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We propose a model in which inelasticity can be calculated dynamically. By this we mean, given the 
left-hand cut contribution (or force), our model gives a prescription for calculating inelasticity rji( = e~2dl 

where di1 is the imaginary part of the phase shift). The basic assumption of the model is that there is one in­
elastic vi above which a large number of reaction channels open, so that the partial-wave amplitude is 
essentially imaginary in the inelastic region. Our amplitude satisfies elastic unitarity below the inelastic 
threshold and inelastic unitarity above it. We illustrate the use of the model by applying it to the ir-ir 
p-w&ve system, where we approximate the left-hand-cut contribution by one pole and by two poles. 

I. INTRODUCTION 

A PROBLEM which theorists face at present is that 
there is no simple method for calculating in­

elasticity at high energy. In the Chew-Mandelstam1-2 

N/D method, inelasticity occurs through an unknown 
function Ri(=aitot/aiBl). In the N/D method of Frois-
sart3 and that of Frye and Warnock,4 a priori knowledge 
of the inelasticity is necessary for the determination of 
the scattering amplitude. A useful method for calculat­
ing inelasticity dynamically is the ND~X matrix formu­
lation of Bjorken,5 which is suitable when a few inelastic 
channels are open. However, at high energy, the method 
becomes not only prohibitive, because of the opening 
of a large number of inelastic channels, but also cannot 
be applied, since inelastic channels involving large 
numbers of particles become important. Thus, at high 
energy, in any phenomenological investigation, one not 
only has to find the force (or the left-hand-cut contri­
bution), but also the inelasticity.6 I t is, therefore, 
physically interesting to see whether the two problems 
can be reduced to one, say, that of finding the force, 
while the inelasticity becomes a calculable function.7 

This has been the basic motivation of our model. An 
approach, similar to ours in spirit, but with a very 
different scheme for calculating inelasticity, has been 
outlined by Olesen.8 

In Sec. II , we present the mathematical formulation 
of our model. The N/D method with inelastic cut by 
Froissart3-9 is used. A practical difficulty, which may 

* Work supported by the U. S. Atomic Energy Commission. 
1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
2 G. F. Chew, S-Matrix Theory of Strong Interactions (W. A. 

Benjamin and Company, Inc., New York, 1961). 
3 M. Froissart, Nuovo Cimento 22, 191 (1961). 
4 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963). 
5 J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960). 
6 Usually the left-hand cut and the inelasticity are treated as 

given separately in the ^-matrix approaches. See for example, 
G. F. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961). 

7 Frye and Warnock (Ref. 4) have found that the left-hand cut 
contribution and the inelasticity cannot be chosen independently, 
in general, and they observed that the asymptotic behaviors of the 
left-hand cut contribution and the inelastic effect should be 
precisely matched. 

8 P. Olesen, Phys. Letters 10, 352 (1964). 
9 The method was independently developed by one of us (K. K.) 

and M. Ross in an unpublished work. 

arise because of a simple approximation for the driving 
force, is discussed in Sec. I I I . In Sec. IV, we present 
the results of applying our model to the ir-ir ^-wave 
system. Finally, in Sec. V, a few concluding remarks 
are made. 

II. FORMULATION OF THE MODEL 

We consider the scattering of two equal-mass spinless 
particles. The partial-wave scattering amplitude is 
given by 

Ai(v)=(e2i^-l)/2ip(v), (2.1) 
where 

p W = = [ „ / ( „ + l)]l/2. 

Here v is the square of the c m . momentum10 and di(v) 
is the phase shift. If v%is the inelastic threshold, then 8i is 
real for v<v% and hi is complex for v>vi ( 5 ; = 5 ^ + z 5 / ) . 
For v>vi, we can write 

Al(v)=(rne™iR-l)/2ip(v), (2.2) 
where 

Vi= pr^i1. 

We call rji the inelasticity.11 

Let us now introduce the following function3,9: 

Fi(v) = exp\ 

The function 

|-2^Z+l/2 ,00 tf(v>)jv> r dil{y')dvr I 

) H vn+lV(v'-v)\~ 
= e x p [ 2 ^ ] . (2.3) 

„m/2 

0 i « = -
&f{v')dv' 

7T JH V'W*(V'-V) 
(2.4) 

is an analytic function which is real for 0<v<vi and 
becomes complex for v> v,: 

0*« = A;O) + * V O ) , (P>vi). (2.5) 

A; is the principal value of the integral in (2.4). Here, 
it is noted that the factor v

l+112 is used rather than v1/2, 
as has been done by Froissart.3 The reason for this is 
given later on. 

