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Importance of Nuclear-Spin Effects in Extracting Alkali Spin-Exchange Cross Sections 
from Zeeman Optical-Pumping Signals* 
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Lawrence Radiation Laboratory and Department of Physics, University of California, Berkeley, California 
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The importance of the nuclear spins in the analysis of alkali spin-exchange experiments employing optical 
pumping by circularly polarized light and performed in low magnetic fields is demonstrated. Since the ex
change interaction is an electronic process, the spin-exchange cross section is expected to be essentially 
independent of the nuclear spins. However, the hyperfine coupling is sufficient to make the expressions for 
the signals depend upon the nuclear spins. Failure to include the nuclear-spin effects in the analysis can lead 
to errors as large as several hundred percent in the deduced cross sections. The signal for general nuclear 
spin is found for the Franzen-type transient experiment and for the Dehmelt-type steady-state experiment 
in the limit of low light intensity. The results are quite sensitive to the process assumed for the relaxation 
of the ground-state populations. The solutions are given for a general process in which randomly oriented 
disorientation fields interact with the spins of the alkali atom only through the electron spin. The steady-
state-signal expression includes the effects of self spin exchange and partial disorientation in the excited 
state. Only the diagonal elements of the density matrix are included. 

I. INTRODUCTION 

RECENTLY, there has arisen considerable interest 
in utilizing the spin-exchange process to study the 

forces between atoms and the potentials which describe 
these forces. The problem of deducing interatomic po
tential information from spin-exchange cross sections 
has been studied by Glassgold and Lebedeff, particularly 
for hydrogen.1,2 The problem of interest in this paper is 
that of obtaining the cross sections from optical-
pumping experiments. 

Optical pumping has been used more than any other 
technique for determining spin-exchange cross sections. 
Most of the optical-pumping measurements were made 
by one of the methods treated in this paper, which in
volve the determination of a relaxation time and a 
density. Recently it has been shown that information 
can be obtained without measuring the density if the 
linewidth and frequency shift arising from exchange 
effects are determined.3'4 The analysis of such experi
ments requires the inclusion of the off-diagonal density-
matrix elements, which is not the case here. 

The spin-exchange process is an electronic interaction. 
Since the collision time is much shorter than a period of 
the hyperfine precession, the hyperfine coupling has 
little effect during the collision. Thus the cross section 
for electron-spin exchange should be essentially inde
pendent of the nuclear spins. But in a low magnetic 
field the electron spin is coupled to the nuclear spin by 
the hyperfine interaction, and the good quantum num-
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bers are IJFM. Thus the cross sections of interest are 
between different FM states; these cross sections de
pend upon I even though the interaction is diagonal 
in Mi. The optical-pumping signals can then depend 
upon the nuclear spin because of the hyperfine coupling. 
Failure to include the nuclear-spin effects can lead to 
errors of several hundred percent in the values of the 
spin-exchange cross sections deduced from optical-
pumping experiments. 

The calculations of this paper apply to spin exchange 
between two alkali atoms in their ground states. The fol
lowing assumptions are common to all the calculations: 

(1) The pumping radiation is circularly polarized D\ 
light. 

(2) The four hyperfine components in the pumping 
radiation are of equal intensity. 

(3) The pumping radiation at a given point in the 
cell is approximately constant. 

The rate equations which are used to describe the ex
periments are given in Sec. II. The following contribu
tions to the rate equations are then discussed: (a) pump
ing radiation, (b) excited-state disorientation, (c) 
ground-state relaxation, (d) spin exchange between 
unlike atoms, and (e) self spin exchange. Solutions to 
the rate equations of Sec. II are obtained for theFranzen-
type5 transient experiment as applied to spin-exchange 
measurements in Sec. I l l ; self-exchange effects are 
neglected. The expression for the signal in the usual 
Dehmelt-type6 steady-state spin-exchange experiment 
is found in Sec. IV in the limit of low light intensity. 
Applications or comparisons are made to the results of 
Dehmelt,6 Jarrett,7 Balling et al.f and Anderson and 
Ramsey.8 
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II. RATE EQUATIONS 

Consider the description of the time variation of the 
populations of two different species of alkali atoms in a 
static magnetic field of weak intensity. The ISFM 
representation is then best. F is the total angular mo
mentum obtained by coupling the nuclear angular mo
mentum I to the electronic angular momentum S ( J = S 
since L = 0 ) . M is the projection of F along the axis de

fined by the external magnetic field and the incident 
light beam. Species 1 is optically pumped and has a 
density in the ground state F\Mi of pFXMi and a total 
density of p. The second species is disoriented continu
ously during part or all of the experiment and has a 
density dF2M2 in the ground state F2M2 and a total 
density d. The first species has a density njxFXMx

 m the 
excited state J1F1M1. The time variation of PFXMX

 c&n 
be described as follows: 

VF\M\~ —pFiMi * f 
Jl'Fi'Mi'q J Q 

Lq(v)PM
,(F1MhJifF1

fMiOdv 

+ E nj1>Fl>M1>P"(Ji'F1'M1',F1M1)/TJl,-pF1M1 E M / W i , i Y A f i O 
Jl'Fi'Mi' Fi'Mi' 

+ E pFsuMFiMi'iFttfi)- E /{pF1M1dF2M&E(F1MxFM^F{M{F<{M<{) 
FX'MX' Fi'Mi' J 

F1M2 
Fi'Mi' 

-pF1'M1'dF^M2'QE(F1
/M1

fF2fM2f,F1M1F2M2)}f(vE)vEdSVE 

E \{pFlM1pF^Ml'Qsi(FiM1F^M1
f,F1

ffM^Fl
n,M1

,ff) 
I'MI' J F 

Fi"M. 
Fi'"Mi" 

-pFl''Ml''pFl'''M,'-Qsi{F^M^F^fM^\FlM1F^M^)}f{vsi)vSidhs^ (1) 

E * So™ Lq(v)Ppq'(FiMiJi'Fi'Mi')dv is the probability 
per unit time that an atom in the ground state F1M1 
will absorb a resonance photon and make a transition 
to the F1M1 substate of the 2Pjy excited state; Lq{v)dv 
is the light intensity with polarization q and with fre
quencies between v and v+dv. (1 / r j^)P" (Ji'FiMi,FiMi) 
is the probability per unit time for the reverse process; 
TJX> is the radiative lifetime of an atom in one of the 
substates of the 2Pjx excited state. The quantity 
w(FiMi,Fi'Mi) is the probability per unit time for an 
atom in the substate FiM 1 of the ground state to make 
a transition to the F\M\ substate of the ground state 
by relaxation processes excluding spin exchange. In the 
last two terms the subscript E refers to exchange between 
atoms of different species and S to exchange between 
atoms of the same species. Q(FiM-J?iM%J?iMiF%M2) 
is the cross section for a spin-exchange collision between 
two atoms in which the first atom makes a transition 
from F1M1 to F{M\ and the second from F2M2 to 
F2M2. The function f(v) is the distribution of relative 
velocities v with the normalization J%f(v)dh=l. The 
populations are then affected by (a) the pumping radia
tion, (b) excited-state disorientation, (c) ground-state 
relaxation, (d) spin exchange with the second species, 
and (e) self spin exchange between atoms of the same 
species. 

The form of these equations corresponds to a diagonal 
density-matrix approach, which should be valid in the 
absence of coherence-producing interactions. The radio-

frequency fields used in the experiments treated in this 
paper are ordinarily applied in a manner producing very 
little coherence. Magnetic field inhomogeneities are 
usually sufficient to damp out any coherence effects in 
a time short compared with the other significant times of 
the problem. A solution of the rate equations including 
the off-diagonal elements but neglecting nuclear spins 
has been obtained by other workers; it is discussed in 
Sec. IVD. 

Each of the terms in Eq. (1) will now be discussed and 
the simplifying assumptions stated. The resulting rate 
equations are given in Sec. I IF . For the experiments 
treated in this paper, the 2(27+1) equations for each 
species (excluding excited-state equations) reduce to 
two equations with the variables being the longitudinal 
electronic polarizations of the various hyperfine levels 
as defined in (13). However, the particular assumptions 
made in Sees. I l l and IV are necessary before this 
reduction is complete; therefore, the rate equations of 
I I F are not entirely in that form. 

A. Pumping Radiation 

1. Circularly Polarized D\ Resonance Radiation 

I t is assumed that the resonance radiation is filtered 
with only the £>i line (2Pi/2 —> 2Si/2) incident upon the 
resonance cell containing two alkali species. I t is further 
assumed that it is circularly polarized so that Mi must 
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change by + 1 for electric-dipole transitions; i.e., 

LMP^'iFxMiJi'Fi'M!') 

= L(v)P/(FiifhiFl
,M1+l)djl^i/iSMl'lM1+i. 

2. Equal-Intensity Hyperfine Components 
Throughout the Cell 

I t should always be possible to write 

P / ( / W i , i * V J f i + l ) 

= P ' ( / W i , $F1'M1+l)f(v-v°FlMl.pl>Ml>), 

where f(v—v°FiMi,FifM1') represents the broadening of 
the absorption line around the center frequency 
V0FIMI,FI'MI' by, for example, Doppler or pressure effects; 
furthermore 

/•QO 

f(v — V°FlMitFi'Mi')dv=l . 

Now assume that 

5 

L(v)f(v—v°FlMi,Fi>Mi>)dv = L; 

i.e., over the frequencies for which absorption occurs, 
the light at each point of the cell is independent of the 
frequency. Experimental care must be taken to achieve 
equal hyperfine components in the incident light; this 
can usually be done by regulating the amount of self-
reversal in the lamp bulb, if one is able to monitor the 
components. Since the hyperfine components often have 
different absorption coefficients, the absorption must 
usually be kept low to approximate equal components 
throughout the cell (see Sec. IIA3). 

The first term in (1) contains 

L Lq(v)PM
/(F1MlfJ1

/FiM1
,)dp 

Ji'Fi'Mi' J o 
a 

= LZP'(F1M1,^F1'M1+l)^LP'(FiM1), (2) 
Fl' 

P'(F1M1) 

« E ( I (hJiFxM,| r(1,1) | / j / i F i ' J f 1+1) 12)/1=1/2, (3) 
Fi' 

where r(l,q) denotes the qth component of the valence 

TABLE I. Values of ( * \ _ £ _ J . 

