
P H Y S I C A L R E V I E W V O L U M E 139 , N U M B E R 5A 30 A U G U S T 1965 

Multiple Scattering and Many-Body Theory: Free Energy of Electrons in Helium 
M . COOPERSMITH* 

Department of Physics and Institute for the Study of Metals,f University of Chicago, Chicago, Illinois 
and 

Physics Department, Case Institute of Technology, Cleveland, Ohio 
(Received 12 April 1965) 

An electron in helium vapor at 4°K is characterized by its s-wave scattering length off helium atoms. 
This scattering length is small compared with the average interparticle spacing in the helium vapor. Con­
sequently, we have taken as a model a particle interacting via hard-core repulsion with an ideal gas. This 
establishes a connection with the hard-sphere Bose problem of more general interest. The model described 
above is simpler (a) because it has only Boltzmann statistics and (b) because the electron is very light 
compared with the helium atoms. For this model, we have calculated the interaction free energy of the 
electron assuming that it is in statistical equilibrium with the helium gas. In the s-wave approximation, it 
is shown that this interaction free energy is rigorously 2irpa (h2/m) due to single scattering, all higher order 
multiple-scattering effects being zero. Here, p is the average density of helium atoms, a is the scattering 
length, and m is the electron mass. Since the p-w&ve approximation contributes a term of order paz, it is 
evident that the term 2irpa{h2/m) is good to higher densities than might previously have been supposed. 
This provides partial justification for the "bubble" model of the electron mobility since the term 2irpa(h2/m) 
is certainly good up to densities at which the free energy of the "bubble" configuration becomes smaller. 

I. INTRODUCTION 

TH E anomalous behavior of electron mobility in 
helium vapor at about 4°K has been studied both 

theoretically and experimentally by a number of 
people.1 The anomaly can be simply stated for the pres­
ent purpose as an enormous decrease (a factor of 
approximately 103) in the free-electron mobility for 
pressures greater than some critical pressure which is 
near the saturated vapor pressure. The problem we wish 
to consider is the formulation of a statistical-mechanical 
theory of electrons in helium vapor at low temperatures. 
Leaving aside the question of a macroscopic model 
(which has already been disposed of2), we shall adopt 
the following simple (and perhaps simplest) microscopic 
model and try to deduce the equilibrium and non-
equilibrium properties of this system. The nonequili-
brium property of interest, namely the mobility, will 
turn out for the present to represent a far more difficult 
calculation than the equilibrium properties, but we 
shall see that the equilibrium properties alone will give 
us some insight as to why the macroscopic (bubble) 
model works. 

II. FORMULATION 

Since the bubble model involves only one microscopic 
experimentally measured parameter, namely, the low-
energy scattering length of electrons off helium atoms, 
we adopt a Hamiltonian in which the electron-helium 
interaction is characterized by just this length. For the 
practical purposes of calculation, we shall regard this 
interaction as a hard-core repulsion with the radius of 
the hard core equal to the scattering length. Such an 
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interaction is consistent with the pseudopotential for 
electron scattering off helium atoms.3 At present, we 
shall regard the helium system as simply an ideal gas, 
which it indeed approximates at the densities under 
consideration. The Hamiltonian for one electron in a 
helium gas is thus 

ff=rH,+r,+EF(|rrr,|), (1) 

where r H e and Te are the helium and electron kinetic 
energies, respectively, and F(|r»— r e | ) [ = F ( ^ - e ) ] is the 
interaction potential between the electron and the ith. 
helium atom. V in this case is the hard-core potential 
described above so that 

V(r)= oo ? r<a, 

V(r) = 0, r>a. 
(2) 

We now wish to calculate the interaction free energy 
of the electron with the helium system. We may think 
of an ensemble of systems containing one electron each 
in which the helium atoms are allowed to have all 
possible configurations consistent with the interac­
tion. This defines a canonical ensemble in which the 
(Helmholz) free energy is given by 

-t3F=\ntre-PH, 

= l n t r e x p -@(T< 
*r h2ki2 h2k2 N \ - i 
~—+—+£^)j . (3) 

2M 2m i=i / J 

Here M is the helium mass and m is the electron mass. 
Since M^>m, we can treat the electron-helium center of 
mass as the center of mass of the helium cluster. (This 
statement will become more precise later in the cal­
culation.) We can thus commute the entire helium 
kinetic energy with the rest of the Hamiltonian and we 

J J. Jortner (private communication). 
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- / 3 F = l o g t r e x p ( - / 5 E — - ) 
\ <-i 2MJ 

r /A2*2 # \ - | 
+ l o g t r e x p - /? ( + E n ^ e ) , 

L \2f» e-l / J 
= -PFne-PFT. (4) 

The helium system acts simply as a classical ideal gas. 

F»(j8) is the interaction representation of V(rie), while 
gi is its exponential, the product is ordered to give the 
exponential of the sum, and angular brackets mean 
average. The last term is a sum of semi-invariants of 
which we have exhibited the first two. 

At first sight, it appears that we have accomplished 
little, if anything, by all this rearranging and expanding. 
Indeed, if we were dealing with a purely classical system, 
the only term to survive would be the first since the 
rest are all unlinked by translational invariance. Since, 
in the quantum-mechanical case, all terms are coupled, 
the expansion looks like some kind of virial series, but 
as we shall see, the second term is infinite at zero tem­
perature and we are thus forced to "sum to infinite 
order" which in this case appears to be the entire series. 

III. MULTIPLE-SCATTERING THEORY 

To see immediately that the last statement repre­
sents an impossibility, we need only notice that sum­
ming the entire series implies evaluating the nth term 
and this, of course, means solving the problem of a 
Hamiltonian with n spherically symmetric interaction 
terms. In fact, if we had been able to solve this, we would 

The mass which occurs in the interaction free energy 
should, of course, be a kind of reduced mass but for 
practical purposes it is equal to the electron mass. The 
above approximation is equivalent to the adiabatic 
approximation since the helium atoms are taken to be 
stationary scattering centers for the electron in Fj. 
They are, of course, allowed to move as a classical fluid. 