10 The particle mass is taken as unity. 
11 The function r)i(v) is usually called the inelasticity factor, the 

absorption coefficient or the transmission coefficient. 
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Let us further introduce a new partial-wave ampli­
tude aiiy) by the following relation: 

ll+2iP{v)Al{v)-} = Fl{v)[l+2ip{v)al{v)'}. (2.6) 

The new amplitude then takes the form 

ai(v)=(*<"*»-l)/2ip(v), (2.7) 

where 

a i M = 5 i « - - 0 i M . (2.8) 

Since di and 6i are both real for 0 0 ^ vi and have the 
same imaginary part for <*> >v>vi, therefore ai is real 
throughout the physical region 0 < v< o°. Equation 
(2.7) then implies that ai(v) always obeys elastic 
unitarity, i.e., 

Imai{v) = p(v)\ai{v)\2 for *>>z/>0. (2.9) 

Let us now consider the threshold behavior of ai. 
When v—*0, we have hi^vl+llcl. Further, from Eq. 
(2.4), we have 0^^+1/2 a s „_>o. Thus, from (2.8), 
ai ^ vl+l/2 as v —> 0; that is, the new amplitude a\(y) has 
the same threshold behavior as the physical amplitude 
Aiiy). This is essentially the reason for our using the 
factor vl+112 rather than v1/2 in Fi(v). The discontinuity 
of ai(v) on the left-hand cut is given by 

Imai (v) = 1mA t {y)/Fi (v) 

+ C ^ W - I ] / 2 P W ^ W , (*<- i ) . (2.10) 

In our model, we shall assume that Imai(v) for v< — 1 
or equivalently, the left-hand cut contribution of a,i(v) 
is known. Then, the N/D method of Chew and Mandel-
stam1'2 or the inverse method12 allows us to calculate the 
amplitude ai(v), which has the correct threshold be­
havior, obeys elastic unitarity, and has the given left-
hand cut contribution. This, in turn, gives the phase 
shift ai(v) of aiiy). Therefore, the function OLI(V) will be 
considered by us to be a known function of v. 

We shall now present arguments that hiR is an 
approximately known quantity. First we note that if 
vi is large, then for v>Vi a large number of inelastic 
channels open. In that case, the elastic scattering can 
be considered as the shadow scattering of inelastic 
processes and Ai(v) is, therefore, essentially imaginary. 
This corresponds to 8iRc^znir where n is an integer. 
Again, from a generalized Levinson's theorem,13 we 
know that hiR goes asymptotically to nir where n is 
related to the number of bound states and the number 
of Castillejo-Dalitz-Dyson (CDD) poles.14 For a given 
force, we shall assume that these numbers are known 
from physical considerations. 

Thus, in our model, ai and 8iR are both assumed as 
known quantities. Writing Eq. (2.8) as ai=8iR—Ah 

12 J. W. Moffat, Phys. Rev. 121, 926 (1961); P. T. Mathews and 
A. Salam, Nuovo Cimento 13, 381 (1959); also see Ref. 23. 

13 R. L. Warnock, Phys. Rev. 131, 1320 (1963). 
14 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 

453 (1956). 

with v> vi, we get, 

Ai(v) = dl
R(v)-ai(v)~mr-al(v), (v>v%) (2.11) 

which is, therefore, a known quantity. 
From Eq. (2.4), we get, 

J-fl/2 roo 

AM-
bf(v')dv' 

1/H-1/2/V V-v) 
, („>„<). (2.12) 

The left-hand side of the above equation is known. 
If we can now invert Eq. (2.12) so that diT(v)/vl+l12 is 
expressed as an integral over AJ(J>), then di1^) will be 
known and the problem of finding inelasticity will be 
solved. To solve the corresponding mathematical 
problem, we proceed in the following way: 

Let us write 

and 
8J IW/V"-1 '»=AW. (2.13) 

Then, from Eq. (2.4), we have, for v>Vi, 

*(H-)+*(x-) = 2*00, (2.14) 
and 

4>(v+)-4>{v-) = 2ih(v). (2.15) 

In our model, g(v) is a known function and k{y) is 
unknown. Finding ${y) from Eq. (2.14) is a standard 
Hilbert arc problem.15-16 The solution, in our case, 
corresponding to some physical restrictions, is given by 

4>(z) = -
(z—vi) 1/2 roo 

2iri 

2g(v')dv' 

(v'-vy»(v'-z) 
(2.16) 

The detailed derivation of Eq. (2.16) and the physical 
restrictions imposed on the solution are considered in 
the Appendix. 

From (2.16), we now get, 

«i r (v) / i ' H - l f l =-
{v— Vi) Al/2 

X-P 
Ai(v')dv' 

and 
„,. / ! + 1 / 2 ( / _ } / . ) l / 2 ( / _ J , ) 

(v.-v)1'2 r» Ai(v')dv' 

(y>Vi) (2.17) 

,>Mi»(v>-Viyii(y>-v) 
(2.18) 

In the above equations, Ai(v) is given by Eq. (2.11). 
Equation (2.17) gives the inelasticity in our model. The 
amplitude Aiiy), for v>vi, can be calculated from the 
inelasticity and the relation biRc^znir. For v<Vi, the 

15 N. I. Muskhelishvili, Singular Integral Equations (P. Noord-
hoff Ltd., Groningen, The Netherlands, 1953). 

16 J. D. Jackson, in Scottish Summer School Notes, 1960, edited 
by G. R. Screaton (lnterscience Publishers, Inc., New York, 1961). 
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amplitude Ai(v) can be calculated by using the relation 
8i=o>i+di, where 61 is given by the Eq. (2.18). Finally, 
we would like to point out that 5//V+ 1 / 2 , as given by 
Eq. (2.17), always satisfies Eq. (2.12). This can be 
shown by inserting (2.17) in (2.12) and using the 
Poincare-Bertrand formula.17 The details are also given 
in the Appendix. 