F i ix+l 
2 C / i 2 + 2 7 i + ! - M i - M l 2 ] 

ii-i 
2CJ i2 - i -2Mi / i+M 1 2] 

(27i + D (2/i +2) (2/i +3) 4/i (2 / i+ l ) (2/i +2) 

2 C / i 2 + 2 / i + | + (2/ i+2)Mi+Mi2] 2 [ / i 2 - i - M i - M i 2 ] 

4/i (2 / i+D (2/i+2) ( 2 / i - l ) 2 / i ( 2 / i + l ) 

electron position vector r, which is a tensor of rank 1, 
see Edmonds,9 Chap. 5. Using Edmonds' (5.4.1) and 
(7.1.7), one finds 

/F, 1 
i " ( / W i ) « E ( 

ft'Wi 1 

Fi' \ 2 

AtfW). (4) 
1—1/ -M 

The squared 3-j symbol in (4) is given in Table I (from 
Edmonds' Table 2). The quantities 

A(/VY)^6(2/VH)(2/Y+1) 

Fx \ 1 
= A ( W 0 (5) 

are given in Table I I ; they were obtained with the aid of 
Edmonds' Table 5. Then, for F i = / i = b | , 

P ' ( ± , Mi) = P ' t f W i ) = C [ l = F l f i / ( / i + 1 / 2 ) ] 
= C [ l - 2 ( F 1 - / 1 ) ^ 1 / ( / 1 + l / 2 ) ] , (6) 

where LP'(FiMi) is the total probability per unit time 
that an atom in the substate F\Mi will absorb a reso
nance photon; C is a constant independent of the quan
tum numbers of interest. 

3. Low Absorption 

The experiments analyzed in this paper employ the 
transmission monitoring technique; the changes in the 
absorption constitute the signals. The absorption by the 
cell can be found as follows: The light intensity at fre
quency v and time t at a penetration depth of x into the 
resonance cell of length I decreases by 

dL(v9x,t)=—L(v,x9t) L pFiMi(*,t) 
FiMiFi' 

Y.Pv'(F1M1,\FmiJr\)hvdx (7) 

between x and x+dx; it is assumed that L{v9x9t) is 
circularly polarized, so that A l f i = + 1 in absorption. 
With the assumptions of Sec. IIA2, (7) yields, for the 

TABLE II. Values of 

A(Fi,Fi')=6(2F1+l)(2P1 '+l){| i
 Fl * } . 

iY 
Fi 

Ii+i 

Ii-i 

/ i+J 
(2Ji+2) (2A+3) 

2/ i+l 

4/i (2/i+2) 

2/i+l 

h-i 

4/i (2/i+2) 

2/ i+l 

2/i (2/ i - l ) 

2A+1 

9 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, New Jersey, 1957). 
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absorption, 

A{l,t) = L{Oyt)-L(lyt) 

= / L(x,t) E pFiMtfatiP'iFiMdhKlx. (8) 

The conditions necessary for maintaining the equality 
of the hyperfine components throughout the cell can be 
found by integrating (7): 

L(v,x,t) = L(v,0,t)exp\ — / E pFiMi(x',t) 
L J0 F1M1F1' 

XPv
f{FxMh^Mi+\)hvdxf I 

= L(vfl,t) exp - / kv(x\t)dx' , (9) 

where L(v,09t) is constant over the frequencies for which 
the absorption is appreciable. L(p,x,t)^L(vfiyt) if the 
absorption is low, i.e., W<3Cl where ko is the peak ab
sorption coefficient. But for some cases slightly less 
stringent requirements are sufficient. For example, if 
the excited-state hyperfine separation and the Zeeman 
splittings are much less than the absorption width, the 
two resolved components are approximately equal to 
each other at each point of the cell if W/(2/i+l)<$Cl. 
This requirement is satisfactory, since the difference in 
their absorption rates is only l / (2 / i+ l ) times the total 
absorption rate. Experimentally, an extrapolation to 
zero absorption or a demonstration that the signals are 
independent of absorption should be made. 

With the assumption that the absorbable light at each 
point in the cell is independent of frequency, the ab
sorption (and the signals) can be expressed as a simple 
function of 

E pF1M1(x,t)Pf(F1M1) 
FiMi 

= Cp[l- E 2 ( F 1 - / i ) I i M i # i + I W ) (10) 
FiMi 

which can be expressed as a function of the elec
tronic polarization as follows. It can be shown that 
(FM\SZ\FM)=2(F-I)M/(2I+1). Then the absorp
tion is 

A(l,t)~kj L(x,t)[l-P(x,t)ldx, (11) 
• / o 

with the absorption coefficient k = Cphv and 

P=2<Sl2> = 2 E PFIMI 
FiMi 

X(FiMi\Su\Frffi)/p=Y,Ppi, (12) 
Fi 

Ti±l/2 

PF^I1±1/2=P± = =fc E M1pIl±l,2,Mi/(Il+h)p • 
A*r=-/i=Fi/2 

(13) 

Here P is the longitudinal electronic polarization, and 
P+ and P__ are the contributions to this polarization 
from the two hyperfine levels. Completely analogous 
polarizations D, D+, £L are defined for the second 
species. Although only P is needed to define the signal, 
P + and P_ usually appear in coupled equations and must 
be solved for separately in order to determine P. Or, 
since 

(Iu)=(Fu)-(Su)=IiP+-(Ii+l)P-, (14) 

the equations for (&z) and (tz) can be found and solved 
instead. In either case the 2(27+1) equations for each 
species reduce to two equations in the cases treated in 
this paper. Consequently, the rate equations for P + and 
P_ rather than for PFXMX will be determined. Then the 
absorption term of (1) gives 

(P±)Abs= T L E MxpFlMiP\FxMl)l(Iv±\)p, (15) 

when (2), (6), and (13) are used. 

B. Excited-State Disorientation 

It is customary, in analyzing optical-pumping signals 
in which a buffer gas at a pressure greater than 1 cm of 
Hg is used, to assume that complete mixing occurs in 
the excited state. In other words, the excited-state 
polarization relaxes nonradiatively in a time short com
pared with the radiative lifetime. Recently, excited-state 
disorientation cross sections have been reported which 
are considerably smaller than those found earlier for 
sodium. Yellin and Marrus10 report for Rb87-Ne colli
sions a cross section of 5X10~17 cm2, which implies an 
excited-state relaxation time of P^O.4 /xsec for Jarrett's 
experiment (2.8 cm of Ne at 90°C).7 The corresponding 
mixing parameter11 

q=r/(T+r) (16) 

(where T = 2 . 8 5 X 1 0 ~ 8 sec is the excited-state lifetime 
against spontaneous emission) is less than 10%, im
plying that Jarrett's conditions produced very little 
excited-state mixing. Since one of the primary objec
tives of this work is to determine the importance of the 
nuclear spins in Jarrett's experiment, it is of interest to 
investigate the necessity of the assumption of complete 
mixing. It will be shown that the signal for Jarrett's 
experiment (in the limit of low light intensity) is inde
pendent of the amount of excited-state disorientation, 
regardless of the mechanism producing the mixing. 

By definition, the probabilities P" must satisfy 

E P'ViFiMJ,FiM{) = \. (17) 
F\M\ 

The time rate of change of the density of excited atoms 

10 J. Yellin and R. Marrus, Bull. Am. Phys. Soc. 9, 720 (1964). 
11 C. 0. Alley, Princeton University (unpublished). 
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in the F{M{ substate of the 2Pjy excited state is 

Uji'Fi'Mi' — L 2Z pFiM\P\F \M l,J 1 F i M l)b Mi' ,Mi+l$Ji' ,112 — WJI'FI'MI'/TJI' 
FIMI 

~ E nJl,Fl>M1>we(J1'F1'M1\J1"F1"M1'
/)+ L nj^^^.wlJ^F^M^\J{F{M{), (18) 

J\"F\"M\" J\"F\"M\!f 

where wJJ{F{M{J{'F{'M{') is the probability per 
unit time that an excited atom in state J{F{M{ will 
make a transition to the excited state J\'F{fM\f 

(without returning to the ground state by emission of a 
photon). Since the excited-state populations reach 
equilibrium very rapidly (^ r), the equilibrium value of 
njx'Fi'Mx' can be used in (1). Notice that at equilib
rium (18) is of the form 

Rn=Lm, (19) 

where R is a matrix independent of the various popula
tions, n is a column vector with components nj^F^Mi', 
and m has components 

W / I W M I ' = E pFlM1P
,(F1MhJ1

fF1
/M1

f) 
FiMi 

X5MI',MI+I5JV,I/2. (20) 

Therefore n and UJ^F^MX' are proportional to L or 
higher order terms in L. The reemission term of (1), 
which becomes, when (13) is used, 

( j P ± ) R e = ± E WJVFi'JIfi' 
Jl'Fi'Mi' 

X E MyJP'ViFi'Mi'iFiMMih+ftpTjs, (21) 
Mi 

is then proportional to L or higher order terms in L. 
This term vanishes in the transient experiment of Sec. 
I l l for which L=0; it will be found to be independent of 
P + and P_ for the Dehmelt-type steady-state experi
ment of Sec. IV. 

C. Ground-State Relaxation 

The most common assumption for the ground-state 
relaxation in optical-pumping experiments is that it is 
uniform. It has been suggested that a better assumption 
is that the electron spin is randomized without affecting 
the nuclear spin.11 Recently Bouchiat12 has carried out 
a detailed analysis of relaxation on paraffin-coated cells. 
She assumes that the relaxation arises from the inter
action of randomly oriented disorientation fields with 
the spin of the valence electron. This section contains a 
short derivation of the contributions to the rate equa
tions from such an interaction which parallels the ele
gant density-matrix treatment by Bouchiat. A dis
cussion in terms of the assumptions of uniform relaxa
tion and electron randomization is also given. 

12 M. Bouchiat, J. Phys. Radium 24, 379 (1963). This article 
contains a detailed analysis of relaxation in paraffin-coated cells. 

