussion in the beginning of Sec. III. 
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even-angular-momentum states 0+, 2+ , 4+ , • • •, the latter 
in odd-angular-momentum states 1~~, 3~", 5~~, • • •. 

The crossing matrix Csu for octet-octet scattering has 
previously been calculated by Cutkosky.10 I t is a 
7-dimensional matrix because there exists an amplitude 
Q which couples Ss to Sa in meson-baryon scattering.3 

In our present problem of meson-meson scattering, no 
such transition is possible. Moreover, in the absence of 
the amplitude Q, the 10 and 10* rows and columns in 
the crossing matrix are identical, since the two repre­
sentations are the same by charge-conjugation in-
variance. Thus, we may delete the 10* row and column, 
provided that we double the values of the elements in 
the 10 column.11 We then obtain 

Cst-~ 

1 
-3/10 

27/8 
27/40 
7/40 

I 1 
I 1 

2 

- 9 / 8 
-9/40 

where the rows and columns correspond to the states 
labeled by 1, 8S, 27, 8a, and 10, in that order. The dashed 
lines in (3.1) partition the matrix according to (2.1). I t 
can be verified that this matrix satisfies all the proper­
ties of the crossing matrix discussed in the preceding 
section. 

Consider now the scattering of two pseudoscalar 
octets in the Jp=2+ state. The Born-term potential 
arising from the exchange of a 1~ octet and a 2+ multi-
plet is 

T»(s) = Ms)Ms>+Ms)ST., (3.2) 
where 

Mv = 

S= 

r 1 1 
i 
2 
1 

ri 
8 
1 
8 
1 

^8 

, rs= 

l : 
-3/10 2 

(Vl 
is2\ 

57/81 
7/40 
740 J 

Here gi2, g8
2, g272 are the coupling constants of the 2 + 

multiplets with the pseudoscalar mesons. In writing 
(3.2), we have assumed that the masses of the particles 
exchanged in the 2+ state are approximately equal so 
that the same functional form / 2 ( J ) may be used for all 
of the 2+ multiplets. If there is no particle in a particular 
multiplet, or if the mass of the particle in that multiplet 
is much larger than the others, then the corresponding 
coupling constant should be made essentially zero. 

One may now proceed with the Born terms given in 
(3.2) and calculate the scattering amplitudes. However, 
our interest here is only in the qualitative features of 
the problem, e.g., the representations of the particles 
that can be sustained self-consistently. Thus, if we do 

10 R. E. Cutkosky, Ann. Phys. 23, 415 (1963). 
11 This procedure is analogous to the one used by G. F. Chew 

and F. E. Low, Phys. Rev. 101, 1570 (1956). 

not ask for the masses of the particles in our considera­
tion, we may forego the dynamical details and adopt an 
approximation which preserves the property that the 
strengths of the forces are reflected in the magnitudes 
of the coupling constants. The gross features of the 
problem are then maintained, if we approximate (3.2) 
by the following relation between the coupling constants, 
which is consistent with the result obtained by use of 
the determinantal method 12 

Ts = a1M8>+a2STs (3.3) 

where ai and a% are positive constants. 
The solution of the above inhomogeneous matrix 

equation is readily obtained in view of proposition 2 in 
the preceding section. We have learned that My is an 
eigenvector of 5 with eigenvalue — f. Thus if we let 
Ts = aM8>, (3.3) is satisfied with a=2a\(2+c^)-1, a posi-

(3.1) 
tive constant. Because the eigenvalue of S for this vec­
tor is — | , it is not a vector that bootstraps itself. The 
main force leading to the 2+ multiplets as given by aMy 
is provided by the exchange of the vector meson. 

Since 5 also has an eigenvalue 1, we ask what the cor­
responding eigenvector is, for it is the bootstrap vector3 

(when «2= 1) in the 2 + state in the absence of the ex­
changed 1~ meson. We find that the eigenvector is 
(1,J, |) . The general solution of the inhomogeneous 
equation (3.3) is then a linear combination of this homo­
geneous solution and the particular solution aMy 
found above. In both vectors we see that the singlet 
component is dominant. Thus we conclude that among 
the 2+ multiplets the singlet is most favored to exist. 
The octet is also likely to exist, but because of its weaker 
coupling to the pseudoscalar mesons its mass is expected 
to be higher. Here we see that the result is inconsistent 
with the approximation made concerning the equality 
of masses of the 2+ multiplets. However, this is not un­
expected. Our main point in this section is to show that 
the singlet and octet 2 + mesons are most likely to exist, 
and this property, we believe, will not be altered by a 
more refined calculation. These conclusions are similar 
to the results of Pignotti12a, and Chan, DeCelles, and 
Pat on13 but disagree with the assignment of Suzuki.14 