III. DIFFICULTY ASSOCIATED WITH 
APPROXIMATE FORCE 

In presenting our model in the previous section, we 
assumed that the force was correctly given. However, 
in an actual situation, the force itself is not generally 
known, and we have to make some phenomenological 
approximation for it. In Eq. (2.17) the vf integration 
runs over the values of ai(vf) from vr=Vi up to vf = oo 
(note, Ai=nw—ai). Now, an approximate phenomeno­
logical force can only be realistic in a limited energy 
region and therefore, the corresponding function ai{v) 
cannot be considered seriously beyond that range of v. 
This, in turn, implies that 5iT(p) as given by (2.17) can 
get an appreciable contribution from values of ai(v) 
which are not physical and thus can yield a biI(p) which 
is unphysical, say, 5II(P)<0. However, from unitarity, 
we know di

I(p)>Q (0<TJI< l ) . Therefore, in such a case, 
further investigation of the function AI(P) or ai(v) is 
necessary, so that Eq. (2.17) does not give an un­
physical result. We shall show that, in such a situation, 
our model can still be used to give diT(p) in the nearby 
inelastic region, while the far-off inelastic cuts have to 
be taken into account in a phenomenological fashion. 

We shall first show an example where 5 / as calculated 
from (2.17) will always be negative. Let us consider 
/ = 1, n = 0 (no bound state or CDD pole). In this case, 
we can write Eq. (2.17) as 

(v-vi)^2 r al{v,)dvr 

^(v)/vw = - p 
7T JH v'Zl*(v'-V%)ll2{vr-v) 

(p-Pi)1'2 / • " [ a i ( j / ) / / - a i ( i O A ] 
= / dp' 

7T Jvi pni2(p'-Piyi2(p'-p) 

(p-Piyi2ai(p) r dp' 
+ P • (3.1) 

1TP Jvi Pfl>2{pf-Pl){p
f-P) 

If, now, ai(i>)>0 for p>Pi and ai(p)/p is a monoton-
ically decreasing function, then the integrand of the 
first term is always negative for oo >v>pi. The second 
term in Eq. (3.1) is given by 

« i W / l + [ ( ^ - ^ ) A ] 1 / 2 \ 
In , 

^3/2 V 1 - [ ( V - ^ ) / / P / 

and is also negative. Thus 5iz(v) in this example will 
always be negative. 

17 See Ref. 15, p. 57. 

Let us now consider an approximate phenomeno­
logical force which is realistic in the low-energy region 
and for v^Vi. We shall see how, in this case, our model 
yields hiJ(p) in the nearby inelastic region. Let us define 

^(z) = <t>(z)/(z-Pi)^2 

1 r 2ai(p')dp' 
= / . (3.2) 

[See Eq. (2.16). For simplicity we take ^ = 0 . ] From 
(3.2) we have, 

$(p+)-$(p-)==-2al(p)/[_pW*(p+-piy!2l. (3.3) 

Let us now consider the function 

*(*)= -ai{z)/zl+l'2{z-p%)ll2. (3.4) 

The discontinuity of the function \f/(z) for oo > v> vi is18 

il/(p+)-xP(pJ)=-ai(p)/pl+1^(p+-pi)
1^ 

+al(p)/pl+1!2(p--piy?2 

= -2al(p)/pl+V2(p+~piyiK (3.5) 
Therefore 

Hv+)-Hy-)=Hv+)-Hv-). (3.6) 
This means that $(z)—\//(z) is an analytic function 
which does not have the branch cut v= v% to p= oo. 

Equation (3.2) shows that $(z) is regular in the 
whole complex plane except for the branch cut p= v% to 
p= oo. The function \f/(z) of Eq. (3.4) is analytic in the 
whole complex plane except for a right-hand cut from 
p=Pi to v= oo and a left-hand cut from v= — l to 
v = _ oo. This left-hand cut arises because the phase 
shift ai(v) has this cut. The function $(z) — \f/(z) is, 
therefore, regular inside a circle of radius ( ^ + 1 ) with 
the center v= Pi. SO we can expand it in a Taylor series 
and obtain19 

$(z) = -ai(z)/zl+1!2(z-pzyt2 

+ao+ai(z—Pi)+a2(z—Pi)2Ji . (3.7) 

The series in (3.7) will be uniformly converging for 
12— vi\ O d - 1 . From Eq. (3.7), we get 

