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Brownian motion of a spin in the presence of a magnetic-field gradient can significantly influence the spin-
lattice relaxation time. A theory is developed to describe this effect, and experiments on gaseous He3 which 
confirm the theory in detail are reported. Practical situations where this mechanism can dominate, such as in 
the construction and use of polarized He3 targets in nuclear-scattering experiments, are discussed. In a 
homogeneous magnetic field, relaxation times of approximately 7 h at low pressures permit us to establish 
an upper limit of 7XlO~15e cm for the electric-dipole moment of the He3 nucleus. 

I. INTRODUCTION 

A NUMBER of authors have considered the com
bined effects of translational diffusion and gradi

ents in the applied magnetic field on the relaxation of 
nuclear spin systems. Such an effect, insofar as it in
fluences the spin-spin relaxation time T2, was analyzed 
by Hahn1 and by Carr and Purcell2 in conjunction with 
their definitive work on nuclear-resonance techniques 
involving free precession. Later, the phenomenological 
Bloch equations of nuclear magnetic resonance were 
generalized by Torrey3 to include transfer of magnetiza
tion by diffusion. 

Bloch was the first to point out that translational 
diffusion in the vicinity of strong irregular magnetic 
fields could contribute effectively to spin-lattice relaxa
tion, and he proposed using paramagnetic powders as a 
catalyst for nuclear relaxation in monatomic gases.4 This 
technique was successfully employed by Proctor and Yu 
to shorten the relaxation time of Xe129, thus allowing 
measurement of the Xe magnetic moment by nuclear-
magnetic-resonance techniques.6 

Kleppner, Goldenberg, and Ramsey in connection 
with their work on the atomic-hydrogen maser derived 
approximate expressions for r 2 and Th the spin-lattice 
relaxation time, for the case of spins which are reflected 
from container walls in the presence of an inhomogen-
eous magnetic field.6 

Quite a different situation from that considered by 
Kleppner et al. arises when the mean free path of the 
diffusing atoms is much smaller than container dimen
sions, and it is that case which we shall consider here. 
In their experiments on optical pumping and nuclear 
polarization in low-pressure He3 gas, Colegrove, 
Schearer and Walters observed that even very weak 
magnetic-field gradients completely control the He3 

spin-lattice relaxation time.7 Qualitatively, this decrease 
in Ti was explained in terms of the fluctuating magnetic 
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field seen by a He3 atom as it undergoes Brownian 
motion in the presence of the field gradient.8 Subsequent 
work in this area has been reported briefly by us9 and 
by Gamblin and Carver.10 

This paper presents a quantitative theory of spin-
lattice relaxation caused by diffusion of spins in in-
homogeneous magnetic fields, and describes experiments 
which verify in all respects the calculated dependence 
of Ti on gas pressure, magnetic-field strength, and 
gradient strength. 

The application of optical-pumping techniques to 
He3 gas at low pressures (several mm Hg) yields im
pressively large nuclear polarizations and has stimulated 
interest in the development of polarized He3 ion sources 
and target chambers suitable for use in nuclear scatter
ing experiments.11'12 The results reported here are of 
practical importance in the construction of such appara
tus since the relaxation of the He3 nuclei by diffusion 
through gradients constitutes a "leak" of the angular 
momentum imparted to the He3 spin system by the 
circularly polarized pumping light. If the leak is 
sufficiently large, the polarization will be degraded. The 
effects of inhomogeneous magnetic fields are particularly 
apparent in the environment required for optical pump
ing. The relaxation formula derived in Sec. II provides 
the necessary guidelines for establishing toleration limits 
on magnetic-field gradients which might result from 
target or ion source construction materials and from 
inhomogeneity in the applied magnetic field. 

II. THEORY 

Brownian motion in the presence of magnetic field 
gradients causes the moving atoms to experience 
randomly fluctuating magnetic fields. Such fluctuating 
fields contribute to spin-lattice relaxation of the atomic 
nuclei. Using time-dependent perturbation theory, an 
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expression for the spin-lattice relaxation time Ti can 
be derived for a system of spins / which do not interact 
with one another but do couple to random external 
field fluctuations. The applied magnetic field H is 
regarded as a superposition of a weak spatially varying 
field upon a much stronger homogeneous field H0. The 
perturbation Hamiltonian is 