The quantity of interest being Fi, we resort to the 
usual4 cluster expansion. Fi is first rewritten as follows: 

not have had to make the expansion at all since the solu­
tion for n — N would give us all the energy levels directly. 
But it is just this fact which enables us to find an ap­
proximation scheme for this problem. First, we do some 
more rewriting: 

- 0 A F = £ ( g ~ 1>+ T. Ligigj)-(gi)(gi)l+ •••, (7) 

where we have noticed that g's can be substituted for 
f's in all semi-invariants but the first. Now, the products 
of g's in the averages are ordered. This means, for 
example, that 

^ •=expC- (X 2 *V2+/37 ( f < e )+ /37 (^ ) ) ] , 
= exp(-/3#<*>), (8) 

where H^'^ stands for the Hamiltonian of an electron 
with two scattering centers. Since the average of the 
ordered product of g's involves a trace, we must find 
wave functions for an electron with n spherically sym­
metric scattering centers as stated. In the present con­
text we "simply" have to find a wave function which 
satisfies the free-particle Schrodinger equation and the 

4 R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962). 

-/3Fi=In tr exp 
' /\2k2

 N 

2 
( \2k\ N 

= ln tr expf J + l n { t r exp[ - (A 2 £ 2 /2+£ £ V{rie))~]/tr exp(-A 2£ 2 /2)} , 

^-pFe-(3AF, (5) 

where \=(h2/3/m)112 is proportional to the thermal wavelength of the electron. For the rest of the computation, 
we work with the quantity AF. We have 

r / \ 2 £ 2 \ / N rfi \ / / A 2 £ 2 Y 
- )8AF=ln trexpf Jexpf-E / Vi(p)dfij/trexpl J 

= ln^exp(-gy ViWdpX}, 

= ln<n#GS)>, 

=in<na+/<(»)>, 

N N 

= £<fM)+ E Lififi)- </*•></,•>]+ • • • • 
i—1 i<j—l 

(6) 
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boundary condition of being zero on n spheres of radius 
a, the scattering length. Let us first do this for the trivial 
case of one scattering center. Since we are interested 
in a trace, we are free to choose any representation we 
please. For mathematical convenience and physical 
interest, we use the coordinate representation and write 
the wave function as a plane wave plus a scattered 
wave. This amounts to picking a particular linear com­
bination of radial wave functions and spherical har­
monics. We pick a wave function which obviously 
satisfies the wave equation and require that it go 
to zero on a sphere of radius a. Since we are dealing 
with very low energy (the Gaussian in the trace 
limits k values to essentially less than 1/X), we have 
£a<#/\~l /200<3Cl at 4°K so that we need concern 
ourselves only with spherically symmetric scattered 
waves. 

*<i)(re<) = e^^i-\-A1{eik^/kre%) (9) 

using S-function normalization. Expanding the plane 
wave in spherical harmonics and setting the wave func­
tion equal to zero at rei=a, we have 

sinka/ka+A i(eika/ka) = 0 , (10) 
or 

Ai= - sinka/eika= (e~2ika- l)/2i, (11) 

which is the usual result for s-wave scattering from a 
hard sphere. We now try the same trick for n scattering 
centers, namely, we write the wave function as5 

kre 
pikre2 

+ A2 
kre 

' -An 

gikren 

kren 

(12) 

This function clearly satisfies the free-particle wave 
equation. To determine the coefficients A{, we expand 
all terms but the ith around the ith center and equate 
the wave function to zero at rei=a, keeping only s-wave 
parts. The result of all this is the following system of n 
linear equations: 

sinka eika eikru sinka 
+AX—+A2 

ka ka k2r\2a 

eikrin S m £ a 

'An = 0 , 
k2rina 

eik-r12 sinka eihr2i sinka 

ka k2r2\a 
piha 

+A2—+• 
ka 

eik.rm sinka eikrnl sinka 
+Ar 

eikr2n sinka 

k2r2na 
-0, (13) 

ka k2rnla 
eikrn2 sinka 

+A2 
k2rn2a 

-An = 0 , 
ka 

8 This form of the wave function is similar to that used by 
L. Foldy in the treatment of multiple scattering of waves. See 
L. Foldy, Phys. Rev. 67, 107 (1945). The spirit of the present cal­
culation is somewhat different, however. 

the solution of which we write in determinantal form as 

eikrm sinka | 
1 eika 

— sinka 

A*=-

pik»ri2 

)ik»rin 

kfln 

eikr2i sinka eikr2n sinka 

kr2 

eikrni sinka 

kr2n 

krnl 

eikn2 sinka eikrin sinka 

kri 

eikr2i sinka 
,ika 

krln 

eikr2n sinka 

kr2 kr2 

eikmi sinka eikrn2 sinka 

krnl krn2 

", (14) 

where we have multiplied Eq. (13) by ka. This deter­
mines the wave function [Eq. (12)]. Two remarks 
must now be made regarding this wave function. The 
first has to do with the approximation of expanding all 
terms and keeping only s-wave parts. For the single-
scattering problem, we know that this satisfies the 
boundary condition to order (ka)z since this is the 
^-wave part of the plane wave. For the multiple-
scattering case, the approximation clearly depends on 
the separation between scattering centers since we are ex­
panding spherical waves from one origin about another 
origin. The p-w&ve terms from the spherical waves are 
of order (a/ri3)

z where r# is the distance between the 
ith and jth scattering centers. For most distributions in 
the canonical ensemble, r# will be of the order of the 
mean interparticle spacing so that the ^-wave term will 
be of order pa3, where p is the mean density. For the 
present case of helium vapor at about one atmosphere 
pressure and 4°K, we have p# 3 ~ 1/300 so the ^-wave 
term may be dispensed with. 

The second remark concerns the question of nor­
malization of the multiple-scattered wave function. 
For the single-scattering problem, the integral of ^ * ^ 
over a box of volume Q, goes like &-vc where vc is the 
hard-core "excluded" volume, |7ra3. For multiple scat­
tering from n scattering centers distributed throughout 
a finite volume, it is a straightforward matter to con­
vince oneself that the normalization will go like Q-nve 

provided one makes the assumption that the normaliza­
tion is independent of volume shape for large volumes. 
In fact, the very condition on the coefficients A i which 
makes the wave function zero on the boundaries of the 
hard spheres eliminates all cross products of spherical 
waves in the normalization. The excluded volume of the 
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hard spheres does not affect the value of the trace as 
long as n/ti is much smaller than p. Unfortunately, a 
rigorous basis for the above statements is directly tied 
up with the fundamental question of interchangeability 
of limits in many-body theory, so that for the present, 
one must proceed with the pious hope that the end will 
justify the means. 