= a0+ai(p—Pi)+a2(p—Pi)2-{ . (3.8) 
Again, 

j [ * ( , + ) + $ ( , _ ) ] = ^ ( , + ) - 0 ( , _ ) ] / ( , + - , s - ) 1 ' 2 

= ihI(v)/[yl+^(v+-v^-]. (3.9) 

From Eqs. (3.8) and (3.9) we, therefore, obtain 

XD*o+ffi(i'— vi)+a.2(p— Vi)2-\ ] 

= (r>+-viyi2[.c0+c1(p-pi)+c2(v-Viy+-• • ] , (3.10) 
18 The function ai{v)/vl+% is analytic in the complex v plane 

except for the cut v~ — \ to j/= —oo. Since ai{v) is the purely 
elastic scattering phase shift, so the right-hand cut of ai(y) is 
removed by dividing bv the factor vl+K 

19 See Ref. 15, p. 75." 
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where the coefficients Co, Ci, Ci, etc. have to be real, since 
8i'(v) is real. We now have, from Eqs. (2.4) and (3.10), 

Bi{v)/v (+1/2 

1 r hf{v')dv' 

TJH v'l+'l\v'-v) 

1 /-2'<+i 8/(u')dv' 1 r Si(v')dv' 

irJH vwi*(v'-v) •KJir.+lV'Wl2^-v) 

= [ C 0 / o + C 1 J 1 + C 2 / 2 + - - - ] 

1 

+ -
where 

, (3.H) 

T J vi 

( j = 0 , l , 2 , • • • ) . 

The last term in (3.11) can be interpreted as the con­
tribution of the distant inelastic cuts, while the terms 
in the square bracket can be interpreted as the con­
tribution of the nearby inelastic cuts. 

To proceed further, let us assume that we are in­
terested in values of v in the low energy region and in 
the nearby inelastic region (i.e., v~Vi). In that case, we 
can consider that the effect of distant inelastic cuts will 
be reasonably taken into account by a phenomenological 
constant, i.e., we replace the last term in Eq. (3.11) by 
a constant. Also, we can expect the first few terms 
inside the square bracket in (3.11) to take into account 
the effect of nearby inelastic cuts, because the series in 
Eq. (3.10) is uniformly converging. Specifically, we have 
made the following 3-parameter approximation : 

dl(vyvmi2~Coh+ClIl+do 

i.e., 

el(v)/vM**ilCo+C1(v- ViWoiv) 

+ 2CiM- l ) 3 / 2 /37r+Jo , (3.12) 

where, for 1=1, 

Io(v) = -\2(vi+iyi*-(v-v^ 
7rL 

'M-i)1/1+G'-i'<)1/* 
XI: n(- j+iHv-vd1'2 , 

= -[2(^+1)1/2+2(^.-^/2 

X t a n H -irivi-v)^ , (v<v%) (3.13) 

L(^+1)J J 

and 
Ii(v) = 2(Vl+l)W/37r+(v-Vi)h(v). (3.14) 

To determine the parameters in Eq. (3.12), we note 
that Re#z= Az= — ai and is, therefore, known. Thus, by 
comparing the real parts of the left-hand and the right-
hand sides of Eq. (3.12), we can determine Co, Ci, and 
do. The inelasticity can then be calculated from the 
equation 

V W / , m / 2 ^ [ C o + C l ( , _ , . ) ] ( , _ ,.)i/2> ( 3 . 1 5 ) 

Further, the amplitude Ai(v) can be calculated in 
the elastic region using Eq. (3.12) and the relation 
di=6i+ai. One point worth emphasizing here is that in 
determining the parameters Co, Ci, do we have used only 
the values of a 1 in the nearby inelastic region. On the 
other hand, in the application of Eqs. (2.17) and (2.18), 
one needs values of ai throughout the inelastic region. 

IV. APPLICATION TO « -* p-WAVE SYSTEM 

We have applied our model to the TT-TT ^>-wave state. 
The left-hand cut contribution is approximated in two 
ways: (i) by one pole and (ii) by two poles. The pole 
positions in the two-pole approximation are chosen by 
the Balazs prescription20 and the residues are adjusted 
so that a resonance occurs around 550 MeV in the two-
pion ^-wave state. In the one-pole approximation, the 
pole position is taken the same as the second pole 
position of the two-pole approximation. Again, the 
residue is adjusted to give a resonance at about the same 
energy. Our resonance position is appreciably below the 
physical p mass (760 MeV). The value 550 MeV cor­
responds approximately to the number that has been 
calculated by using crossing symmetry.20,21 

For each input force, we have considered two inelastic 
thresholds vi= 12.5 and vi= 17.5. The phase shift «i(z>) 
of amplitude a\ (v) is calculated using the N/D method. 
We have 

G!/v=N/D, (4.1) 

where (i) for one pole 

N= 
v-\-co 

/3 v 1/2 v+a r dvr I vf* y * 
D=l - — - N(v>), (4.2) 