The general relaxation Hamiltonian satisfying the 
above restrictions can be written 

3e '=Z ak(~)*S(l,q)H(k, -q), (22) 
kq 

where H(k,q) is the qth component of a randomly ori
ented field of rank k [for example, a scalar contact 
field (k = 0) or a tensor dipole field (k = 2); see Ref. 12] 
and is independent of the alkali atom spin coordinates. 
S(l,q) is the qth. component of the spin of the valence 
electron of the alkali atom.9 

Abragam13 shows that, if 3C,'(t) = AF(t), where A is an 
operator acting only on the variables of the alkali, and 
F(t) is a random function independent of the alkali, 
the transition probability from state a to b of the 
alkali is 

wab=\(a\A\b)\*J(a>ab), (23) 
and 

/

oo 

g(T)<ria*brdT 

= 2rc(F(t)F(t))/(l+ooabW) (24) 

provided that 

g(r)^(F(t)F(t+r))=(F(t)F(t))txp(- \r\/rc), (25) 

i.e., if the interaction can be characterized by a single 
correlation time rc. 

It should be a good approximation to assume that the 
Hamiltonian (22) is the sum of several terms each of 
which satisfies the restrictions of Abragam's derivation. 
Then 

w(F1MifF1
,Mir) 

= E I (FiMilSilrflFx'Mx')12/fl(a*lJfllFl,w), (26) 

where /s(ojF1jif1,F1'Mi') is proportional to (Efc'fc ak>*ak 
XH*(k', —q)H(k, —q)), which is independent of q, 
since the fields are randomly oriented. 

In a magnetic field of low intensity the hyperfine 
energy separation AW is much larger than the Zeeman 
separation OOF. Furthermore since the operator S(l,q) is 
a tensor of rank one, M1 can change by at most one unit 
in each relaxation event. Therefore, J (AW) and J (OOF) 
are sufficient to characterize the ground-state relaxa-

13 A. Abragam, The Principles of Nuclear Magnetism (Oxford 
University Press, London, 1961), pp. 272 and 297. 
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tion. Then one has 

w(F1MhF1'M1') = j : I (F1Mi\S(l,q)\Fi'Mi') | J(«iv.*/M+*w.ft±i/(AWO) (27) 

I , „ , „ 1 JA(^A'){^i ,w[ /M-/ (APF)]+/ (ATF)}/4 . (28) 
—Mi M i — M i M i / 

Equation (28) substituted into the third and fourth terms of (1) yields 

(E MipFlMl)B= -UM-J(AW)-] E MIMM 1 / (27 I+1) 2 

MI Mi 

- { 3 £ J f i M * i / 4 - E A(Fi,Fi ')r(Fi,2?i ' ,Mi')M'M l ' /4}/(ATF). (29) 
Mi Fi'Mi' 

The quantities 
/Ft 1 P x ' \ 2 

r C F i ^ J i f i O ^ E J f i l ) = J f i ' r ( F i , / Y ) (30) 
MI W i Mi'-Mi -M{) 

are given in Table I I I , which was found by using Table 
2 of Edmonds.9 

Now define two time constants 

i/T1=ZJM-j(AW)2/(2i1+iy, (3i) 

l / T i W ( A l ¥ ) . (32) 

Equations (13) and (29) give, for the contributions to 
the rate equations from ground-state relaxation, 

( p + ) i 2 = - p + / r 1 - ( 2 / 1
2 + / 1 + i ) p + / ( 2 / i + i ) 2 r 1

/ 

- ( 2 / 1 + 2 ) ( 2 / 1 + 3 ) P _ / 2 ( 2 / 1 + l ) 2 r 1
/ , (33) 

( P _ ) i 2 = - P _ / ^ i - / i ( 2 / i - l ) P + / ( 2 / i + l ) 2 P i / 

- ( 2 / 1
2 + 3 / i + 2 ) P _ / ( 2 / 1 + l ) 2 P / . (34) 

To gain some insight into the time constants (31) and 
(32) consider the two limiting cases. 

(a) Zeeman relaxation. Let J(AW)<&J(OOF), i.e., 
Pi<<C7Y; in this case the correlation time is much longer 
than the hyperfine period THF. Relaxation then occurs 
within the Zeeman sublevels of each hyperfine level, 
but transitions between hyperfine levels are rare. The 
longitudinal electronic polarization of each hyperfine 
level relaxes as a single exponential of time constant Pi. 
T\ is then the characteristic time for Zeeman relaxation 
in which the electron spin is randomized within each 
hyperfine level, but no transitions are made between 
hyperfine levels. 

(b) Relaxation by electron randomization. Let J(O)F) 
zxJ(AW), Ti<gTi, TC<3CTHF; in this case both Zeeman 
and hyperfine transitions occur. The electron spin is 
completely randomized without affecting the nuclear 
spin. Such a model has been used by workers at Prince
ton.11 The term electron randomization will be used to 
identify this limit, and T\ is the electron randomization 
relaxation time. 

Then in general if the relaxation occurs through ran
dom interactions of the alkali electron spin with ran

domly oriented disorientation fields not involving the 
alkali spins, the relaxation of the electronic polarization 
of each hyperfine level can be represented as the sum 
of two contributions: that from Zeeman relaxation 
[J(kW)<UM, T C » T H F , P i « P i ' ] and that from elec
tron randomization [_J(AW)^J{uF), rc«:rHF, 7Y<<CTI]. 

Equations (33) and (34) correspond to Eqs. (53) and 
(54) of Bouchiat12 if (12) and (14) are recalled and her 
time constants Te and Tn are related to P i and T{ by 

i / r a =i / rH- i / zY, 
i /pn=i/r1+2/(2/1+i)2P1 \ 

A Hamiltonian of the form of (22) was taken by 
Bouchiat to describe relaxation in wall-coated cells. I t 
appears that (22) should also hold for relaxation by 
collisions with buffer-gas atoms. For example, Bern-
heim's model for buffer-gas relaxation is of this type.14 

For buffer-gas collisions the correlation time is no longer 
than the collision time, «10~1 2 sec, which is much 
shorter than the hyperfine period. One would then ex
pect disorientation by buffer-gas collisions to satisfy the 
conditions for electron randomization. 

TABLE III. Values of 

/Y 
Fi h+i h-i 

Mi' (4712+8/1-1) Mi' (2/x+3) 
i + i 

(2/i+l) (2/i+2) (2/i+3) 2/i (2/i+l) 
Afi ,(2/i-l) ilfi'(4/i»--5) 

i - J 
(2/i+1) (2/i+2) (2 / i - l)2/i (2/i+l) 

14 R. A. Bernheim, J. Chem. Phys. 36, 135 (1962). 
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There appear to be at least two reasons for retaining 
uniform relaxation as a decay channel in addition to the 
mechanism proposed by Bouchiat. First, in cells con
taining sidearms for controlling the densities of the 
various alkali vapors, effusion to and from the sidearms 
constitutes a uniform relaxation process; i.e., when an 
atom in a given F±M 1 substate leaves the cell, it is re
placed by an atom which has an equal probability of 
being in any of the 2(2/i+l) possible substates. Second, 
if an atom sticks to the wall for a very long time, the 
relaxation will again be uniform. For example, if the 
atom undergoes many effective relaxation collisions of 
the Bouchiat type while on the wall, its initial polariza
tion will be completely destroyed. Imperfections in the 
coating or small pools of alkali atoms could cause long 
dwell times. 

Uniform relaxation can be included by adding to (28), 
w(F1M1,F1'M1') = l /2(2/ i+l)r1

, / , where TV' is the uni
form relaxation time. Equations (33) and (34) readily 
become 

( P + ) / 2 - - p + / ^ i , / , - ( 2 / i 2 + / i + i ) P - f / ( 2 / i + i ) 2 r 1
/ 

- (2/ i+2)(2/ i+3)P_/2(2/ i+l) 2 r 1
/ , (35) 

(PJ)R=-P_/T1'"-I1(2I1-l)P+/(2I1+iyT1
f 

- (2/1
2+3/i+2)P_/(2/i+l)2Pi / , (36) 

where l/Ti"=l/Ti-jrl/Ti" to simplify the subsequent 
equations. See Sec. IV for a discussion of experimentally 
determined relaxation times. 

D. Spin Exchange Between Nonidentical Atoms 

The results of Dalgarno's quantum-mechanical treat
ment of the spin-exchange process are used to describe 
the spin-exchange collisions between the two species.15 

Atoms 1 and 2 are assumed to be nonidentical and in 

doublet spin states. The stationary state of the molecule 
formed by atoms 1 and 2 is then either a singlet or 
triplet state. With each of the possible states there is 
associated a potential which describes the interaction 
of the two atoms. In the usual manner, the solution of 
the scattering problem leads to the scattering ampli
tudes, / , and ft, where the subscripts refer to singlet and 
triplet. Spin-orbit interactions are neglected in the col
lision. For spin-exchange collisions for which the initial 
states of atoms 1 and 2 are A and B and the final states 
Af and B\ the cross section is15 

Q(AB,A'B') = Q1(A9B)8A,A,6B.B'+QMB,A'B'), (37) 

where 

QM •-/I fs+3ft 

+JRe[(/.*+3/i*)(/«-/.)] 

X(AB\$VS2\AB) <H2, (38) 

Q2(AB,A'B') = f\ft-f8\*<m 

X\(A'B'\Sv$2\AB)\>, (39) 

and Si and S2 are the electronic angular momenta of 
atoms 1 and 2. In the experiments discussed in this 
paper, contributions from the direct cross section, Qi, 
cancel out because only net changes in state populations 
are detected. From (39) it is seen that the spin-exchange 
experiments considered here yield information about the 
interatomic potentials only through the quantity 
f\ft-f.\2dQ. 