To complete the bootstrap cycle, we must investigate 
the production of the 1~ octet from the exchange of the 
1~~ octet itself and the 2+ singlet and octet. From (3.1) 
we see that the inhomogeneous equation corresponding 
to (3.3) is 

-gio 
= ft [IM-K DD -

where ft, ft, and ft are positive constants. The solution 
is clearly proportional to the inhomogeneous term. If we 

12 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962). 
12a A. Pignotti, Phys. Rev. 134, B630 (1964). 
13 Chan Hong-Mo, P. DeCelles, and J. Paton, Nuovo Cimento 

33, 70 (1964). 
14 M. Suzuki (to be published). 
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use the qualitative result obtained earlier that gi2 is 
roughly twice g8

2, we put /3i«2/52 and get 

EK3-
where ($ is some positive constant. Thus we may conclude 
from (3.5) that only the octet vector meson is preferred 
to exist. This completes the bootstrap cycle. 

We also note that the forces in the 1~ octet channel 
due to the exchange of 2+ singlet and octet are positive, 
and should therefore help to reduce the width of the p 
meson, say, which is notoriously large in most calcula­
tions where the exchange of 2+ multiplets is not 
considered. 

IV. MASSES AND DECAY WIDTHS 

We now examine the experimental situation and find 
strong indications for the existence of a 2+ singlet and a 
2+ octet at a higher mass than the singlet, in agreement 
with the conclusions of the preceding section. We 
identify the well-known /°(1250) with the singlet; 
4̂ 2(1310) and the newly found X"*(1414) can be identi­

fied with seven of the components of the octet. In the 
following we consider some of the predictions of such an 
assignment. 

Using any of the many models, e.g., the quark model, 
one can relate the masses of the 2+ octet with the 0~ 
octet assuming the mass splittings within the octets 
to be due to mass difference between the doublet and 
singlet within the fundamental triplet. Then we get 

mK*(2+)2—mA2
2==^K2—ni7r

2. (4.1) 

If we set MA2= 1310 MeV, we find mK*(2+)= 1400 MeV, 
which is in good agreement with the experimental 
value. 

The prediction of the mass of 1=0 component of the 
octet is complicated by the possibility of mixing with the 
singlet. If we assume that there is no mixing, then we 
can write down a mass formula similar to (4.1), but 
with i£*(2+) replaced by the 7 = 0 component and K by 
77. In this way we get the mass of the 1 = 0 component to 
be approximately 1415 MeV. On the other hand if 
there is mixing, and if we use the mixing formula of 
Schwinger15 in mass squared 

(<*-9){4>-P) = ${K*-p)(<*+4>-2K*) 

with the vector particles replaced by the corresponding 
2+ particles, we get the mass of the 1=0 component to 
be about 1480 MeV. Thus we see that the mass of the 
1=0 component depends very much on mixing. The ex-

15 J. Schwinger, Phys. Rev. 135, B816 (1964). 

perimental situation regarding the 7 = 0 component is as 
yet unclear. 

One can also calculate the various decay widths of A 2 
and K*(2+). For example, if we take TA2-*KZ= 20 MeV 
(the experimental value being 18-30 MeV),7 we obtain 
rx*(2+)->i£T~140 MeV, which is in good agreement 
with the experimental value of 100-160 MeV. We also 
find that 

« 2 , 

and 

- 3 5 . 
TK*(2.+)^KTJ 

The decay rates of the 1=0 component depend upon its 
mixing with the singlet. If there is no mixing, then its 
mass is about 1415 MeV, and the width of its decay 
into 2T is about 100 MeV and those for KK and r\r\ 
about 5 MeV each. This is somewhat larger than the 60-
MeV total width found for the KK* resonance16 at 
1410 MeV, which is therefore disfavored as a candidate. 
If we take the mass of / 0 at 1250 MeV and that of the 
1=0 component of the octet to be at 1415 MeV without 
mixing but at 1480 MeV with mixing, then we can cal­
culate the mixing parameters according to the procedure 
of Dashen and Sharp.17 From this mixing we find that 
both the decay of / 0 into KK and the decay of the 1=0 
component of the octet into 2-K can simultaneously be 
suppressed. 

We now look for the SU(6) irreducible representation 
to which the 2+ multiplets could belong. Since we have 
found the 2+ multiplets as resonance states of two 
pseudoscalar octets, we expect these 2+ multiplets to be­
long to one of the symmetric irreducible representations 
contained in the reduction of 35X35; they are18: 1, 35, 
189, and 405. Of these, only 189 and 405 contain 2+ 
multiplets. Now 189 contains only (1, 5) and (8, 5), 
while 405 contains (1, 5), (8, 5), and (27, 5). Since in our 
model calculation (27, 5) is rather discouraged, we 
tentatively assign the singlet and octet of 2+ to the 189 
representation. 
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