IV. COMBINATORICS AND INTEGRATION 
(PRELIMINARIES) 

We now show how to use the multiple-scattered wave 
function obtained in Sec. I I to calculate AF. The 
approximation scheme will become clear during the 
course of the calculation. We start with the first term 
in the expansion of —13AF. namely 2t=i^(g*—1). 

Z(gi-l)=N(gl-l) 

/ t rexp[- (X 2 & 2 /2+/3F) j > 
= N[ 1 

\ t rexp(-X 2£ 2 /2) J 

= N 
IJ (re\e-f>HW\re)dredn 

/ / {re expl j\reydredr 

= N 
III ^(D^foO^CDJbfoi) exp 

(J~) 
dkdxedxi 

If 
\2k2 

e-ik.releik.rei e x p f )dkdtedll 

= N 

e~ik»rei-
sinka e~~ikTeV 

-ilea fa 

rel\/ smkae%*rel\ ( \W\ 
- ) eik'Tel ) expf ) 
i A eika krelJ \ 2 / 

dkdredri 

(2TT) 3 / 2 12 2 
— 1 (15) 

Since the Gaussian limits the values of k to less than 1/X, we expand everything in powers of ka in Eq. (15). This 
gives us 

'a ika2 \ " | r a ika2 ~| / \2k2 

£&-!> = # 

f f fr fa ika* \ i r a ika1 ~| / \2k2\ -) 
/ / / < r*"*- . f—| 1 jer**^i e-^rei eihrA e x p | \dkdt4ti-l\ 

J J J L \rei rel J JL rel reX J \ 2 / 

( ( 2 T T ) 3 / 2 / X 3 ) ^ 2 

4TT 

= N-

r r ak 

o L rel
2 

smkrei(e
ikrel+e~iJcrel) exp ra dkdrei 

= N-

((2x)/X3)3'2S2 

r r ak / \2k2\ 
47rX3 / / — sin2^rei expf \dkdxei 

J Jo rel
2 \ 2 / 

( 2TT) 3 / 2 12 

r f a d r00 / X ^ \ 
= N\ 47rX3 / / cos2Jb\,i expf }dkdxe 

L J rel
2d2relJo \ 2 / 

r ^ T r ) 1 ' 2 d 

( 2 T T ) 3 / 2 0 

= 47rpaX3 -
L 2\rei2 d2rel 

-e-2rel>lVdrel / (2 ITT)3 '2] 

= — 4:wpa 

= — 2irpa\2 

\{2ir)^2X^ir f reie-2^^drel/ {2ivyi2\ 

(16) 
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to first order in the scattering length. I t is important to note that this is not the first-order term itself but the 
"first order" of the first term, so to speak. What we shall now do is find the first order of all the higher order terms. 
We first note that the order of magnitude of succeeding orders in the first term goes down like a/X which is ex­
ceedingly small, a very desirable expansion parameter indeed. We therefore expand all terms in powers of ka and 
try to evaluate the terms with lowest power of a for a given power of the density. The second term will make this 
clear. From the evaluation of the first term [Eq. (15)], we see that the relevant quantity is ^r(„)*^r(„). We write it 
out in full detail for n= 2: 

^(2)*({r.«})^(i)({r6<» 

pihre\ p~ikrel pikre2 p—ikre2 t piKTel g—ifcrel p}K>re2 g-%Kre2 -1 

e~ ikT e i_J g i k T e i J p— ik»re2_| eik»re2 

rei rel re2 re2 J 

r 1 1 

4-fl2 (eikri2p—ik»re2eikrel^p—ikri2eik»re2p—ikrel\-l (eikrl2e~ik*releikre2-L.p~ ikr 12 eik»reip— ikre2\ Lfiafel 7-12^2 

ik ik 
J (eikrelg-ik»Tel p—kreleik»Tei\-l (eikre2e~ i k # r « 2 P~ ikre2pik*re2\ 

rei re2 

1 
-(eikrelp—ik*Ti2p—ikre2-L.p—ikreleik*Ti2eikre2'\ 

2 J 

r2 k2 2 k2 

4-#3 Yeikrie—ik»ri\p—ikrieik'ri\J^ (eikre2e~ ik'T^-4-p~ ikr e2pik»t e2\ 

L3r e i 3re2 

2ik 2ik 
_| (g- ikr\2g- ikre\pik»Te2 pikr 12 pikrelg— ik»Te2\JL (p~ ikrng— ikre2pik*te\ pikri2pikre2p^-ik*xe-\\ 

ri&ei rX2re2 

1 1 
(pik'Ti2pikri2-L_p— ik»ti2g— ikr\2\ (pp^t\2p^-ikr\2JL.p^-ik»x\2p%kr\2\ 

rnrel
2 r12re2

2 

1 "I 
(pikr\2pikre\p— ikre2-L.p— ikryip—ikreieikre2JL.eikme— ikre\pikre2-L.p— ikr\2pikre\p—ikre2\ _ j _ . . . (17) 

r\2reire2 J 

where we have stopped at the az term since the next higher power is contributed to by ^-wave scattering. In order 
to see what is going on, we calculate the diagonal matrix elements of e~^H{2) using Eq. (17). 