TT Jo (y'+u)(v'-v)\v'+l/ 

and (ii) for two poles 

N=-
h 

p + w i V+C02 

»/* \ l / 2 

D=l— — -( N(v'). (4.3) 
Trio / ( / - * > ) V + l / 

20 L. A. P. Balazs, Phys. Rev. 128, 1939 (1962). 
21T. Kanki and A. Tubis, Phys. Rev. 136, B723 (1964). 
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In (4.2) the D function is normalized at the pole 
position and in (4.3) at the threshold. The subtraction-
point independence of the N/D formalism has been 
shown by several authors22,23 and it can be shown 
explicitly when the N function is given by pole terms.24 

The parameters Co, Ci, and do are determined from the 
phase shift ai(v), as described in Sec. I I I . We cannot 
apply Eqs. (2.17) and (2.18) directly for the inelasticity 
calculation, since ai(v) obtained from either (4.2) or 
(4.3) decreases monotonically for v>Vi, thus giving 
unphysical 5z7(V)(<0).25 The results of our calculation 
are shown in Figs. l ( a ) - l (d ) for the one-pole input 
force and in Figs. 2 (a)-2 (d) for the two-pole input force. 
In Fig. 1(a), pi cotai and pi cotSi are plotted (pi being 
vp); in Fig. 2 the corresponding cross sections are given. 
I t has been shown that when inelasticity is included, the 
width of the cross section becomes narrower than that 
of the elastic cross section.26 This is expected in the 
actual physical situation, when the force is correctly 
given. Figure 1(a) shows that for a one pole approxi­
mation when inelasticity is taken into account, the 
width is narrowed. However, the cotangent of the phase 
shift cot5i, does not go through zero, i.e., we do not have 
a resonance of the Breit-Wigner type. This is clearly 
unphysical and we feel that it essentially indicates that 
our one pole input force is crude in the inelastic region, 
so that the inelasticity parameters determined from it 
are bad. In Fig. 1 (c) 771 is plotted and shows a sharp fall 
in the nearby inelastic region. In Fig. 1(d), ai(v)/vzl2 is 
plotted and compared with the expression 

- { [ C 0 + d ( . - ^ ] R e / o W 

+ 2Cifa+l )» 'V3H-do}; (4.4) 

it indicates how well the inelasticity parameters Co, Ci, 
do are determined. 

The values of the parameters for the one-pole case are 

22 A. W. Martin, Phys. Rev. 135, B967 (1964). 
23 G. Q. Hassoun and K. Kang, Phys. Rev. 137, B955 (1965). 
24 For example, see M. L. Menta and P. K. Srivastava, Phys. 

Rev. 137, B423 (1965). 
25 We have considered n => 0 for the ir-ir p-w&ve amplitude. This 

choice is based on the work of Warnock (Ref. 12). He has proved 
that 5iR(co)=mr= (—nh-\-nc)ir, where w& = number of bound 
states and nc — number of CDD poles. The number nc for his B 
class amplitudes is given by nc~nu—na— €+»&+Woo, where 
nu = number of times the phase shift diR goes up through an inte­
gral multiple of ir, fid = number of times the phase shift 8iR goes 
down through an integral multiple of w, e = 0 or 1 if the phase shift 
is positive or negative near the threshold, noo = 0 or 1 if 8iB(v) 
approaches its limit from above or below. For the class B ampli­
tudes fid-\-e^rib, while for the class C amplitudes (which involve 
CDD poles of second kind) »<*+€<»&. Since there is no experi­
mental evidence of ir-ir p-w&ve bound state, we have w& = 0. This 
shows that we are not dealing with the class C amplitude. If our 
phase shift on (v) for the purely elastic-scattering case is examined, 
it will be seen that it is positive near threshold, rises to a maximum 
value (<7r) and then falls montonically. This happens for both the 
one-pole and the two-pole input forces. Such behavior corresponds 
to nu = nd = e = no0==0, i.e., no CDD pole. 
N%26 J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137, 
B1242,(1965); P. Coulter and G. L. Shaw, Phys, Rev. 138, B1273 
(1965). 

5=2.7, o)= 50.0, and 

(i) Co=0, Ci= 0.00201, d0= -0 .0607 for ^-=12.5, 

(ii) C 0 =0, Ci=0.00073, d 0 =-0 .03563 for ^ = 1 7 . 5 . 

Figures 2(a)-(d) correspond to Figs. l (a) - (d) when 
the N function is approximated by two poles. The values 
of the parameters for the two-pole case are bi= — 2.75, 
^2= 23.75, a?i=6.25, co2 = 50.0 and 

(i) C 0 =0, Ci=0.00248, d0= -0.07307 for ^ = 1 2 . 5 , 

(ii) C 0 =0, Ci=0.00090, d0= -0.04236 for ^-=17.5. 