3e(/) = - 7 * I - h ( 0 , (1) 

where h(t) is the fluctuating field seen by a spin of 
gyromagnetic ratio 7 as it executes Brownian motion in 
the presence of the gradient in the applied magnetic 
field H. If h(t) is a random stationary function of time, 
the standard treatment for relaxation problems of 
this kind may be followed,13 yielding 

i / r 1 =(2 /^ )P (» 0 ) , (2) 

where wo=yHo is the average magnetic resonance 
frequency, and P(coo) is the spectral density function 
of the matrix elements of the perturbation Hamiltonian, 
given by 

p(t 

with 
/

+00 

-00 

(i4*»(0-4*«*(^+r)>«v6r<-i' dr (3) 

Akm(t) = -yh E hq(!)Qt\It\m); (4) 

hx(t) and hy(t) are the x and y components of the field 
fluctuation h(t). If we consider a spin-J system and 
assume that the components hq(t) of the fluctuating 
field are statistically independent, the time-independent 
matrix elements ( ± J | i ^ l ^ l ) can be evaluated and 
the T\ expression becomes 

where 
l/T^h'JM, (5) 

/

-f-00 

X[A.(H-T)+A»(H-r)]>.T*-*"tfr. (6) 

Because hx(t) and hy(t) vary independently, the cross 
terms in J(w0) have zero average, and 

— = - / {<*.(0*.(<+T))«-
T 2 / 

+ (hy(t)hy(t+r))^}e~^dT. (7) 

Thus, the problem reduces to finding the spec
tral densities of the autocorrelation functions gq(r) 
= <A«(0Afl(<+r)>av. 

In the case considered here, the field fluctuations 
occur as a result of the Brownian motion of the spins in 
the presence of a magnetic-field gradient. For simplicity 
we consider a field gradient which is constant and 

13 C. P. Slichter, Principles of Magnetic Resonance (Harper and 
Row, New York, 1963), Chap. 5. 

FIG. 1. The displacement of the 
atom from P to P' due to its velocity 
Uy generates a rotation of the magne- _ i 
tic field as seen by the atom at the H(t) f j Jfitf) 
rate dO/dt=a>R. For small gradients, 
e^Hy/Ho and U>R = (1/H0) (dHy/dy) 
XUy(t). Collisions occurring during 
the motion of the atom cause Uy(i) 
and consequently LOR to fluctuate in a 
random manner. 

axially symmetric with respect to the sample and with 
the variation of H over the sample being small com
pared to H0.

u 

As discussed later, our experimental conditions easily 
met these requirements. Under such circumstances, the 
autocorrelation functions gx(f) and gy(t) are equal, and 
their spectral density functions may be evaluated in 
either of the following equivalent ways. (While this 
manuscript was in preparation, the writers learned that 
Gamblin and Carver, by means of a classical random-
walk calculation have independently obtained an ex
pression for Ti which is in agreement with the result 
derived below to within a numerical factor of order 
unity.10) 

A. Rotating-Reference-Frame Derivation 

Because of the spread in field directions over the 
sample volume, there is no uniquely defined axis of spin 
quantization in the laboratory reference frame. We 
consider a spin initially at an arbitrary point in the 
sample, and choose the z axis at that point to lie along 
the local magnetic-field direction. Let the y axis be 
chosen so that the velocity vector of the atom lies in the 
y-z plane. As the spin moves away from its initial posi
tion with velocity U it sees the field direction rotating 
about the x axis with an angular velocity (see Fig. 1) 

a>R=(l/H)(dHy/dy)Uy (8) 

We wish to view the problem in a reference frame in 
which the z axis always coincides with the local mag
netic-field direction as seen at any instant by the moving 
spin; that reference frame is simply one which rotates 
about the x axis with angular velocity O)R. In this rotat
ing reference frame, an effective field 

H«t=oEh= (l/yH)(dHy/dy)Uy (9) 

appears in the x direction. 
Now consider the effect of an atomic collision which 

alters the particle velocity. The spin starts moving in a 
new direction, and to keep the z axis coincident with 
the local magnetic-field direction we must abandon our 
original rotating reference frame and transform to a new 
frame which rotates about an axis in the transverse 
plane which is perpendicular to the new transverse 

14 This statement is unnecessarily restrictive since the statistical 
nature of the process is established after a few collisions. It can be 
shown that the appropriate restiction is actually to limit to small 
values the variation in the magnetic field over the distance the 
atom diffuses in several mean free paths. 
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velocity. Heu then points in a new direction in the x-y 
plane. Subsequent collisions require similar coordinate 
transformations. Thus, in a reference frame where the z 
axis is always along the local magnetic field direction, 
motion through gradients in H causes a magnetic 
field Heu to appear in the x-y plane and collisions cause 
HeH to fluctuate in both direction and magnitude. This 
fluctuating transverse effective field can induce mag
netic dipole transitions, and it is the autocorrelation 
function for Heu{t) that we require in Eq. (7) for the 
relaxation time T±. The autocorrelation function is just 