<re |<r^ ( 2 ) | re> 

f ( \2k2\ 
= I *(2)**(2) expf ~)dk> 

(2TT)3/2 rrksin2krel ksin2kre2-] ( \2k\ 
4tira I 1 expf ]dk 

Jo L rel
2 re2

2 J \ 2 / 

r r2k smkbei+rii+red k2 cos2kre\ k2 cos2Are2"l / X2&2\ 
+4:ira2 / + H expf )dk 

Jo L reln2re2 rel
2 re2

2 J \ 2 / 

X3 

/•°° r 2 ks sin2^rei 2 ks sm2kre2 k2 cos£(rei+f 12+^2) 
+47ra3 / H 4 

Jo L3 rei
2 3 re2

2 
reiri2re2 

k sin*(2rei+2ri2) k sinft(2re2+2ri2)"l / X2&2\ )1 ( X2&2\ 
- expr Jdk, 
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••- h47ra / cos2&r e i expf — )dk-\ / co$2kre2 e x p f Xdk 
X3 Lrel

2d(2rel)Jo \ 2 / re2
2d(2re2)JQ \ 2 / . 

r 2 d r00 / X2£2\ 
— 47ra2 — / cosk(rei+ru+re2) expf jdk 

1 d2 r / \2k2\ 1 d2 r00 / X2&2\ 
_| / cos2^faexp( ]dk-\ / cos2&re2exp( )d 

rei
2d(2reX)2J0 \ 2 / re2

2 d(2re2)
2 J 0 \ 2 / 

r 2 a3 r00 / X2£2\ 2 d* r™ / \2k\ 
+47ra3 / c o s 2 ^ i e x p ( )dk-\ / cos2kre2 expf — }dk 

Urel
2 d(2rely Jo \ 2 / 3r,2

2 <9(2r«2)
3 J 0 \ 2 / 

4 a2 r00 / X 2 £ 2 \ 1 a 
H / cosk(rei+r12+re2) expf )dk-\ 

reiri2re2d(rel+r12+rc2)
2 J 0 \ 2 ) rel

2r12
2 d(2rel+2r12) 

r I A2&2\ 1 d r00 / X 2 £ 2 \ 1 
X / cosk(2rel+2r12) exp )dk-\ / cosk(2re2+2rl2) exp )dk 

Jo \ 2/ re2
2r12

2d(2re2+2rl2)J0 \ 2 J J 

( 1 C l d / (2fei)2\ 1 d / (2r e 2) 2 \ l 
= (27r)3'2 - + - exp + expf ) 

IX3 x U i 2 d(2rel) \ 2X2 / fe2
2a(2re2) \ 2X2 / J 

a2r 2 d / (rel+r12+re2)\ 1 d2 / (2rel)
2\ 

exp H expf J 
X Lrelr12re2 d(rel+r 12+re2) \ 2X2 / rel

2 d(2rel)
2 \ 2X2 / 

1 a2 / {2re2)\~\ a*r 1 d / (2rel+2r12)\ 
- expf ) H — exp 
* V 2X2 / J \lrel

2r12
2 d(2rel+2r12) \ 2X2 / Te22 d(2re2)

2 

1 d / (2re2+2f12)2\ 4 a 2 / (rel+r12+r2e)
2^ 

-exp 

•rei
2ri2

2 d(2rel+2r12) 

/ (2re2+2f12)2\ 4 a 2 / (rel+r12+r2e)
2\ 

_A j _ | e X p [ 
re2

2rn2 d(2re2+2r12) \ 2X2 / relr12re2 d(rel+r12+re2)
2 \ 2X2 / 

2 d3 / (2rel)\ 2 a3 / ( 2 r e 2 ) V _) e x p _ _|_ e x p 

3rel
2 <9(2rel)

3 \ 2X2 / 3re2
2a(2re2)3 \ 2X2 / 

(18) 

The first thing we notice about this expression is that a helium atom or between two helium atoms. The 
the exponents of Gaussians are all sums of coordinates number of coordinates in the Gaussian is given by the 
and never differences. The differences are all cancelled total number of bonds in the diagram and the number 
out when the angular integration of dk is performed, of derivatives is given by labeling the diagram with a 
This is to be expected since, for large distances from the power of a. Thus, for the second term considered above, 
scattering centers, the matrix element should look like we have the set of diagrams shown in Fig. 1. 
one from a single-scattering process. The next thing is When we consider the full semi-invariant, the first 
that it would obviously be extremely convenient to line of (unlinked) diagrams is zero. This is true in 
have a simple notation for the above terms. This can be general. The second diagram on the second line is also 
done easily in the following way. We draw a solid line unlinked but for a more subtle reason. This will be 
to represent a "bond" of 1/r between the electron and a s h o w n i n S e c - VI. We are thus left with three diagrams 

contributing to p V , which are shown in Fig. 2. These 
will be evaluated later along with the diagrams cor-

*2 *' ,2 •' -2 responding to the general case. 
l + a < 0 + * a O + 0 < O + 0 < O + G < 0 

« i • 2 e l e 2 e l 

+°3<3> 
« 2 

+«2^d? >**^12 ta3
<=y +as

<=y «3<r~> + a 3 <~y + ° 3 ^ i 

FIG. 1. Diagrams contributing to the coefficient of p2 in AF. FIG. 2. Diagrams contributing to the coefficient of p2a3 in AF. 



F R E E E N E R G Y O F E L E C T R O N S I N H e A1365 

V. COMBINATORICS (EVALUATION) 

Before we can use the (diagram) notation established 
in the foregoing section, it is necessary to understand 
the algebra of operation of the original terms. In par­
ticular, we shall show that the combinatorial factor 
associated with a particular term is given by the number 
of ways of picking the points of the associated diagram 
from N points subject to restrictions caused by the 
symmetry of the diagram. In order to classify terms 
according to some semblance of order of magnitude, we 
first note that the terms in the second semi-invariant 
look just like those arising in the classical Coulomb 
problem (electron gas). This leads us to hope that we 
will find terms which look like ring (polarization) 
diagrams. However, we must be careful not to draw the 
analogy too closely. 

Rather than try to compute ^ * ^ as we did in Sec. 
IV, we examine the coefficients Ai in the wave function. 
Expanding all the elements in A i in powers of ka, we 
have from Eq. (14) 

-ka 

Ar-

a a 
gikru . . gikrin 

ri2 fin 

gik'm 

pik»iin 

pikrin 

Tin 

piknn. . . \ 

r<m 
(19) 

pikru 

a a 
pikrvi . . . gikrin 

a 
. pikrin 

ru T2n 

pikrin pikrin 

rin ru 
Now, there are two types of terms which occur in >£*>£, 
namely, terms which arise from the cross product of the 
plane wave and a spherical wave and terms which arise 
from the product of two spherical waves. Since we are 
looking for terms in which the exponential is the sum of 
all the coordinates involved, it is only necessary to look 
at the first class or what we shall call plane-wave terms. 
The second class of terms must necessarily contain at 
least one coordinate in the exponential which has the 

n-l 

FIG. 3. Diagram for Eq. (21). 