The matrix element of SrS2 between FM states is 
found as follows: By Edmonds' (5.2.4),9 

{F^M^F2'M2
f I S r S21F1M1F2M2) = £(-) ' (Ft 'Mi ' | Si(l,<?) | Fdti)(FlMJ | 58(1, - q ) \ F2M2). (40) 

Then by the Wigner-Eckart theorem, Edmonds' (5.4.1), 

(Fi'Mi'Fi'Mi' | Si- S21 FxMxF-M^j 
, , , , ( F{ 1 Fx\( F,' 1 F,\ 

9 \—Mi q MiJ\—Mz —q Mil 

Application of (7.1.7) and (5.4.4) of Edmonds leads to 

&{FxMiFMi,Fm{FJM4) J \ |/i-/.|*<*a 

= \{F{M{F4M4\^^\FxMxFMi)\2={9l^){2Fv^l){2F^\){2F^\){2F^\) 

/ w i *y/w . *y|» « «•,» JV /.,•_ 
« \-Jkfi' q Mj \-M2' -q M2J LFI £ 1 J IF, J 1 ) 

The following selection rules are immediately apparent: Mi+M2=Mi+M2, \AMi\ ^ 1 , |AAf2| ^ 1 . Using (5), 
15 A. Dalgarno, Proc. Roy. Soc. (London) A262, 132 (1961). 

file:///-Jkfi'
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one has 

f\fi-f*r I Fi 1 ^ i \ V F* 1 W 
g,(F1Afifi lJ£,>F1 'Jf1

/JYJf, ,)= / da A(FhF1')A(F2!F2')T.( ) . 
y 16 9 \-Mi' q Mj \-Mi' -q Mj 

FI' 1 Fi\*/ /?, ' 
(43) 

Then the exchange term in (1) becomes, with (13), 

=Fl AiFifi'WM 
( P ± ) B = — — E 7 — 7 : £ 

4:TEld Fx'Mi* 
FiMt 

Ft'Mt' 

(Il+h)p Mi \ - l f i ' q Mj \-Mj -q Mj 

where 
X(pFiMidF2M2~~pF\'Mi'dptf M%') j ( 4 4 ) 

1 d 

TEI -JJ* • fa 12
Edtt vEf(vE)dsvE = -

d 

TE2p 
(45) 

Here TEI is the time which characterizes the influence of the second species upon the first species through the 
spin-exchange interaction. Similarly, TE2 indicates the effect upon the second species arising from spin-exchange 
collisions with atoms of the first species. The normalization is in agreement with accepted convention.6 Equations 
(44) are not yet in a useful form because they depend upon the populations and not just upon the polarizations. The 
further assumptions made for the particular experiments in Sees. I l l and IV will correct this situation. 

A short digression will show that the cross sections derived here agree with the results of Glassgold.1 From (43) 
one has, for the case in which the second species is unpolarized, 

E QikFxMiFJhiiMMJFi'MJ) = 2(2/ 2 +1) 
F2M2 

Ft'Mt' 
16 

'• I F{ 1 F A * 
- d Q A ^ F i ' M J , (46) 

\-Mi' Mi'-Mi MJ 

2(2/2+1) / a(fm,f'm';8)<m, (47) 

in the notation of Glassgold with f=Fi and m=M 1. The A(Fi,Fi) defined by (5) and given in Table I I are identical 
to the A(f,f) of Glassgold, which are listed in his Table I. Therefore, by Edmonds' (3.7.3), 

1 
<T(fm,fm';e)=-

fi-fo 
A(f,f')(fmf-m' [ \m-m'Y, 

where fi=ft and /o= /« . Equation (48) agrees with Eq. (4.6) of Glassgold's paper. 
If one defines 

Q2(FlM1F2M2,FiM1'F2'M2') = x50*< | (F{M{FJM1 \ P i + c'*P01 FXMXF-M%) \ 2)AV over *, 

(48) 

(49) 

then (44) are still valid if l/TE1d is replaced by irS0
2v/2. 

This substitution places the rate equation in the form 
used, for example, by Anderson and Ramsey.8 This 
approach is similar to the semiclassical description used 
by Wittke and Dicke16 and by Purcell and Field.17 

P i and PQ are the projection operators for a total elec
tronic angular momentum of 1 or 0. The relative phase 
shift, (j), between the singlet and triplet parts of the 
wave function, arises from the difference between the 
singlet and triplet potentials, which describe the mole
cule formed by an alkali atom of each kind. For a 
"strong" collision, <j> is assumed to be large and random 
((cos0)=O); collisions not classified as strong are ne
glected. The maximum impact parameter for which a 
strong collision occurs, So, is usually taken as the one 

16 J. P. Wittke and R. H. Dicke, Phys. Rev. 103, 620 (1956). 
17 E. M. Purcell and G. B. Field, Astrophys. J. 124, 542 (1956). 

for which the particle will have zero velocity at the top 
of the centrifugal barrier for the singlet potential. 
Glassgold and Lebedeff have discussed the validity of 
this approximation.2 

E. Self Spin Exchange 

Glassgold1 has shown that the cross section for identi
cal atoms, corresponding to (37), is 

Q(AA\A"A ' » ) . / ] {A"A'"\$\AA')\*da/2, (50) 

where the first atom in the collision has electronic spin 
OPI/2 and undergoes a transition from state A (repre
senting FiMi) to A" in an exchange collision with the 
second atom of spin o,i//2 which makes a transition 

file:///-lfi'
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from A' to A'"\ electronic and nuclear spins j Q—QnQey where 

3=Fd(e)+FM<n-<>i' Qe\IMjSMs)-i.-Y+1\IMiSMs), (56) 

+(-yi+1QlFd(K-6)+Fx(T-e)<n-a1'l, (51) Q^IMTSMs^i-Y+'VMiSMs). (57) 

F „ = ( / . + 3 / « ) / 4 , (52) 

For a general operator 0 , 

F*=(ft~/*)/*, (53) {A"A"f\QO\AA')={A'"A"\0\AAf)- (58) 

1=11+1/; Ii=Ii=i, (54) t n e n r s t quantum numbers of each bra or ket always 

S^SrfSxWS; Si=Si'=i. (55) r e I ^ t 0 / h e f i r s
r ^ a ^ - . . . . 

The factor of 2 in (50) is necessary in order to avoid 
Here Q is the operator which interchanges both the counting final states twice. The cross section is then 
Q(AA'7A"A'") = rCI^^WI2^^-5^,^-+|^rf(7r—^)|25^,^,,5^^, 

+ ( - ) 2 ^ 2 R e { F / ( 0 ) F d ( 7 r ^ ^ 

+ F / ( T T - 0 ) ^ ( 0 ) < ^ 

+ 2 ReF**(0 )F x (0 )<^ 

+ l-P"«W 12I <^l ,/-4/,/| €Fi-€ri,|-4-4/>l 2 + l-PxC^— )̂ 12I <-4,/,^l,,I tri-fri'l-^^OI 2HrfO/2. (59) 
Fortunately, none of the terms involving deltas contributes to the rate equations, as can be seen by substitut
ing (59) into (1). The \FX(0) | 2 term in (59) is the cross section one would expect between two nonidentical atoms. 
The \Fx(ir— 6)\2 term arises because no distinction can be made between the incident and target atoms. The 
2 ReFx*(d)Fx(ir—6) term arises from the quantum-mechanical identity of the two colliding atoms. An estimate of 
the interference term using the model of Purcell and Field is given in Appendix I and indicates that it is small 
compared with the other two terms, at least for Rb87; it will be neglected entirely in the subsequent calculations. 
Equation (59) in (1) produces, with the aid of (13) and the fact that f\Fx{6)\2dtt=f \Fx(<ir-d)\2dQ, 

=Fl W*Fi'WiW")^„ 
(P±)si= E T,Mi 

4tTSip Fi'Mi' (h+i)p MI 
Fi Mi 

Fx'"Mx"' 
Fi' 1 P A 2 / F{" 1 Fi' \ 2 

X I J I I (pFiMipFi'Mi' — pFi"M1"pFi",Mi"r). (60) 
Here Tsi, defined by 

I ) ( ] (pFiM1pFi'Mi' — pFi"Mi"pFi'"Mi'"). 
\-Mi" q Mj \-MI'" - q -Mi'J 

= - I f\ft-fs\
2sidVvsif(vsi)d*vsi, (61) 

Tsi 4 J J 

is the self spin exchange time for the first species; for the second species, 

= ~~ / / \ft—fs\
2S2dttvs2f(vs2)dhs2. (62) 

TS2 4 J J 

F. Simplified Rate Equations 

Combining the results of this section, one has 

MipFlMip'(FtMi) /WJI 'FX'WX M1F
,\J{F{M{,F1M^ 

Fi~Ii±U2--
MlpFiMiP (FiMi) /nJi'Fi'Mi'\ 

= =FLE ±z, E ( E 
Mi (Il+i)p Ji'Fi'Mi'\ L /Mi 

fM! (Ii+fypr^, 

-P=fc/r1
,/'~5FlfJl+i/2[(2/1

2+/1+l)P+-(/1+l)(2/1+3)P_]/(2/1+l)2r1' 

-^1,^1_1/2[/l(2/1-l)P^h+(2/1
2+3/1+2)P_]/(27l+l)2^l, 

1 A(FhF^A(F2,F2
f) 

=F E E 
kTEldFi'Mi' (Il+h)p «^i 

F2M2 
Fi'Mi' 

I Fi' 1 F A * / Ft
f 1 Fty 

\-Mi' q Mj \-Mi' -q Mj 

/ Fi" 1 F A 2 / F{" 1 F A 2 

\ - M i " q Mj K-Mt'" -q Mi'J 

1 A(F1,F1")A(F1',F1"') / Fi" 1 F A 2 / F{" 1 F A 2 

£ • £ 
iTsip Ft'Mt' (Ii+?)p QMA—Mt" q Mj \—M{" -q 

F\"M\" 
Fi'"M\'" 

y\Ml{pFiMipFitMi' — pFi"Mi"pFl'"Mi'") . (63) 
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Clearly additional assumptions are necessary before 
these equations involve only P± and D± and none of the 
individual populations. 

III. TRANSIENT EXPERIMENT 

In this section the rate equations are solved for the 
case of a Franzen5 transient experiment applied to the 
measurement of the spin-exchange cross section in a 
resonance cell containing the vapors of two alkalis. 
The first species is optically pumped and the envelope 
of the decay in the dark of its electronic polarization is 
traced out, yielding a single relaxation time r if the 
nuclear spin is neglected. In the presence of the second 
species, which is continuously disoriented by an rf 
field, the relaxation time is shortened to 

1/T=1/T+1/TEU (64) 

neglecting the nuclear spins. A measurement of the 
density of the second species then permits a determina
tion of the spin-exchange cross section. This transient 
experiment has the advantage that the density and re
laxation times of only one of the two species must be 
measured, whereas in the steady-state experiments 
they must be determined for both species. 