(hx{t)hx{t+r))^=[_{l/yH,){dHy/dy)J 

X{Uy(t)Uy(t+r))av. (10) 

Uy (t) is the stochastic variable representing the velocity 
of a particle undergoing Brownian motion and its 
autocorrelation function is well known to be15 

(UyWv(t+T)U=(U/)e-W**, (11) 

where rc is the mean time between atomic collisions.16 

Substitution of Eqs. (10) and (11) into the T\ expres
sion and evaluation of the integral yields 

l / r i = ( W ) ( ^ / a ^ ( ^ ) a v [ r c / ( l + c o 0
2 r c

2 ) ] , (12) 

where we have used for the mean-squared velocity 

( £ / 2 ) a v = 3 ( ^ 2 ) a v = 3 ( ^ 2 ) a v 

and, by symmetry, 

(dHy/dy)=(dHx/dx). 

B. Laboratory-Reference-Frame Derivation 

Alternatively, the 2 \ expression may be derived using 
the laboratory reference system. Since there is no 
unique axis of spin quantization, let us choose an origin 
of coordinates at an arbitrary point in the sample with 
the z axis parallel to H0. Because of the gradient in H, 
a spin moving about in the sample container sees varia
ble x and y components of field relative to the fixed 
coordinate axes just defined. In terms of its position co
ordinates, the magnetic field seen by a spin is 

H = - i s * - JS:y+k(2gs+#o) , (13) 

where 9 = dHx/dx— dHy/dy gives the magnitude of the 
constant field gradient. Thus 

*.(*)=-9*(0 and A,(0=-S:v(0, 
and 

/

+00 

(x(t)x(t+T))me-™*dT. 
-oo 

15 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 
323 (1945). 

36 Actually the autocorrelation function desired is (Uy(t) 
X £V(/+r) ) a v where the y and y' axes differ as a result of the 
rotating-coordinate transformation employed. However, we have 
already assumed that the variation of H over a collision mean free 
path is very small compared to H; hence o)Brc<Kl and the y and / 
axes are essentially coincident for time intervals of several rc 
during which the autocorrelation function has nonnegligible value. 
Thus, we are justified in replacing (UytyUytiHrr))*? by 
(U9(!)Uy(t+T))„. 

However, the displacement of a free particle undergoing 
Brownian motion does not represent a random station
ary process and the quantity (x(t)x(t-\rr))av does not 
exist. Fortunately, we do not require (x^xit+r))^; 
we require only its Fourier transform. The important 
point is that even though x(t) does not represent a 
random stationary process, it does represent a random 
process with stationary increments. [Physically, we do 
not care about the position x {t) of the spin; rather, we 
are concerned with the fluctuations in x(t), which are 
related to the incremental motion.] Mathematically, 
one can evaluate the spectral density function by in
troducing an elastic restoring force which acts on the 
particle; x[t) then describes the Brownian motion of a 
simple harmonic oscillator, a process which is random 
and stationary. The autocorrelation function is well-
known and its Fourier transform is easily evaluated.15 

Upon taking the Fourier transform, one lets the force 
constant go to zero and the result is the desired spectral 
density function for a free particle,17 

(x(t)x{t+T))ave-^dT = 2(Ux*)^ , (14) 

where (Ux
2)av is the mean-squared x component of 

particle velocity, and rc is the mean time between 
atomic collisions. Using {UX) — \{U2) and substituting 
into Eq. (7), we obtain 

which is identical to the result obtained in part A. 

III. EXPERIMENT 

The theory developed in Sec. I I was verified experi
mentally by spin-lattice relaxation time studies of 
gaseous He3 samples subjected to known magnetic 
field gradients. To test the predicted dependence of T\ 
on TC and H0, measurements were made over a range 
of He3 gas pressures from 0.2 to 10 mm Hg, and for 
magnetic-field strengths ranging from 1 to 240 G. The 
He3 samples were contained in 60-cc Pyrex spheres. 