4 3 4 3 

>2 + 

e 1 • lv-^5 ' e I • 1 3 e ^ l 2 
FIG. 4. Diagrams contributing to the coefficient of p5a^ in AF. 

opposite sign from the rest. Again, the ^ = 2 tenjn will 
make this clear. Upon examining Eq. (17) again and 
performing the angular,integration of fa\y as in Eq. 
(18), we see that the only contributing terms are the 
plane-wave terms. All other terms cancel those parts of 
the plane-wave terms in which the argument of the 
trigonometric function is not positive definite (orNega­
tive definitive). i 

From the above argument and the semi-invariant 
theorem, we can find the terms of lowest order (i.e., 
lowest power of a) in ^(n)*^(n). We first note that the 
semi-invariant theorem tells us that in order for a term 
in ^r

(n)*^r(n) to contribute to the trace (average), it 
must contain all n coordinates. Because of the structure 
of the coefficients Ai as ratios of determinants, the 
lowest power of a to contribute will be an and this will 
be obtained by making a "ring" in the determinant in 
the numerator, that is, for example, the term 

gik«ri2^w gikrei 

:-rni re, 
-rkTei + C.C. , (20) 

which leads to the term in the trace of 

f f 1 d / s2\ N 

pnan / • * • / expf ) TLdri 
J J Teirurn—-rneds \ 2XV *-i 

= (diagram in Fig. 3), (21) 

where s=rex+ru+r2z-\ rne. As mentioned before, 

J23 

J24 °34 

u25 u35 

13 QI4 °I5 

23) a 2 4 a 25 

a 3 4 a 3 5 

O a45 

*45 ® 

© °I2 a!3 

°I2 © a23 

"14 UI5 

a 2 4 , a 25 

a 34 

"25 

FIG. 5. Schematic representation of the algebraic term represented 
by Fig. 4(c). Factors in the term are circled. 
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FIG. 6. Schematic representation of two irreducible terms contributing to the coefficient of p5a6. Factors in the terms are circled, 

for the case of n=2, this term is cancelled by the full 
semi-invariant expression. (See Sec. VI.) The diagrams 
shown in Fig. 4 contribute to the coefficient of an+1. 
Figure 4 shows the case n=S with the obvious exten­
sion to any n. These diagrams arise in the following 
way. (a) comes from taking a ring in the numerator 
and one power of ka in the denominator. The rest of the 
diagrams are formed by taking the appropriate ring in 
the numerator given by the part of the diagram con­
taining the electron and a ring in the denominator 
given by the other part. For example, the term con­
tributing to (c) is shown schematically by Fig. 5. All 
these diagrams are linked. Diagrams which are unlinked 
are zero because of cancellation between numerator and 
denominator. For example, the term given by Fig. 6(a) 
cancels the term given by Fig. 6(b) since they occur with 
opposite signs. This is obviously true in general. It re­
mains only to find the combinatorial factor associated 
with each diagram and evaluate the most general type 
of integral in order to obtain an answer. By examining 
the determinants again, we can easily determine how 
many ways we can form a given term. This is the com-

n + m-l 

n*m< 
FIG. 7. Typical diagram 

*n*H contributing to the coeffi­
cient Of pn+man+m+lf 

n-2\ 

binatorial factor. We find this in general for a diagram 
containing an electron loop with n vertices and a second 
loop with m+1 vertices as shown in Fig. 7. Such a 
diagram contributes to pn+man+m+1. Referring to Eq. 
(19) for A i, we see that the number of ways of obtaining 

an "n" loop in the numerator is ( ~ )(n—2)\ 

while the number of ways of picking the appropriate 
loop in the denominator is (n—l)(m+l)\. Combining 
these, we get (n—l)(m+n—l)l for the total number of 
ways of obtaining the diagram in Fig. 7. Now, there are 
n+m plane-wave terms coming from the n+m co­
efficients Ai and a factor of l/(n+m)l which comes 
from the (n+m) multiple summation over all N helium 
atoms. This is actually the number of ways of picking 
n+m helium atoms from N helium atoms, that is, 

E 
h<h<h< • • • <in+m 

N(N-l)(N-2)- • -(N-n-m) 

(n+m) I 

(n+m) I 
(22) 

4 3 

Consequently, the combinatorial factor for the diagram 
is ^— 1 or the number of ways of attaching the helium 
loop onto the electron loop. For a single-loop diagram 
with n helium atoms, the combinatorial factor is clearly 
n since this is the number of ways of picking the extra 
ka in the denominator. 

Evaluation of the integrals poses a more difficult 
problem. In the first place, the contribution of each 
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n + m 

n4m 

F I G . 8. Diagram for Eq. (23). F I G . 9. Diagram for 
Eq. (24). n-l nt 2 

diagram in a given order pnan+1 is clearly proportional 
to X2w_1. If we look at the whole series, we now have an 
expansion of the free energy in powers of /3 or 1/kT. 
This would be highly undesirable since we are interested 
in the low-temperature behavior of the free energy. 
However, it is to be expected that analytic continuation 
of the series would yield an expression which is valid in 
the low-temperature region as in the classical Coulomb 
problem with a cutoff which becomes infinite. 

Referring to Fig. 4 and generalizing to the Nth. term, 
we see that the following two types of integrals must be 
evaluated: 

sary to evaluate Eq. (24) alone but rather 

n—1 

£/-/ ri2f23 • • fnlf ln+l* " 'fNl 

d 
X— exp 

ds 

/ S2\ N 

( — ) n * , . 
\ 2X2A=i 

(25) 

(Diagram in Fig i g . 8 ) = / - / 
r 12^23* * 'Pn+ml 

d2 / S2 \ n+m 
X—exp I l ^ r , (23) 

<^2 \ 2X2A=i 

As shown in Sec. VI, the sum of Eqs. (23) and (25) is 
zero. Thus, the only term contributing to the free energy 
from s-wave scattering including all multiple-scattering 
effects is 2irpa{h2/m). This is also the ground-state 
energy for the system. 