The transient signal is conveniently defined as 

A(co)-A(t) 

4(oo) -4 (0 ) 

where the absorption at time t is given by (11). Equation 
(11) becomes, on the assumption that P is independent 
of x and that L is approximately independent of x 
and /, 

4(Z,0«JW[1-P(0]L. (66) 
In that case, 

S(h,t) «P(fl/P(0) = (Su(t))/{Su(0)). (67) 

If the resonance cell contains no buffer gas, P should be 
independent of x because of the rapid motion of the 
atoms; L is approximately independent of x and / if 
the absorption is kept small. At any rate, (67) is valid 
only if experimental care is taken to satisfy (66); other
wise the signal becomes a much more complicated func
tion of the polarization as indicated by (11) and (65). 

The continuous application of the rf field at the reso
nance frequency of the second species, 

« 2.SH0/(2h+1) Mc/sec, (68) 

where H0 is the static magnetic field strength in gauss, 
results in equal populations among the substates of each 
hyperfine state throughout the experiment. One has 
in (63) 

dF2M2=dF2/(2F2+l) (69) 
and 

dF%>M%> = dF%*/(2F*'+l). (70) 

(It may take a time "TV* in paramagnetic-resonance 
nomenclature for the spins to dephase after the applica

tion of the rf field; but since the field is applied con
tinuously and is sufficiently strong to overpower the 
pumping effect of the light, the coherence will not 
reappear.) 

It is necessary to exclude the self-exchange term in 
(63) from the following solution because of its nonlinear 
character. Experimentally this is a good approximation 
whenever Tsi is much longer than the shortest time 
constants affecting the relaxation; for example, for two 
alkalis, cross exchange dominates over self exchange 
when d^>p. The importance of self exchange is also re
duced because there is no change in the absorption if the 
two atoms undergoing a collision have both initial and 
final states in the same hyperfine state: 

AAazAZ MpFM*Mi(-l)+Mi'(--i) 
M 

+Mi"(+1)+Mi'"(+1)=0, (71) 

since Mi+Mi=Mi"+Mi" always.5 

With (69), (70), Tsi=°°, and L=0 the l/TEi term 
in (63) becomes identical in form to the T{ term in (29) 
or (33) and (34). Then 

P+= -P+/W- (l/Tm+l/T1%(2h*+h+l)P+ 

+ (/1+l)(2I1+3)P_]/(2I1+l)2 , (72) 

P-=-P-/T1'"-(l/Tm+l/T1')£h(2I1-l)P+ 

+ (2I1
2+3I1+2)P_]/(2/1+l)2 . (73) 

Alternatively, with the aid of (12) and (14), 

0iz)=-(l/Ti"'+l/Ti'+l/TEi)(Slz) 
+2(l/T1'+l/Tm)(Ilz)/(2h+iy, (74) 

( / l 3 ) - - [ i / r 1 ' " + 2 ( i / r 1 ' + i / r B 1 ) / ( 2 7 1 + i ) 2 ] ( / l 2 ) . 
(75) 

The solution of the above equations yields, for the sig
nal for a Franzen-type spin-exchange experiment, 

S(Iht)= (1-a) exp(-t/n)+a exp(-*/r2), (76) 

where 

1/r 1= 1/TYh 1/ZY+ 1/7Y'+ 1/TBI , (77) 

l / r a = l / r 1 + 1/Ti"+2(1/2Y+ l/TEl)/(2h+\)\ (78) 

a= 2(/i,(0))/(4/1
2+4/1- l)<Si.(0)> (79) 

= 4[J1P+(0)-(Ji+l)P-(0)]/ 
(4 / 1

2 +4/ i - l )P(0) , (80) 

where I\ is the nuclear spin of the first species, TEI is 
defined by (45), and Th TV, TV' are the times for Zee-
man relaxation, electron randomization, and uniform 
relaxation, respectively. (Siz) and {I\z) are defined by 
(12) and (14). Note that for J i - 0 or I i = | , P_=0, im
plying (Iiz)=2Ii{Siz). For TI"=TBI=«> these results 
agree with Bouchiat12; for T1=T1'=Ti"=<x>, with 
Grosset6te.18 

18 For an independent derivation of the results of this section 
using density matrix techniques, see F. Grossetete, J. Phys. 
Radium 25, 383 (1964) and Compt. Rend. 258, 3668 (1964). 
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For a single species, the relaxation of the electronic 
polarization is a single exponential if the relaxation is by 
Zeeman or uniform transitions only and is the sum of 
two exponentials [with characteristic times in the ratio 
(2/1+l)2 /2] if it is by electron randomization only. The 
experimental results of Bouchiat and Brossel19 for Rb87 

in paraffin-coated cells indicate that, at least in some 
cases, the relaxation is a single exponential; i.e., Zeeman 
or uniform relaxation is dominant. On the other hand, 
one would expect buffer gas collisions to produce relaxa
tion by electron randomization, since the correlation 
time is short compared with the hyperfine period if the 
collision is elastic. 

In summary, the signal for the Franzen-type transient 
experiment, neglecting self spin exchange, is given by 
(76). In general, the signal is the sum of two exponen
tials. For Zeeman or uniform relaxation the ratio of the 
time constants ranges from 1 to (2/i+l)2 /2, depending 
upon the relative sizes of Ti, TV', and TFv For the elec
tron randomization case, the ratio is always (2/i+l)2 /2. 

The corresponding equations for the second species are 
again found by setting L+=L_=0 and interchanging 
the subscripts 1 and 2 in (85) and (86). Thus in the limit 
of low light intensity the rate equations reduce to four 
linear equations. 

19 M. Bouchiat and J. Brossel, Compt. Rend. 254, 3650 and 
3828 (1962). 

In either case, the nuclear spin effects must be included 
in the analysis if correct spin-exchange cross sections 
are to be deduced. 

IV. STEADY-STATE EXPERIMENTS IN THE 
LIMIT OF LOW LIGHT INTENSITY 

A. Rate Equations 

In this section some experiments are analyzed in the 
limit of low light intensity, for which 

pFtM^ p/2(2ll+l)+7TFlM1, (81) 

dF2M2
=zd/2(2l2+^)-\-^F2M2 J (82) 

where the deviations TTFIMI and 8F2M2 of the populations 
from the depolarized values are small and proportional 
to L in first order. Substitution of (81) and (82) into (63), 
dropping terms proportional to L2 (e.g., TFIMIL, 
TTF1M1?>F2M2, etc.) immediately, leads to the following rate 
equations in the limit of low light intensity (see Ap
pendix II for the details): 

B. Dehmelt Experiment 

The experiment analyzed in this section was first used 
by Dehmelt to estimate the sodium-electron spin-
exchange cross section.6 A resonance cell contains two 
atomic species or one atomic species and quasifree elec
trons. The first species is optically pumped, and the 

(2/i+2)(2/i+3)/ D++D\ r 1 / 1 1 N 2 / 1
2 + / i + l 2I1(2I1-1) ) / D++D\ r 1 / 1 1 \2 / ! 2 + 

-( L+C+ - + ( — + ) 
\ TE1 J L7Y" \7Y TsJ (2/i-6(2/i+l)2 \ Tsi / L.ZY" \7Y TSJ (2/ i+l)2 3(2/1+l)2r^i-

(2/1+2)(2/1+3)/ 1 

2(2/!+l)2 \7Y TEI ST, 
. 2 / i ( 2 / i - l ) / D++D\ 7 i ( 2 / i - l ) / 1 1 2 \ 

P - « [L-C+ ( — + + )P+ 

6(2 / 1 +l ) 2 \ TEI I (2/ i+l)»\7Y TE1 3TSJ 

->-
(83) 

L7Y" \7Y 

1 \2 / x
2 +3/ i+2 (2/i+2)(2/i+3)-l 

+ + P _ . (84) 
Tj ( 2 / t+ l ) ' 3(2I1+iyTsi J 

The corresponding equations for the second species are found by setting I ,+=Z_=0, interchanging P ± and D±, 
and replacing the subscript 1 by 2 in (83) and (84). L+ and L_, defined by (A16), are independent of the polariza
tions and are linearly proportional to the light intensity L; L+—L_=L for complete mixing. Recall that the hyper
fine components in the incident light are equal; i.e., L+ and i _ do not refer to unequal pumping components. 

Transforming to the (Su) and (In) representation by using (12) and (14), one finds 

(-Si3)=[(/i+D(2/i+3)Z+C/2+71(2/1-l)X_C/2+(4/12+4/1+3)(^)/rB 1]/3(271+l)2 

r l 1 1 4/1(2/1+2) "I / 1 1 1 \ 
~ -17,+—,+ + - ; ; kSu)+2[—+ + )(Iu)/(2Ii+l)*, (85) 

L.7Y" TV TJ,I 3(2h+iyTslJ \7Y TE1 T,J 

(71,) = /1(2/1+2)[(2/1+3)Z+C/2-(271-l)L_C/2+4(52 ,)/Z'B1]/3(2/1+l)2 

4/i(2/i+2)<5i,> r 1 A1 1 1 \ / "I 
+ + 2 ( — + — + ) / (2/x+l)2 Ulu). (86) 
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transmitted resonance radiation is monitored. The signal 
can be defined as 

S(Ihh) = [:A(0,H2')-A(0,0)l/ 

ZA(Hi',0)-A(0,0)l, (87) 

where A(Hi,H2) is the absorption in the presence of 
two rf fields (Hi disorients species 1, etc.). The absorp
tion is given by (11), provided that the incident 
light is constant over the frequencies for which the 
absorption is appreciable. I t will be assumed that 
L(x,t) or L(x,Hi,H2) is the same at each point in the cell 
for arbitrary values of the rf fields; i.e., L(x,Hi,H2f) 
= L(x,0,0) = L(x). This should be a good approximation 
in the limit of low light intensity, for which— 
because the polarization is always small—the absorption 
changes very little with polarization changes. One has 
P(x,Hi',H2') = f(x)P(Hi',H2'), where P ( # i ' , # 2 ' ) is in-

Then 

5(/i,7a)«a(l)a(2)/i8(l)i8(2) (93) 

is the signal for the Dehmelt-type6 steady-state experi
ment in the limit of low light intensity. I\ is the nuclear 
spin, I / P i ' " = 1 / ^ 1 + 1 / 7 7 ' , Ti the Zeeman relaxation 
time, T{' the uniform relaxation time, 7Y the electron 
randomization relaxation time, and Tsi and TEX the 
self- and cross-exchange times of the pumped species; 
72, r 2 , TV', TV, TS2 ,and TE2 are the corresponding 
quantities for the other species. 