A. Techniques 

Relaxation times were measured by monitoring the 
decay of He3 spin magnetization from an initially 
highly polarized state. Optical pumping methods were 
used to produce the spin polarization. A detailed descrip
tion of optical pumping in He3 may be found elsewhere.7 

Briefly, the polarization technique is as follows: A 
weak electrical discharge in the He3 sample cell excites a 
small fraction of the He3 atoms to the 23<Si metastable 
state. Circularly polarized 236 ,I-23JP0 resonance radia
tion, incident along the magnetic-field direction, induces 

17 The justification for this step is outlined in A. M. Yaglom, 
An Introduction to the Theory of Station Random Functions (Pren
tice-Hall, Inc., Englewood Cliffs, New Jersey, 1962), p. 92ff. 



N U C L E A R S P I N - L A T T I C E R E L A X A T I O N A 1 4 0 1 

spin polarization of the metastables. This polarization 
is in turn transferred by collisions involving electron 
exchange to the more numerous ground state atoms. In 
steady state the ground-state atoms attain the same 
polarization as the metastables. For the experiments 
reported here, He3 polarizations between 5 and 10% 
were typical. 

To measure Ti, the sample was first polarized by the 
optical pumping technique. Then the electrical dis
charge was turned off, thus providing the desired highly 
polarized state of the unexcited He3 gas. The sample 
magnetization then decays with time constant T\ to its 
thermal equilibrium value. In the absence of magnetic-
field gradients the decay times were always greater than 
1 h, spin relaxation in that case resulting from inter
actions of the He3 nuclei with the container walls. The 
gradient-dominated relaxation times were always much 
smaller, so that wall relaxation effects could be safely 
neglected. 

The magnetization measurements were made in a 
220-G magnetic field and in the following sequence. 
Immediately after turning off the electrical discharge, 
the nuclear-magnetic-resonance signal is observed by 
conventional slow passage NMR techniques at 714 kcps. 
The strength of the NMR signal is proportional to the 
initial magnetization Mo. The applied magnetic field is 
then changed to the value Ho at which the gradient-
dominated relaxation time is to be measured, and the 
known gradient is applied for a time At. After the 
gradient is turned off, the field is returned to 220 G, 
and the residual magnetization M is measuerd. The 
relative strengths of the intial and residual NMR 
signals, along with At, allow calculation of T\, assuming 
an exponential decay. The entire sequence was always 
completed in a time much less than the relaxation 
time of the He3 in the absence of gradients. 

The external field for the technique described above 
was provided by an end-corrected solenoid with a 
homogeneity over the sample of about 1 part in 105. The 
gradient was provided by a large set of Helmholtz coils 
connected in opposition; this provided an easily cal
culable constant gradient over the sample at the center 
of the coils, so that the total field seen by the sample was 
given in Eq. (13). 

An alternative optical method for measuring T\ was 
also used. The measurement sequence was the same as 
that previously described with the exception that the 
sample polarization was determined optically instead 
of by NMR. Optical determination of the polarization 
is possible because the percentage of the 23*S,i-23P0 
pumping light that is absorbed by the sample depends 
on the degree of polarization of the sample. The physical 
basis for this dependence and the experimental tech
niques for measuring the polarization optically are 
fully discussed in Ref. (7). 

The optical method has the disadvantage that the 
electrical discharge must be turned on to populate the 
23Si state prior to making the absorption measurement. 

H (gauss) 

H2 (gauss2* 10 4 ) 

FIG. 2. Relaxation by gradients as a function of applied field 
at various pressures. The solid lines in each case are calculated 
from Eq. (12). The vertical scale is plotted in units of TiQ2 where 
9 is the gradient dHx/dx. The gradient was chosen to be either 1.6 
or 0.8 G cm-1 to keep T\ within convenient limits. The value of re 
is obtained from the minima of the curves shown in Fig. 3. The 
value of rc can also be obtained by considering the crossovers of 
the various curves. 

For the residual polarization determination after ap
plication of the magnetic gradient, the discharge must 
be re-ignited and the measurement made in a time short 
enough so that there is no appreciable change in the 
polarization due to repumping by the measuring light. 
Typically, the optical pumping time exceeds 30 sec, 
and the polarization measurement can be made in about 
1 sec. An advantage of the optical technique over the 
NMR method is the greater accuracy obtainable be
cause of better signal-to-noise ratio. 