VI* INTEGRATION (EVALUATION) 
We have to evaluate the integrals of general form 

represented by 

r f 1 d / S2\N 

/ ••• / exp—-)n*<, 
J J rnr^r "TNIOS \ 2X2/*=i 

and 

(Diagram in Fig. 9) = / •• • / 

-rN1ds 

d2 

ri2r2y> 

W 2 3 * • 'fnl^ln+l' * ' ^ + m l 

6 / S2 \ n+m 

X—exp )Ildii, (24) 
ds \ 2X2/*-i 

where s in both cases is X) ra- Actually, it is not neces-

-rNi ds2 

1 

/ S2\ N 
expf jUdTi, 

\ 2X2A=i 

(26) 

(27) 
/ • • • / 

/ • • • / . 

d / S2 \ n+m 
X - e x p n ^ r , . (28) 

ds \ 2X2/ *-i 
The integral of Eq. (26) is first rewritten as 

^12^23* ' -rniTln+V ' 'fn+ml 

d 

r r 1 d / S2\N Q, r r 
/ . . . / exp ) I I*<= / ••• / 

J J flirts - - - fNi ds \ 2X2/ *=i X2 J J ruf2r-rNi 
expf ) 

L \ 2X2/ 
dr12dt2r-drN_1N, (29) 

where we have gone to relative coordinates in the integral and 0 is the volume of the system. The integral is now 
evaluated using the Fourier integral theorem by "opening" the ring at one point, taking the Fourier transform 
and integrating the Fourier transform. 

/ • • • / ri2r2r-rNi 
expl 1 

\ 2XV 
dt 12^23 * ' ' dtN-lN 

8TT3 

(4*0* 

8TT3 

( 4 T T ) * 

f23# ' 'dtN-lNdtN'ldk = — / ••• / exp( Je^x'idtndrv 
87r3 J J rnriz" -TNN' \ 2X2/ 

rlr00 r00 / s 2 \ 
J — / • • • / 5 expf J sinkrn sinkr2r • •sinkrN_1N sinkrNN>dr12dr2Z- • *drN_XNdrNN

fdk 
J kN Jo Jo \ 2X2/ 

liw(k,\)dk. (30) 
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Let us now examine the multiple integral Im for N=2 and 3. 

i r r / (ri+r2y\ 
/ ( 2 ) = — / / (n+^2) exp( ) sinkri$mkr2dridr2 

k2JoJo \ 2X2 / 
1 r 0 0 /•• / s2\ 

= — / / sexp } smktsmk(s—i)dtds 
k2JoJo \ 2XV 

1 r00 rs / s2\ 
= — / / s expf )rcosk(s-~2t) — cosks~\dtds 

2k2 Jo Jo \ 2XV 

= — / 5 expf ) -s cosks \ds 
2k2 Jo \ 2X2/L * J 

1 / 1 d\ f00 / s2\ 
= — ( ) / s expf — — ) sinksds 

2k2\k dk/Jo \ 2X2/ 

(2*-)1'2 / d\ / k2\2\ 
(31) 

where we have changed variables to s = r i + r 2 and i—r\. The polynomial operator f{2)(k,d/dk) is defined by Eq. 
(31). To evaluate JT(3), we change variables to s—n+^+fs, t=r\+r2 and r—ri and find 

(27r)^2 / d\ I k2\\ 
7B,-x"T-n*W*"K-T)' <32) 

where 
i / 3 3 a a2\ 

skAk2 kdk dkv 
Clearly, Im can be written as 

W 2 / £2X2\ 
/ w = X« fWkexpl J . (34) 

Rather than evaluate the coefficients of the polynomial operator f(N\ we only have to evaluate the result of 
/<*> acting on k exp(-£2X2 /2). To do this, we write 

fWk exp(-&2X2/2) = ~Jm— e xp(~-T") 
£2X2\ 

2 / 

1 2 d r00 ( s2\ 
= X f(N)— / expf J cosks ds 

X2 X^TT)1 '2 dkJo \ 2X2/ 

2 r / s2 

X 3 ( 2 T T ) - JO 

2 1 

= /(iN0 / 5 expf ) sin&s ds 
X ^ T T ) 1 ' 2 JO \ 2XV 

/ . . . / ^ e x p( ] s m £ f l sin^r2- • • sin&rAr J J dfi 
X ^ T T ^ W O Jo V 2X2/ »-i 

2 1 f00 f °° / <r2 \ / a \ 
= / / 5 exp sinjferi/w-^ ft,— sinks'dnds' 

\3(27ryi2kJ0 Jo \ 2XV V d*/ 

1 / d \ r00 /-00 / s2 \ 
— lim —/w-i> [ &— ) s exp 1 sinifeVi sinks'dr ids' 
U2k>->kk'

J \ >dkJJQ JQ \ 2X2/ 

W1 

2 

X 3 (2TT) 

2 
— lim —/<*-»(*,—^ f /" j expf-—^ 
^ ^ r V WJ0 JO \ 2x2/ X3(2TT)1 

XK^s(ks~(k+k')r)~cos{ks-\-(k'-k)r)2drds 
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2 i / d\ r f s2\ i 
= lim —/<tf-D[ h— / s exp (k sink's-k' smks)ds 

X3(27r)l/2 ^ - ^ / V dkJJQ \ 2\Vk2-k'* 

2 1 / d x l / ^ r d a l / ^ 2 \ 
= lim —jpr-Df ft— ] / 4 '— cosyb—k— cosfe's expl )& 

X«(2ir)^2 *'-**' \ dkJk2~kf2Jo L d£ d*' J A 2XV 

-feF^JpcsK-TM-—)J 
/ d\ ( i &2X2\[l-exp(-(&'2-j5:2)X2/2)] 

= lim /<*-»( *,— )* expl ) - -— -+-=•. (35) 

Now define 

then 

2 / k'2-k* 

I d\ l £ 2 X 2 \ [ l - e x p ( - ( £ ' 2 - £ 2 ) X ' 2 / 2 ) ] 

^ ^)=/<"""k)4 - V T ) ^ ; <36) 

dJ / d\ / - £ 2 ( X 2 - X ' 2 ) \ /-k'2\'\ 

-=*7<«(*,-> « p ( ~ r - ) -P(—) 
Clearly, / ( iV) acting on k exp(—ft2X2/2) yields a polynomial of the form 

(37) 

N X2 ( n _ 1 ) 