The signal is independent of L+ and L_, i.e., of any 
assumptions about excited-state disorientation. But 
(90) indicates that the electron polarization depends 
upon the excited-state disorientation. However, the 
signal is defined as the ratio of two signals, and the dis
orientation effects cancel out. S=0 for 7 Y " = 0 or TV = 0 
because the second species is not affected by the rf field, 
since it is never oriented. Similarly, 5 = 0 for 7Y" = 0 
or Ti—0 because the first species is not pumped. For 
TEI= oo, 5 = 0 , since disorienting the second species has 
no effect upon the first species in the absence of spin 
exchange. Equation (93) is not valid for both 7 Y " = <*> 
and7Y=<x>. 

If Ti//=T2///=z <*>, i.e., the relaxation is by electron 

dependent of x and f(x) is approximately independent 
of Hi and H.4 since the polarization is small [see (90) 
below]. Then 

5 ( / i , / 2 ) « l - P ( 0 , F 2 0 / P ( 0 , 0 ) , (88) 

since P(#i ' ,0) = 0. For i"i=0, (88) is valid for any ab
sorption if the polarization is low. 

Applying J9Y is equivalent to reducing the relaxation 
time of the second species to zero; therefore, P(0,#Y) 
= P(r2=0) and 

5(/1 , /2)«i~p(r2=o)/p(r2) 
= i -<5i , ( r2=o)>/<5i . ( r , )> . (89) 

By solving the four simultaneous equations (85) and 
(86) and the corresponding equations for the second 
species, one finds, at equilibrium ((Siz)=0, etc.), 

randomization only, 

1 
5 ( / l , / 2 ) I zy"~7y"«roo = 

TEITE2 

x(—+ ) (—+ ) . (94) 
\Ti TEV \T2 TE2' 

Also 

Eli E2 \J- 1 ^ 1 1 El' 

/ 1 1 1 \ - i 
x + _ + ) , (95) 

\ 2 Y " 2Y TBJ 

which is identical to (94) in the limit 2 Y " = 7 Y " = » . 
Therefore, nuclear spin effects are unimportant if the 
ground-state relaxation is predominantly by electron 
randomization. 

In order to compare the results above with earlier 
analyses by other authors, it is useful to compare the 
rate equations for the case Ii—Ii=0; Eqs. (1) become, 

/ 1 1 1 2 / i + l \ / 1 1 1 2 / H - l \ 
( J i + l ) ( 2 / i + 3 ) ( — + — + + 1 1 ^ - / 1 ( 2 / 1 - 1 ) ( — + + \L-C 

\T{ TEX Tsl 27Y"7 \ 2 Y Tm TS1 2 2 Y " 7 
(Su)*, , (90) 

6 (2 / l +l )C9( l ) -a ( l )a (2) / j 8(2) ] 

where 
1 / 1 1 1 4 / i 2 + 4 / i + 3 \ 

a ( l ) = ( — + + — + — , (91) 
r « \ Z Y TEX Tax 62Y" / 

/ 1 1 W 1 1 1 \ 4 / i H - 4 / H - 3 / 1 1 2 \ ( 2 / H - l ) 2 

0(1) = ( — + ) ( — + +—)+ — + + + • (92) 
\ 7Y TxJ\Tx' TEI TSJ 27Y" \TX' TEi 3TSJ 2Ti'"* 
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with «Fi'ar1' = » / 2 ( 2 / i + l ) for complete mixing, C = | , 

2 , ,gi=2 ,M=2 , i /=2 , , /=oo> J f s = ± i : 

Pi/2=Lp_V2/2- {pini-p/2)/TJ" 

— (pii2d_i/2—p_i/2di/i)/TEid, 

p_i / 2 = -Lp_vt/2- {p-m-pl1)IT{" 

— (f-i/idi/2—pi/sfl-i/i)/TEid, (96) 

di»=-(dm-d/2)/T%'" 

— (di/2p-i/2~ d-\i%p\ii) IT m\d, 

d-u^-bUn-d/iyTjl" 

— (d-l/2pl/2—dl/2p-l/l)/TEld . 

Using p±i/2=\j>±(pii2—p-i/i)2/2, one has 

(L 1 
Pi/2-p-i/2=Lp/2-[—I . 

\ 2 T{" Tm, 
X (pl/2—p-l/2) + {dll2—d-\l2)/TE2 , 

Tm) 

/ 1 1 \ 
di/2—d-i/2= — I 1 )(di/2—d-1/2) 

\ 2 V " T J 

(97) 

+ (pl/2 — P-1/2)/TEI . 

By comparing (97) with the rate equations used 
by Dehmelt6 to describe his sodium-electron experi
ment, one finds that the following identifications must 
be made: p=N, d=n, l/TEi=nvQ, TI"'=T(I0=0), 
T<l"=Te. Then with Qmxgl/r or 1/Te, (95) becomes, 
with T1'=T2'=°o, 

SD(0fi) = nNTerv2Q\ (98) 

Of course, Ii was actually f, for which (93) becomes, 
with 7Y= Tj=T8i= TS2= <*>, 

Sz>(3/2,0) - 3nNTerv2Q2/S=3SD(0,0)/8. (99) 

Therefore, if the experiment is performed in the limit of 
low light intensity, the cross section deduced from a 
given signal becomes (8/3)1 / 2=1.63 times as large if 
nuclear spin is included in the analysis, if the ground-
state relaxation of the alkali is by Zeeman or uniform 
transitions only, and if self exchange is negligible. But 
if the ground-state relaxation is by electron randomiza
tion, (98) is valid (with Te=T2

f and T = 2 Y ) for 
arbitrary I\. 

C. Jarrett Experiment 

Comparison of (96) with Eqs. (12) and (13) of the 
paper by Jarrett7 indicates l/TEid=vrQx, 1/7Y" 
= 1/7Y"=2.K, p = N, and d=aN; therefore, with 
7 Y = r 2 ' = oo, (95) becomes 

5/(0,0) = aNWQ^R+NvrQ,)-1 

X{2R+aNvrQx)~\ (100) 

which is Jarrett 's Sx/S, as can be verified by solving for 
the latter from (18) of Jarrett 's paper. But from (94) 

ZovU 
ZovU 
Zov U 

ER 
ER 

Yes or No 
No 
Yes 

Yes or No 
Yes or No 

1 
4.6 
6.8 
1 
1 

TABLE IV. Rb87-Rb85 spin-exchange cross sections deduced from 
the data of Jarrett (Ref. 7). Qj=1.7Xl0~u cm2. 

Relaxation: Zeeman, 
uniform, or electron Self exchange 

12 randomization included? Q/QJ 

it is seen that if the relaxation is by electron ran
domization only, (100) is valid for general nuclear spin 
and includes self exchange (with 7 Y " = 7 Y " = <*> and 
l / 7 Y = l / 7 Y = 2 i £ ) . However, if Zeeman or uniform 
relaxation is dominant, (93) implies a large correction to 
the deduced cross section for the actual nuclear spins 
(7i=f, / 2 = f ) . These effects may be demonstrated by 
assuming Jarrett 's experimental values of the param
eters and signal and then deducing the spin-exchange 
cross section. This author estimates kul/k~\ for Jarrett 's 
experiment; the fact that W / 4 is not much less than 1 
[which is the condition that (11) hold in his experi
ment] is ignored in the following discussion. 

For spin exchange between Rb85 and Rb87 one has 

l/Tsl~p/Tmd and l/T82™l/TEi, (101) 

because J*\ft—fs\2dQl is only weakly dependent upon 
nuclear properties. With TE2=TEid/p, T{"^Tx'\ 
2Y=7Y, in (93), the cross sections Q are deduced 
with £ = 4 1 3 sec"1, N = 3 . 3 3 X 1 0 n cm"3, a=d/p=2.59, 
flr=4.59Xl04 cm/sec, and Sx/S=Sj=0.107. Values of 
Q are found for Zeeman or uniform relaxation (TV = °°, 
2 Y " = 1/2R) and for relaxation by electron randomiza
tion (7Y= 1/2R, 7 Y " = oo). By the nature of the meas
urement, the self-exchange contributions to R were 
presumably eliminated. ()jr=1.7X10 -14 cm2 is the cross 
section deduced by Jarrett, neglecting the nuclear spins. 
A comparison of the deduced cross sections for different 
assumptions is given in Table IV. The nuclear spins are 
important in the analysis of Jarrett 's experiment unless 
the ground-state relaxation is by electron randomiza
tion only. 