B. Results 

He3 relaxation times for gradients up to 1 G/cm were 
measured over a range of pressures from 0.2 to 10 mm Hg 
and in fields from 1 to 240 G. These ranges are suf
ficiently broad to test the theory over the entire range 
from COOTC<<C1 to co0Tc^>l. The experimental results are 
summarized in Figs. 2 and 3. The solid lines are derived 
from Eq. (12). In calculating the theoretical curves, 
measured values of Ho were used and the gradient was 
calculated from the coil geometry and current. The 
mean-squared velocity was taken as (U2)= (3kT)/m. 
All measurements were made at 300 °K. The only re
maining variable on the right hand side of Eq. (12) 
is rc, the mean time between collisions, which varies 
inversely with the pressure. Pressures were measured 
at the time of sample preparation using a high-pressure 
thermocouple gauge previously calibrated against a 
precision McLeod gauge. The relation between rc and 
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FIG. 3. Relaxation by gradients as a function of pressure. The 
solid curves are calculated from Eq. (12). A best fit to the experi
mental points shown gives r c = 2.2X 10~7 sec at 1 mm Hg assuming 
T\ is a minimum at worc= 1. 

reciprocal pressure could be calculated from the known 
helium-helium elastic-collision cross section derived 
from gas-kinetic interpretation of viscosity and diffusion 
data; however, we instead determined the propor
tionality constant from the data of Fig. 3 by requiring 
that the minimum in the theoretical curve of T\ versus 
pressure at co0rc= 1 coincide with the T\ minimum found 
experimentally. This procedure gives r c = (2.2±0.2) 
XIO"7^"1 sec at 300°K, where p is in mm Hg. The 
elastic-collision cross section is then found from 
cr= (TCV n)~l where v is the rms atomic velocity and n 
the density of the He3 in atoms/cc. In view of the ex
cellent agreement between theory and experiment, it is 
reasonable to regard this work as providing a new in
dependent determination of rc. It is in good agreement 
with the values calculated from viscosity and diffusion 
data. 

An interesting feature of this relaxation mechanism is 
the change in Ti dependence from Ti~pHo+2 when 
y#or c « l to T^p-Wo*4 for yH0T^>l. This accounts 
for the crossovers that occur between curves represent
ing different pressures in Fig. 1. 

As an example of a typical experimental measure
ment, a gradient of 1.5 G cm"-1 gave a relaxation time 
of 20 sec for He3 gas at 0.4 mm pressure in an H0 field of 
240 G. At 110 G, a gradient of 0.43 G cm"1 produces 
the same TV 

This relaxation mechanism becomes extremely im
portant in low-pressure gases in weak magnetic fields 
where even the gradients due to nearby test equipment 
may be sufficient to drastically affect T±. 

CONCLUSIONS 

The fluctuating magnetic field seen by a spin execut
ing Brownian motion in the presence of a magnetic 

field gradient contributes to spin-lattice relaxation. 
The theory developed in Sec II provides a quantitative 
relationship between Ti, gas pressure, magnetic-field 
strength, gradient strength, and thermal velocity. The 
experimental results reported in Sec. I l l verify the 
theory in every respect over a wide range of all variables. 

Under normal circumstances involving NMR studies 
of high-pressure gases and liquids using normal labora
tory magnetic fields, gradient relaxation is usually 
negligible. However, for gases at low pressures and in 
weak magnetic fields, gradient relaxation is dominant 
unless one exercises extreme care in providing a highly 
homogeneous magnetic field over the sample and keeps 
all ferromagnetic materials out of the general vicinity 
of the sample. Experiments involving optical pumping 
of He3 gas are generally done under such low pressure 
and weak field conditions, and the He3 nuclear polariza
tion attainable by optical pumping is seriously de
graded if gradients are not assiduously avoided. 

In particular, one must avoid even slightly ferro
magnetic materials in the construction of He3 optical 
pumping samples. This is especially troublesome in the 
development of polarized He3 ion sources,18 and in the 
design of polarized He3 target cells11 suitable for use in 
nuclear scattering experiments where one is often faced 
with the need for thin metallic foils, electrical feed-
throughs, gas valving, and particle counters within the 
target chamber. 

Similar care must be exercised in operation of the 
optically-pumped He3 maser, first reported by Robinson 
and Myint.19 

Purcell has shown that if a nucleus possesses an 
electric-dipole moment that relaxation can occur via 
the interaction of the electric dipole with the fluctuat
ing electric field at the nucleus during collisions.20 The 
relaxation time in this case is given by 

1 Sfxe
2mkToi0

2Tc 
— = (15) 
T± &2ZV(l+o>o2rc

2) 

In the absence of magnetic-field gradients, the relaxa
tion time of the He3 nuclear spins in a carefully pre
pared sample at 1 mm Hg and 240 G (co0rc=l) is 
greater than 6.7 h. Using Eq. (15) we can set a new 
upper limit on the size of the electric-dipole moment of 
the He3 nucleus ^e<7X10"-15e cm. 
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