Here it will be noticed that the cross sections with 
inelasticities are wider than the purely elastic cross 
section. This is presumably unphysical. In this case, 
pi cot5i for vi= 17.5 has a zero indicating a Breit-Wigner 
resonance. However, pi cotSi for vi— 12.5 not only does 
not go through zero, but also develops a pole around 
^ = 0.5. This occurs because 0i is negative and be­
comes equal to a\ in magnitude near threshold and 
8i(5i=0i+ai) develops a zero. As before, these features 
indicate that the input force is very bad in the inelastic 
region, so that the corresponding inelastic effect is 
unrealistic. Obviously, the simple criterion which we 
have used to determine the input force, namely, that it 
will produce a low-energy resonance of the type ob­
tained in self-consistent calculations, is not enough to 
give a physical force for the high-energy region.27 

V. CONCLUDING REMARKS 

The basic assumption of our model is very similar to 
that of the optical model,28 viz., at high energy the 
elastic scattering is essentially the diffraction scattering 
associated with inelastic processes and is purely 
imaginary. However, to calculate inelasticity in the 
optical model, one has either to assume some kind of 
absorptive potential,29 or to use some type of phenom-
enological description.30 On the other hand, in our case, 
inelasticity is obtained from the left-hand cut contri­
bution and this, in principle, can be dynamically calcu­
lated by considering exchange of particles or systems. 
Besides, our model also shows how the effect of in­
elasticity can be taken into account in the elastic region. 

27 A question that arises is whether we bring in any CDD pole 
when we introduce inelasticity. This can be checked by examining 
the behavior of the phase shift 5i(i>). For the single-pole input 
force, and ^ = 12.5 and 17.5, h\{v) is positive near threshold, rises 
to a maximum (<7r) and then falls to zero at v — v%. This behavior 
corresponds n = 0, as pointed out before. The same behavior is 
also exhibited by 8i(v) for the two-pole input force and ^ = 17.5. 
However, 8i(v) for the two-pole input force and Pi —12.5 shows 
that it is negative near threshold, goes up through zero around 
v = 0.5, reaches a maximum (<x) and then falls to zero at v = v%. 
This behavior corresponds to e = l, nu—l and Wd = ôo = 0. There­
fore, nc = nu—nd~€-i-W6+»oo = 0 again, i.e., no CDD pole. 

28 S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 75, 1352 
(1949); H. Feshbach, C. Porter, and V. F. Weisskopf, Phys. Rev. 
96, 448 (1954); K. K. Greider and Glassgold, Ann.«Phys. (N.Y.) 
10, 100 (1960). 

29 R. Serber, Rev. Mod. Phys. 36, 649 (1964). 
30 A. Baiquini, Phys. Rev. 137, B1009 (1965). 
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FIG. 1. (a) pi coto:i and pi cotSi are plotted for the one-pole input force pi = [V/0+1) ]*- The solid curve corresponds topi cotai; the 
dashed curve corresponds to pi cotSi for ^ = 12.5 and the dash-dot curve to pi cot5i for ^=17.5 . (b) The ir-ir p-w&ve cross section is 
plotted for the one-pole input force in units of pion Compton wavelength. The solid curve corresponds to avir for the purely elastic 
scattering; the other two curves correspond to ow when inelasticity is taken into account. The dash curve represents or^ for */; = 12.5 
and the dash-dot curve represents <rvir or */*= 17.5. (c) The inelasticity rj calculated from Eq. (3.15) is plotted against {v — vi) and com­
pared with the expression (4.4) for the one-pole input force. The dash curve is for ^; = 12.5 and the dash-dot curve for p» = 17.5. (d) 
ai(v)/v3/2 is plotted against (v — v%) and compared with the expression (4.4) for the one-pole input force. The dash curve is for ^ = 12.5 
and the dash-dot curve for ^ = 17.5. 

In Sec. II , we assumed that the left-hand cut con­
tribution of ai(v) [say, aiL(v)~] rather than that of 
Ai(v) [say, AiL{v)~] is given. However, if the left-hand 
cut is due to some known particle exchange, then A iL(v) 
is known. In this case, we can consider as a first approx­
imation aiL(v)o^.AiL(v). If a better approximation is 

desired, we can calculate Fi(v) with this diL(v), analyt­
ically continue it to the left and then obtain a better 

In Sec. I l l , we pointed out the possibility that for an 
approximate force which is unrealistic in the high-energy 
region, 811 as calculated from Eq. (2.17) can be negative. 
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Same as Fig. 1 (a) for the two-pole input force, (b) Same as Fig. 1 (b) for the two-pole input force. 
ne as Fig. 1 (c) for the two-pole input force, (d) Same as Fig. 1 (d) for the two-pole input force. (c) Same as Fig 

In such a case, the model cannot be directly applied. 
However, if the approximate force is such that aiiv) is 
fairly realistic near the inelastic threshold, then the 
equations of our model yield 811 for the nearby inelastic 
region. We have used this method in Sec. IV for the 
7r-7r ^-wave system. The results obtained indicate that 
inelasticity can have an appreciable effect on the elastic 
scattering and this effect is sensitive to the input force. 
However, we feel that our results should be taken as 
illustrating the use of the model, rather than as physical, 
because the input forces are not good approximations 
even in the nearby inelastic region. One can, of course, 

invert the problem and use our model to find out what 
force, with inelastic effect included, describes the 7r-7r 
_£-wave state. 