E «»——=P W (* 2 ,A 2 ) 
»~1 ^(iV-n) 

times exp(—k2\2/2). Therefore 

-x / d\ / k2(\2-\'2)\ ( k'2\'2 

/w(JkJfe';X,X') = lim / ' ' " " "% " 
rx / d \ / ft2(X2--X'2)\ / ft'2X'2\ 

lim /<*>(*,*';X,X') = lim / X'/w-ufA,—Jftexpf ) expf )d\f 

*;-** * ' ^ i o \ #&/ \ 2 / \ 2 / 

rx / ft2X2\ 
= / \'pw-»(k2, X2-X'2) expf W ' 

(40) 

= Q(^-i)(*»,X2) exp(-£ 2X 2 /2) , (38) 

where Q{N) is also a polynomial with TV terms. But Q^N~l) must be equal to Pm; therefore Pm can contain only 
one term and from P ( 2 ) , we see that this term is the highest power of X2, namely, aArX2(iNr_1). From Eq. (38), we 
immediately get the recursion relation 

^ = ( l / 2 ( i \ T - l ) W - i , (39) 

so that we have finally 

/ ft2X2\ X2^-x> / &2X2\ 
lim /<*>(*,*'; \,\') = f(N)k expf ] = expf ) , 

X ' - > X 

since a i = l . Returning to Eq. (29), we have 

r r 1 d / S 2 \ N o (4*0* /• 
/ . . . / expf 1 1 1 ^ = I*(k,\)dk 

J J r12r2z'-rN1ds \ 2X2A=i X2 8TT3 J 

£2 (4TT)* (27T)1/2 X 2 ^ - 1 ) (2TT)3/2 

= x8 

X2 8TT3 2 2 * - 1 ( ^ - : L ) ! X3 

\2(iV-2) 

- - 0 ( 2 T T ) ^ - 1 . (41) 

(IV-1)1 
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Finally, we see that the diagram in Fig. 10 takes the form 

n- l 

pnan\2n 

FIG. 10. Diagram for n 
Eq.(42). a n \ / 2 (-2T/tfX»)» 

( - 1 ) " ( 2 T T ) W -

nl 

n\ 

n\ 

- E (h)(h)---{fin). (42) 

Thus, the term represented by Eq. (42) is unlinked and the full semi-invariant expression is zero. We now turn to 
the integral of Eq. (27). I t is first rewritten as 

r r 1 d2 / S2\N 
/ ••• / exp( jUdu 

J J rvtfzr * "TNI ds2 \ 2\2/i=i 

= /"••• f - ( - ) expf-—) ft dtt 

lr d r r 1 / s2\ N f f 1 / s2\N 1 
= - X— / ••• / exp ) I I * . ~ / • • ' exp mdtA 

X2L dX J J ri2T2z'"rNi \ 2X2/«=i J J r 12̂ 23 ••• ran. \ 2X2/*=i J 

= —[X 1) / ••• / expf )dr12dt2y-drN_w 
X2\ d\ JJ J r12r2y-rN1 \ 2X2/ 

(2iV-4)Q r f 1 / s2\ 
= / ••• / expf )dti2idi2z" -drN_1N. (43) 

\2 J J r\2r2%- - -TNI \ 2X2/ 

The integral is now evaluated as before by opening the ring at one point, taking the Fourier transform and in­
tegrating the Fourier transform. 

/ • • • / expf Wi2dr23- * -drN_1N 

J J rnr2z' "TNI \ 2X2/ 

= — / . . . / e x p | y^^dtwiltir • mdTNN>dk 
871-3 J J r\2Y2z • • • r^Nf \ 2X2/ 

= — / • • • / expf - ) e * ' V k , r » ' • •^ k - r ^^r i 2 ^r 2 3 - • -dtNN>dk 
8TT3 J J r 12̂ 23- • -TNN' \ 2X2/ 

(4x)^ f i r 0 0 r00 / s2\ 
= / — / ••• / expf ) smkri2smkr2y - -smkrNN>dri2dr2z— -drNN>dk 

8TT3 J kNJo Jo \ 2X2/ 

7/<",(*s)/"eip(-l)sinfa"k 
8TT 3 

(47*-)* r f k2\2\ /-fcx 
r 1 k2\\ r™ /x2\ 

8TT3 

(**•)* r 
-= X J W f e x y k . (44) 

8x3 J 
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To find Jm(k,\), we use the following trick: First define 

/ < « ( £ ; \ X ) = W V - ) e x p ( A J e x p f - W ; (45) 

then 

&/<*> / d\ I &2(A2-A'2)\ 
— = f v n k — )k exp ) 
K' \ dk/ \ 2 / 

"~ * " / & 2( \ ' 2-X 2) \ 
exp^ J . (46) 

(X*_x'*)»-i / £ 2 ( \ ' 2 -X 2 ) \ 

We cannot simply integrate Eq. (46) to obtain J (JV). However, since we are only interested in fHN)dzk, we do 
this first. 

[JW(k,\)dk= f li JW(k,\)dk= lim JW(k;\\')dk 
x 

X r dJ(N) 
•dkd\f 

Jo J d\' 

= [ (2*03/2 .. (\2-\,2)N-^2d\f 

Jo 2*-*(iV r-l) 

X2^-3(2TT)3 /2 (2N-5)(2N-7)' • -3X17T 
= X . (47) 

2i\r-i(7\r_i)! ( 2 N - 4 ) ( 2 i V - 6 ) - - - 4 X 2 2 

Thus, we have 

I ••• / exp I ] > ; = ( 2 i \ T - 5 ) ( 2 i \ r - 7 ) - . - X 3 X l . (48) 

J J r12r2y-rN1ds2 \ 2\V e=i 22N~^(N-1)l(N-3)I 8TT3 2 

To evaluate the integral of Eq. (28), we use the same kind of trick. 