This author has not determined which relaxation 
mechanism predominated in Jarrett 's experiment. How
ever, the following discussion is pertinent. The relaxa
tion time of the electronic polarization in a cylindrical 
cell containing a buffer gas can be approximated by5 

1 1 1 
(102) 

T TWall Tbuff-

^2.405^ 2 

Twall —~ 
D0pi 

/2.405 V / T T V T 1 

(—Mr)] • (I03) 

Tbufiei^po/NoWp, (104) 
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where p is the pressure of the buffer gas, Z>0 is the dif
fusion coefficient at atmospheric pressure p0, a and L are 
the radius and length of the cell, No is the density of 
inert-gas atoms at p0 and at the temperature of the vapor 
cell, a is the disorientation cross section, and v is the 
mean relative velocity between inert-gas atom and 
alkali. For Rb in Ne, D0=0.31 cm2/sec, o-=5.2X10~23 

cm2, and iVr
0=2.29XlO19 cm~3 at 47°C.5 For Jarrett's 

case p=2.S cm of Ne, a=2.5 cm, L= 1.43 cm, r = 9 0 ° C , 
implying Twan~21 msec and Tbuffer—0.38 sec. Wall col
lisions should dominate for Jarrett 's experiment, giving 
r ~ 2 1 msec, but Jarrett found ^ 1 msec. In deriving 
TWaii it was assumed that every wall collision produces 
complete disorientation, implying that r w a i i^21 msec. 
If, however, the cell contained some impurity in the 
vapor phase, the relaxation might be greatly accelerated 
and be dominated by electron randomization. The cross 
section deduced by Jarrett would then be unchanged by 
the addition of the nuclear spins into the analysis and 
would be in agreement with the paramagnetic resonance 
measurement by Moos and Sands.20 

D. Off-Diagonal Density-Matrix Elements 

In the derivation of the general expression (93), the 
off-diagonal elements of the density matrix were neg
lected. Balling, Hanson, and Pipkin4 have carried out 
an analysis for zero nuclear spin for a general density 
matrix. I t is of interest to compare their result with this 
work. The polarization for 7 i = / 2 = 0 can be found from 
(97) or (90) with TSi= TS2= T{= T2

f= °o and L+=Z_ : 

> = P + = J L c / 
r l l 

(~-+—) ]• (105) 
ITE2\T2

 f TEII J El-L E2^J- 2 

Equation (76) of Balling et ah is to be compared with 
the above, with P , T\h', TEI, TE2, and TV" substituted 
for (P(R)), Tin, TeR, Tee, and Tu, respectively: 

X 

/ l_2Y" Ti 

\2Y 

1 

XI TEITE2 

o0-co)V J ' 
(106) 

V TE2 1+T22(CO0— 5O>0 

where 

« i = —gj(—\xjl2
f/ti), co0= —gj(/jL0Ho/h), 

8COQ is the spin-exchange frequency shift, and 

1 / ^ = 1 / 7 ^ + 1 / 7 ^ 2 . (107) 

Here T2e is essentially the time required for coherence 
effects to damp out, i.e., the usual "TV* in magnetic-
resonance nomenclature; T2e should not be confused 

20 H. W. Moos and R. H. Sands, Phys. Rev. 135, A591 (1964). 

with T2 of this work, which is a "TV' time for the second 
species. For H2=0 there are"no coherence effects, and 
(105) and (106)*agree. For 

( 7 7 2 ' ) 2 » r — ( — + — ) + — — 1 
L7Y"\2Y" TEJ T2"'TEJ 

\TE2 TJI \T? 

1 \ / g / M 

TEJ\ h J ' 
(108) 

(106) agrees with (105) in the limit T2
n->0, implying 

that the second species is completely disoriented. On 
the assumption that all the time constants are equal to 
1 msec, (108) requires 772')>>0.4 milligauss. Thus when 
the resonance is saturated the polarization, obtained 
from an arbitrary density matrix, reduces to the 
diagonal-treatment value at equilibrium. The time re
quired to reach equilibrium is related to T2e for the off-
diagonal contributions. If T2e is made short—for 
example, by increasing the inhomogeneity of the static 
field—the coherence effects are damped out more 
rapidly, but a larger rf field must be applied to saturate 
the resonance. In general, T2e should be made small com
pared with the period of switching the rf fields; H2 is 
then chosen large enough to saturate the resonance, 
i.e., satisfy (108). 

Although the frequency shifts and line shapes resulting 
from spin-exchange collisions can be seen and studied, 
nonetheless, the calculations of this section apply to 
realizable experiments in which these effects are unim
portant. For a much more thorough demonstration of 
the unimportance of the off-diagonal matrix elements, 
see Refs. 12 and 18. This problem is difficult to treat in 
general, but it should be clear that if a state possesses no 
coherence initially it cannot acquire any by relaxation 
processes, which are random. 

Even though it is unrelated to the discussion of this 
section, one other aspect of the paper by Balling et ah* 
may be worth mentioning. They state that they demon
strate in an appendix that their results are valid for 
general nuclear spin. However, using their Table IV and 
their Eq. (24) and making the simplifying assumptions 
that the second species is disoriented [i.e., P(e) = 0)~] 
and that p(e,R) is diagonal, this author finds that 
dPe(Rb87)/dt is not proportional to Pe(Rb87) as in their 
(A14), but rather arrives at the Eqs. (72) and (73) of 
Sec. I l l of this paper with 7 i=f , I2=0. They have re
cently pointed out that their (A14) is in error.21 

E. Anderson and Ramsey 

Anderson and Ramsey8 (AR) have performed an ex
periment to measure the self-spin-exchange cross sec
tion in sodium. The steady-state populations are needed 
to analyze their experiment, not just the electronic 

21L. C. Balling, R. J. Hanson, and F. M. Pipkin, Phys. Rev. 135, 
AB1 (1964). 
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TABLE V. Comparison of population differences for the Anderson and Ramsey (AR) experiment (Ref. 8) 
(Tm^2T2, WmTi, Z C / 2 ^ ^ , / 1 = f ; s e e I V E ) . 

This work 
Anderson and Ramsey Zeeman or uniform relaxation Electron randomization 

(uniform relaxation) (2Y = °o) (7\ =00) 

/ 3 2 5.4 3.8\ 
1 (—+ 

5AR= — )( — h 

- - - - - - - - - - - ~ \Ti ATJ\TX 

A ^ I 2 Ti. 

_ -ATi/1 1 \ / 1 3 \ - i *•. ATi' 

P~~ 2 8 2.78W32 16.5 \ i> 8 \ r i 42V \Ti 8T2< 

-+— U ' A 

( K ± i / ^ = i ± 5 A R ) 

/ 3 2 27.6 3.: 
Al—+ -f-

V T V TiTs T2
2, 

0AR = 

(^2,±l/^ = i±/SAR) 

/32 8 4 \ 
- i i ( — + 

\2V TiT2 T22/ 

£ 8 \TX ITJKT! ST2J 

7T+ 7T_ 

' 8 2.78W32 16.5 \ £ 8 \ T i ±TiJ\Ti ST2J p p 

Xi T*)\Ti* T{1 

/64 44 7.6\ ^ —+ +— 
Vzv Tir2 r2

2/ 

/ 8 2.78W32 16.5 \ 

\rx T%)\T£ r ^ / 

/32 24 
4 (—+ , j 

\ri2 rxr2 r2v 

\ri r8/\zv rizv 
27T+ 27T+ 

r 8 2.78W32 16.5 \ i> 

(^2,±2/i?==l=i=Q:AR) 

polarization. They define ^i f ± i /^=l/8dz5AR, p2,±i/p where TTF^J is defined in (81), and that 
= l/8dz/3AE,and^2f±2/#=l/8±Q!AR. 7 

I t is shown in Appendix I I I that if complete re- ^ ± = ± ( / i + i ) # P ± / i T MS. (110) 
orientation occurs m the excited state (g—0.8 for Na m Mi—irFi/2 
3 cm of He at 154° C and with o-=23XlO-16 cm2 as de
termined by Jordan and Franken22), From (S3) and (84) with TEi= °° (single species) and 

L+=L_~L (complete mixing in the excited state), and 
TFXM^MIWFI, (109) using (110), one finds that at equilibrium 

LCp / 1 1 2 / x + l \ 

2 / i + l W Tsi 2ZY"/ 2/ i+l 
^ = T T ; — < . , r o , „TT~.—: — - • (m) —(— -L\ 4 / l 2 + 4 / l+3 / J 2 \ 

2Y\7Y TSJ 27Y" \7V + 32^/" 

(2 / i+1 ) 2 

22V 

Equation (111) as applied to the experiment of Anderson ground-state relaxation were by electron randomization 
and Ramsey is given in Table V. Notice that if the 0nly, the signals would be independent of the exchange 

w , . T , T j - ^ A T - i - nnA ™. o n time. Since they used 3 cm of He buffer gas, one might 22 J. A. Jordan, Jr., and P. A. Franken, Bull. Am. Phys. Soc. 9, . J
 1 , . . ' . 

90 (1964). at first expect electron randomization to dominate. 
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However, for a spherical cell,14 

Twii=R2p/7r2Dopo~ 100 msec, (112) 

Tbuiier=po/Nocrvp^310 sec (113) 

for Na in 3 cm of He at 154°C [Z>0= 1 cm2/sec,<7= (3±4) 
X10- 2 6cm 2 , i?=5 cm, tl=1.6X10B cm/sec, i\T0=1.7X1019 

cm~8].8 The measured relaxation time was 87 msec, in 
excellent agreement with the wall relaxation time. 
Consequently, Zeeman or uniform relaxation may 
dominate; such would seem to be the case in light of the 
reasonable cross section deduced by Anderson and 
Ramsey assuming uniform relaxation. 
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APPENDIX I: JUSTIFICATION FOR NEGLECTING 
ONE OF THE SELF-EXCHANGE TERMS 

Appendix I compares the quantities 

^1=y i /*«?) - /.(o) i (AI) 

and 

x\Jt(ir-e)-Mir-e)i<m, (A2) 

which appear in (59). The author wishes to thank Dr. 
Sergje Lebedefl for outlining the following estimate. 