A physical situation that may be conceived is where 
the input force is known to be realistic not only in the 
low-energy region but also in the high-energy region. 
For this force, if application of Eq. (2.17) with n=Q 
gives 5 / unphysical (<0), then it may imply that n is 
different from zero. In this case, we can search for a 
value of n that will give 5 / physical (>0) and thus get 
an idea about the CDD ambiguity occurring in the 
problem. 
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I t has been recently pointed out that the single-
channel calculation may not be equivalent to the multi­
channel calculation.31,32 Such a circumstance may imply 
zeros of the S matrix and these can be taken into 
account by multiplying the function Fi(v) occurring in 
Eq. (2.6) with a suitable rational function.31 However, 
in methods where a dispersion relation for the phase 
shift is used,33 such zeros of the 5 matrix bring in extra 
branch cuts and cannot be easily incorporated. 
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APPENDIX 

We have to find the function tj>(v) which is analytic in 
the complex v plane except for a right-hand cut from 
v— Vi to v = oo and satisfies the boundary condition 

*(v+)+0(O = 2gW, (*.<*< °o). (Al) 

The function g(v) is known. Next we want to obtain the 
imaginary part h(v) of <j>(p) from the equation 

(j>(v+)-<l>(vJ) = 2ih(v), (vi<v <«>). (A2) 

We introduce a new variable J* = — (1/v) so that the 
cut v— vi to v= GO in the v plane is transformed into a 
finite cut f =f* to f = 0 in the f plane (f»= — l/vi). Let 
us denote the values of f on this cut by t and denote the 
functions <l>(v), g(v), and h(v) by primed ones in the 
f plane; i.e., <l>(v) = <!>'(£) etc. Equations (Al) and (A2) 
now become 

<t>'(t+)+4>'(Q = 2g'(t) (A3) 

and 

4>'(*+)-<!>'(Q = 2ih'(t). (A4) 

The present problem is then to find the sectionally 
holomorphic function <£'(f), as given by Eqs. (2.4) and 
(2.12), and satisfying the boundary condition 

4>'(t+) = G(t)4>'(Q+2g'(t) (A4a) 

on the cut, where G(t)= — 1. 
Before we solve the problem, some definitions of the 

solutions are in order. We follow closely those of Ref. 
15. The ends are called special (or nonspecial) if G(t) as 
defined in (A4a), is (or is not) a real positive quantity. 
If solutions are bounded at nonspecial ends ch c2, • • •, cn 

they are called solutions of the class h(ci,C2, • • • ,£w). The 
solution of the homogeneous equation vanishes at these 
nonspecial ends. Each solution is characterized by an 
index which is the negative of the highest power of the 
expansion at infinity. 

3 1M. Bander, P. W. Coulter, and G. L. Shaw, Phys. Rev. 
Letters 14, 270 (1965). 

32 E. J. Squires, Nuovo Cimento 34, 1751 (1964). 
33 J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961). 

Now returning to the present problem, the ends f* 
and 0 are nonspecial. Let us first consider the cor­
responding homogeneous problem 

x(^)+x(O = 0. (A5) 

The fundamental solution of the class h(a) of the 
homogeneous problem (A5) is 

x 1(f)=c 1[ i? 1(f) j /V[i?2(f)] 1 / 2=c 1[ i? 1(f) / i? 2(f)] 1^, 

(A6a) 

where 

£i(f)=r-r»-, #2(r)=r 
and C\ is an arbitrary nonzero constant. The index of 
this class is 0. The fundamental solution of the class 
k(Ct) is 

x2(f)=c2[ i?2(f)] i /y[i21(r)]1 '2 (A6b) 

and the index of this class is also zero. The fundamental 
solution of the largest class ho is 

x3(r)=c3c^i(r)^2(f)]~1/2 (A6c) 
and the index of this class is 1. The fundamental solution 
of the smallest class h(c 1,02) is 

x4(r) = C4[^1(f)i?2(f)]1/2 (A6d) 

and its index is — 1 . 
I t can be easily seen that each of the above solutions 

has a cut from f* to 0 and satisfies Eq. (A5). Using Eq. 
(A5), Eq. (A3) can be written as 

<j>'(t+) = lx(t+)/x(t-^<t>'(Q+2g'(t) 

or 

<t>\t+)/x{t+)-<t>f{Q/x{Q = 2g>(t)/x{t+). (A7) 

The function <£(f)/x(f) is regular in the complex plane 
except for the cut from f=ft- to f = 0 and the dis­
continuity across the cut is given by (A7). From the 
results obtained in Chap. 10 of Ref. 15, the general 
solution of Eq. (A7) for a given class is given by 