1 d 
f 12^23" * 'Tnirin+V ' *^n+ml ds 

= / " "/ sexpf J 
(8TT3)2X2 J J \ 2X2/ 

Xe^n'ie^'-t^yidrn' • -drnn>drln+v • 'dxn+m{n+mydkdk' 

ft(47r)n+m+l 

f f 1 d / S2\n+m 

... expf ) I I dti 
J J ri2rw'rnlrln+vrn+mlds \ 2X2/ «-i 

/ / / . . . / s e x p | j s m £ r i 2 . . -smkrnn> smk'rln+m sin^Vw+w(w+w) 

J J knk'™+1J0 Jo \ 2X2/ 
Xdr12" 'drnn'drin+vd 

/ f(n)(k,— )fm+1)(k',— ) / / ^ expf ) sin£n smk/r2dr1dr2dkdkf 

(8TT3)2X2 J J \ dk) \ dk'JJo Jo V 2X2/ 

0(4x)n+m+i X3(27r)i/2 /• /• , ^ / d \ M'exp(-& 2 X 2 /2)r ( (&'2-&2)X* 

i2(4ir) n+m+l 

( 8 T T 3 ) 2 X 2 2 

rr / d\ ( a \kk' exP(-&2x2/2)r / {k'*-k*)\*\i 

12(47r)w+w+1 X3(2TT)1/2 /* r 
_ / / H^>™+l\k,k') \)dkdk' (49) 

( 8 T T 3 ) 2 X 2 2 
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using Eq. (35). Again define 

#(n,m+l)(/^/ ;X jX/)^y-( 

M I C H A E L C O O P E R S M I T H 

/ d\ / d\ / £2X2\[l-exp(-(&/2-£2)X'2/2)] 
Mk — )f^lAk'—)kkf expf ) (50) 
\ dkJ \ dk'J \ 2 / k'2-k2 

and take the derivative: 

dH i / d\ ( d\ ( k'*K\ ( F(X2-X'2) 

) 

X'2n-l(X'2_X2)« f & / 2 X / 

•exp {-—J«p( — J 2»+»+i (« - l ) ! w ! \ 2 / " \ 2 

using Eq. (40). As before, we integrate on k and k' before integrating on X'. This gives 

r r* f dH(k,k';\,\') 
/ H(k,k'; \)dkdk'= / / dkdk'ix' 

- / 

8TT3 

2n+m-\n-l)\m\ 

g 7 r 3 X 2 ( n + w ) - 6 /.TT/2 

Rather than evaluate this integral alone, we evaluate 

(.n-t-m;—o /»-

w—1) !wl7o 

V 2 n - 4 ( V 2 _ X 2 ) « - 3 / 2 r f X / 

(sin<9)2w~4(cos(9)2w-2^. 

E ( » - i ) t f <w'*+1-w)(fc,*'; x)<flsik' 
w=2 

as given by Eq. (25). 

n = 2 J 

8?r3X2iV-6 .W2 ^ 1 ( n _ l ) ( i V - 1) ! 

E ( s i n ^ ^ - ^ c o s 2 ! ? ) ^ - ^ 1 ^ 
2 ^ - 1 ( ^ - 1 

8 7 r 3 X 2iVr-8 

2 ^ - 1 ( ^ - 1 

87r3X2iV-6 

2 * - i ( j y - l 

87T3X2iVr-6 

2 ^ - 1 ( ^ - 1 ; 

87T3X2 i N r~6 

2 i N r ~ 1 ( A r - l 

8T*\2N~Q 

8 T T 3 X 2 ^ - 6 

2^-i(7\r_2 

!7o n=2 (n-\)\(N-n)\ 

^2 1 a N-I/N-1\ r 1 2 i a N-I/N-I\ 

IJo cos26 d sin26 n~2\n—l/ 

-i 
o cos20 d sin20 n«2 

'2 1 a 

(sin26Ow-Kcos20)*-^0 

(51) 

(52) 

cos20 d sin20 

/•W2 j[ 

-(TV-1) / — - [ 1 - ( s in 2 0)*- 2 ]^ 
! Jo 

[(sin20+ cos20)N^ - (sin20) ̂  - (cos20) N~r\de 

o cos20 

72 

[l+sin20+sin40H (sin20)*-8]d0 

p r - 8 ( 2 » - l ) ( 2 » - 3 ) X - - - X 3 X l ~K 
- E +1 -

!L»-i ( 2 » ) ( 2 » - 2 ) X - - - X 4 X 2 h 

(2iV-5)(2iV r-7)---3Xl7r 

! 2N~3(N-3)l 2* 

(53) 
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Finally, we have 

N-\ r r 1 
E ( » - i ) / " - / 

^12^23* * -rnlf ln+1- * * ĴVl &? 
exp 

/ 5 2 \ N 

JILdu 
\ 2XV*-i 

fiX2JV-5(47r)^(27r)3/2 TT, 

22iNT-4(^__ 2)!( iV-3)!8x 32 

(2iV r -5)(2^-7) . - .X3Xl. (54) 

Comparing with Eq. (48) and remembering that the combinatorial factor for that term is TV—1, we see that 
the sum of the two integrals is zero. 

VII. CONCLUSIONS 

We must now regard the above result as a theorem: 
The free energy of a particle interacting with a system of 
hard-core scattering centers is given in the s-wave 
approximation by 2TTpa(h2/m) including all multiple-
scattering effects. To obtain a better approximation, 
one must use p-w&ve terms in the wave function 
[Eq. (12)]. For the electron in helium, the s-wave ap­
proximation is sufficient; it shows that at the appropri­
ate density,6 the free energy can be lowered by changing 

6 By assuming the electron trapped in a well of depth 2irpah2/m 
and radius R, one finds easily, by balancing the zero-point energy 
of the electron against PV for the helium gas, R as a function of 
density and consequently the free energy of the electron at zero 
degrees as a function of density. The density at which the zero-
point energy becomes less than lirpalfi/m, is about J the saturation 
density at T=4° and a saturation pressure of one atmosphere. 

to a "bubble" configuration. For the problem of more 
general interest, namely, the hard-sphere Bose fluid, it 
is certainly necessary to include higher order scattering 
terms as well as the effect of statistics although it is by 
no means evident how to do this consistently. Finally, 
it should be mentioned that the method used here is 
just the converse of the pseudopotential method for 
hard spheres since we are replacing a potential-scattering 
problem (with a given s-wave scattering length) by a 
boundary-value problem. 

ACKNOWLEDGMENTS 

The author is pleased to thank Professor Morrel H. 
Cohen of the Institute for the Study of Metals for dis­
cussions which provided the stimulus for the present 
work. 