Recall that2 

fn(d)^(l/2ik)Z(2l+l)Zexp(2i8l>n)-l']Pi(cosd), (A3) 
1=0 

where n refers to t for triplet or s for singlet. Using the 
orthogonality properties of the Legendre polynomials, 
one finds 

/ i = ( 4 3 r / * a ) Z ( 2 / + l ) sin2(<^-<5M) (A4) 
i 

and 
/ 2 = ( & r / * 2 ) E ( - - ) , ( 2 / + l ) sin2(SM-Sz, s). (A5) 

i 

In order to proceed with the calculation, one needs a 
model for estimating the phase shifts. Glassgold and 
Lebedefl2 have found that cross sections predicted by 
the Purcell-Field model17 agree with the results of 

"exact" calculations to within a factor of 2. The 
Purcell-Field model divides all collisions into two classes: 
weak collisions (l>k) for which there is no exchange 
and (sin2(<5u— ^,5)) = 0, and strong collisions (Kk) 
for which 8i,t—ditS is large and random, with the result 
that sin2(8itt--5ilS) averages to J. Then 

7 i - > (27rA 2 )E(2 /+ l ) = (27rA2)(/o+l)2 , (A6) 

/ 2 - ^ ( V ^ 2 ) E ( - ) z ( 2 / + l ) = ( 4 7 r A 2 ) ( - ) K / o + l ) , (A7) 

and 
V J i « 2 ( - ) V ( * o + l ) . (A8) 

Assuming a Lennard-Jones potential of range <r 
and depth e, the range of the strong collisions is 
approximately2 

ro^HKl-a-SKo/^y^}-1" (A9) 
and 

h+i = kr0{(6/S)ll+(2/SKo) 
X ( l - ( l - 5 / V 4 ) 1 / 2 ) ] } 1 / 2 , (A10) 

where K0=E/ey E= h2k2/2fi is the kinetic energy in the 
center-of-mass system, and n is the reduced mass. At 
room temperature, for Rb87-Rb87 collisions, E^0.025 
eV, e^0.5 eV, o-~4.4~7.6ao; then K0^0.05«l. There
fore, r o ^ / i T o ) 1 ' 6 and Jo+£« (|)1/2^(8/iT0)1/6 , 

/x / E \ 87 /0.025\ 
(Jteo)a=—( = - ( 1 8 3 6 ) , 

me\h
2/2meao2J 2 \ 13.6/ 

&a0~12, 

/o~260, 
and 

V / i « 0 . 8 % . (Al l ) 

Thus for Rb87-Rb87 collisions the interference term in 
(59) should be small compared with the other terms and 
can be neglected to a good approximation. 

APPENDIX II: SIMPLIFICATION OF THE 
RATE EQUATIONS IN THE LIMIT OF 

LOW LIGHT INTENSITY 

The absorption, re-emission, and exchange terms of 
(63) are found in the limit of low light intensity, i.e., 
fo r7r F l M 1 «^/2(2 / i+ l ) . 

A. Absorption and Re-emission 

With 
1 ^ - ^ / 2 ( 2 / 1 + 1 ) , (A12) 

then 

(J* ± ) A b.«2ZCE M1
2/(2I1+1)K (A13) 

Mi 

o-~4.4~7.6ao
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I1 The quantities 
TABLE VI. Values of 2 Mi2. ^ 

Tl . r (2/x+i)" 
Fi Values L CpY,M 

r (2/i+l)2 ftijwux^ 

= i i ± E 
L C ^ E W W I ' M A Z, / / i + i (2Ji+l)(2J1+2)(2/1+3)/12 , , 

/ i - i (2/1-l)2Ji(27i+l)/12 ^ MiP'ViFi Mi ,/Wi)l , A 4 ^ 
= = = = = ^ ^ X Z (A16) 

itfi r j y J 

Now consider the re-emission term of (63). Equation a r e independent of the ground-state populations to first 
(20) becomes in the limit of low light intensity, i.e., o r d e r i n L- F o r complete mixing within each Jx level, 
f o r ( A 1 2 ) ' (»/1^1'M1' = » W ( 2 / i , + l)(2Ji+l);n J x , 

P 
ftoJl'Fi'Mi'^* = E nJi'Fi'Mi') j 

2(2/i+l) Fi'Mx' 

X L P ' ( Z W i ' - 1 , Ji'FiMfihmii. (A14) one has Z±=Z, since EM X ' P"(JiPi'Mi',Fii£i) is inde-
^ pendent of Jkfi andEi^i ilf i=0. 

an. /in\ • J- x î x ̂ i -x J x 4. i x- Equations (A15) become, if one uses Table VI, 
I hen (19) indicates that the excited-state populations -i \ / > 
njx>FX>Mx> are independent of the deviations ^ M i of the (P+)Abs+Re= (27i+2)(2/i+3)Z+C/6(2/i+l)2, (A17) 
ground-state populations from #/2(2/i+l) , to first ^ _ . „ r r/^ror JLU2 f\<\z\ 
order in L. Therefore, in general, in order to include ^ - M b H - a e - ^ i - l j ^ i i - C / o ^ i i - h i ; . ^AIO; 
excited-state mixing of any amount and by any process, -R r V h 

(P±)AbS+Re^[2CE Mi2 / (2/ i+l)3]L± . (A15) Equations (81) and (82) in (44) yield, to first order 
M* in L, 

*v TT^i 'Mi'rC^ZY) 
(P*)*= - 3 P ^ / 4 ^ ! + ( 1 / 4 ^ 0 E A(P1,P1

/) E 
*y J*'—*y 2(F1-I1)(h+i)p 

1 
+ E Ml(bFt'M%'-&F%Mt)W(hItfMtfMMMtfjM*')^ (A19) 

2( /W 1 ) (2 / i+ l ) 2 2* 1 d ™ 

where A(Pi,iY) is defined by (5), r(Pi,Pi') by (30), and 

A ^ P x O A ^ , ^ ) ^ / Pi ; 1 Fi\*/ F2' 1 P2 

2 W V-JWy -£ 
A(P1,F1

,)A(JP,2,P2,) / Pi' 1 P i \ V /V 1 P 2 \ 2 

W(I1I2F1M1F2M2F1'Mi,F2'M2') = E I J J =PF. (A20) 
4 a \ - J4Y ^ Mj \-M2

f -a M2J 

Table VII is useful in evaluating the second term in (A19). To evaluate the last term, interchange F2, —M2 and 

E M15F2>M2>W= E M^F^MJY, (A21) 
Fi'Mi' Fi'Mi' 
F2M2 F2M2 

F^'Mi' Fi'Mi' 
Mi Mi 

by Edmonds' (3.7.5). Table VIII contains the values of a quantity a(Fi,Fi,q) arising in the above sums; then, 

a(FhF1\q)a(FhF2
f,-q)M1 

ZM18F2M2W= E &FM E , (A22) 
F2M2 Fi'Fi' 4(2/i+l)2(2/2+l)2 

Miq 

Mi 

= • £ (F,-IJMtfrtMt. (A23) 
(2/i+1) (2/2+1) w 

file:///-J4Y
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TABLE VII. Values of (2J i+l ) 2 r (Fi,Fi')A (FhFi'). 

A 1391 

Fi' 

Fi 
ii+i 
h-i 

4 / 1
2 + 8 / i - l 

4 / 1 ( 2 / 1 - l ) 

h-i 
2(2/1+2)(2/1+3) 

4/i2-5 

Substituting (81) into (13), one has 

P F ! = 2 ( F I - / I ) E J f i i r W ( / i + £ ) # , (A24) 
iWl==—Fi 

DF2=2(F2-h) E W W C ^ + f K (A25) 

Equations (A24) and (A25) in (A19) with (A21) and 
(A23) gives 

(2 / i+2) (27i+3) 
( P + ) J I « (D++D--3P-) 

6(2h+l)*TEi 
(2J1»+71+1) 

2 / i ( 2 / i - l ) 
( P _ ) , « ( £ + + £ _ - 3 P + ) 

-P+ , (A26) 

6 ( 2 / ! + i ) 2 r M 

(27 l
2 +3/ 1 +2) 

(2/!+l)2rB1 

C. Self Exchange 

Examination of (63) reveals that 

P _ . (A27) 

(P±) f l i=(P±)* 

- 2 7 i ( 2 7 i - l ) P + (2J i+2) (2J i+3)P_ 

3 ( 2 / ! + i ) 2 r S i 3 ( 2 / 1 + i ) 2 r S i 

in the limit of low light intensity. 

TABLE VIII. Values of 

(A28) 

F i / i + * 
FY 

/!-* 

/ i+4 

/ i - | 

{J 
{J 

2(7i + § + M i ) ( 7 i + f - M i ) 2 ( 7 i - | - M i ) ( 7 i + * - M i ) 
4Mi2 4 (7i + i +Mi) (/i + | - M i ) 

2(7i + f - M i ) ( 7 i + £ + M i ) 2 ( 7 i + f + M i ) ( 7 i - * + M i ) 

2(7i+£+Mi)(7i + f+Mi) 2 ( 7 i + f + M i ) ( 7 i - £ - M i ) 
4 ( / i + i + M i ) ( / i + i - M i ) 4Mi2 
2 (7i + i - M i ) (7i + f - M i ) 2 (7i + J - M i ) (7i - * +Mi) 

APPENDIX I I I : EXPRESSION OF THE POPU
LATION DIFFERENCES IN TERMS OF THE 

POLARIZATIONS IN THE LIMIT OF 
COMPLETE MIXING 

In this Appendix it is shown that irFlMl=MiTFl in 
equilibrium if there is complete mixing in the excited 
state. Since this proof is of interest in connection with 
the experiment of Anderson and Ramsey8 in which a 
single species is present, set TE1= oo in (1). Substituting 
(81) into (1), one finds, with the aid of the discussions of 
the various terms given in Sec. I I , 

TFlMl = a(F1)M1+l3(F1M1)TF1M1 

+ E T W ^ W ^ i ' i f i ^ O , (A29) 
Fi'Mi' 

where 0(Fh -Mi) = P(FhMd and y(Fi', - M{; F1-M1) 
= y(FifMi',FiMi). Then 

+ E y(Fi'Mi',FiMi)(-TrFl,t_Mi')>0. (A30) 
Fi'Mi' 

Comparison of (A30) with (A29) reveals TFl)_Ml 

= —TTFXMI, i.e., an expansion of TFIM1 in Mi must be odd. 
Set TEI= °° and L+=L_ (complete mixing) in (S3) 

and (84) and find, at equilibrium, 

- 2 7 i ( 2 J i - l ) \ 7 Y Tsi 2 7 Y " / 

(2 / i+2 ) (2 / i+3 ) / 1 1 2 / d - l (_+ + 
\ 7Y Tax ' 2Tx" ' ) 

-P+, (A31) 

'si 

i.e., Eiifi' MITFI>MI' a E M I MiwFlMl for both values of 
Fi. Equation (83) or (84) can then be written, for 
equilibrium, 

E M1TFlMl=a(F1)L E Afi2, (A32) 
Mi Mi 

where (A15) has been used for the radiation term.Since 
TTFIMI must be an odd function of Mi, one has 

TrFlMi = MnrFl, (A33) 

where TFI is independent of Mi. (A33) in (A24) results in 

TFI= (Ii+i)pPFl/2(Fi~Ii)Z Mi2. (A34) 
Mi 