*'(r)/x(r)= (2^)- if 2g>(t)ix(t+)(t-t)j-idt+pjtt) 

or 

x[ 2g'(0Cx(^)(<-f)]-1*+x(f)Py(f), (A8) 
hi 

where Py(f) is an arbitrary polynomial of degree j and 
P_i(f) = 0. The second term of (A8) is the general 
solution for the given class of the corresponding homo­
geneous problem (A5), while the first term is a particu­
lar solution of the nonhomogeneous problem (A3). 
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Using (A8) and (A6), we obtain 

h'(h) = -bc(to)/2Tl 

XP[ 2g>(t)&(t)(t~to)T1dt-ix(to)Pj(to) (A9) °[ 2g' 

for ft</o<0, and we write x (£+)== X 00-
To find out which of the four fundamental solutions 

in (A6) is appropriate to our physical problem, let us 
first examine the behavior of ti (to) near the end ft. For 
^i(f) = C 1 [ ( f - f t ) / f ] 1 / 2 and X4(f) = C 4 [ f ( f - f t ) ] 1 / 2 , the 
integrand in Eq. (A9), [2g'(/)]/[x00]> behaves as 
l/(t—ft)1/2 near the end ft. Application of the results 
obtained in Chap. 4 of Ref. 15 gives, in this case, 
h'(to) oc (t0— ft)1/2~a<> where a 0 < | , that is, hf(to) vanishes 
at the end ft. For X2Cr) = C 2 Cf/( r - f t ) ] 1 / 2 and X3(f) 
= C 3 [ f ( f - f t ) l - 1 / 2 , the integrand [ 2 g ' ( 0 ] / [ x W ] van­
ishes as (/—ft)1/2 near the end ft, so that in this case, 
h'(to) behaves as (t0— ft)~1/2 i.e., h'(t0) becomes infinite 
at the end f»•. 

Now, ti(t0) = k(v) (oo > „> ^) 

= SZ 'M/V+1/2 

and SzJ(z>) = 0 at y=^-. Therefore, hf(t0) should vanish 
at the end ft. Thus, only the solutions Xi(f) and X4(f) 
in (A6) are relevant to our problem. 

Let us next examine the behavior of h! (to) near the 
end t=0. For X4(f) = C4[f ( f - f t ) ] 1 / 2 the integrand in 
(A9), 2g'(t)/x(t), behaves « 1/^/2, so that, as before, 
h'(to) <* tlf2~a<> where a o < i ; that is, hf(t0) vanishes at the 
end / = 0. On the other hand, for Xi(f) = C i [ ( f - ft)/f]1/2, 
we have h!(to)<*to~1/2, i.e., it becomes infinite at the end 
/ = 0 . Now recalling 

* c 
i r di(t 

v)=- I — 
f i „ J-'m/2 

Sfiv'W 

(v'-v) 

we notice that in writing this equation, we have con­
sidered 5j7/V+1/2 to vanish as v —> oo. Therefore, from 
(A10), h'(to) should vanish at *=0. Thus, the funda­
mental solution appropriate to our problem is 

x4=c4 [r( f- f t) ;p. (AH) 

The solution (All) behaves as 0(f) for f —> oo. 
Inserting (All) in (A8), we find that the first term on 
the right-hand side in (A8) behaves as constant for 
f —> oo ? while the second term behaves as f1+' for j>0. 
Now, 

* , ( r ) = 0 W = ^ i W / i ' m / 2 (Ai2) 

and 6i/vl+112 behaves as a constant when v —> 0. There­
fore, 0'(f) should behave as constant when f —> oo. This 
means that in Eq. (A8) the polynominal Pj(z) should 
not occur. Thus, we arrive at the following results: 

<^'(r)=(2«)-'[f(f-r i)]
i /2 

X [ 2g'{t)[t(t-U)1-llKt-i)-'dt (A13) 

and 

h'(to)=-(2T)-ilt0(to-U)J12 

Xpf 2g'{t)[t(t-U)~]-ll2(t-hYldt. (A14) 
J ti 

If we change from f to the original variable v, we get 
from the above equations 

e i M/V+ 1 ' 2 =0 0 ) = (2«) - i {Vi- vyi* 

/•oo 

X / 2g{v')(Vi-v')-m(v'-v)dv' (A15) 

(A10) and 

hI(v)/vl+^ = h{v)= - (2ir)-i(v-Viyi* 

/•CO 

XP 2g(v')(v'-vi)-1li{v'-v)dv', (A16) 

whereg( / ) = A i ( / ) / / m / 2 . 
We now want to verify that 5;7(V)/V+1/2 given by 

(A16) satisfies the equation: 

A,(«0/"H1/S 

/•OO 

= to~1P IdfW/v'MXy'-vy-W. (A17) 

Inserting (A16) in the above equation, we get 

A;WAw/2=gW-

(u'-Vi)
m 

i r g(v") 
- / <f/' 
«2JH (?'-Viy-i* 

XP dv'~ 
n {v'-v){v"-v') 

, (A18) 

where we have used the Bertrand-Poincare formula for 
the repeated principal value integrals. The last integral 
in (A18) vanishes, so that the solution (A16) always 
satisfies Eq. (A17). 


