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The Born matrix element for the \s<T0-2p<ru transition in H2
+, at an internuclear separation R of 2.0ao, is 

calculated using the linear-combination-of-atomic-orbitals (LCAO) and screened LCAO functions for Eb-4*. 
A comparison with the results found using the eigenfunctions and one other approximation is given. The R 
dependence of the error for these approximations is also investigated. The behavior of the Born matrix 
element for large momentum transfer is shown to be accurately predicted by these approximate functions 
for intermediate and large R. The small-momentum-transfer behavior is less accurately predicted. The 
usefulness of these approximate functions for extremes in the momentum transfer is correlated with their 
local behavior in space. The calculation of the total cross section for scattering of an electron and of a 
hydrogen atom with these approximate functions is discussed and compared with the results for the 
eigenfunctions. 

APPROXIMATE electronic wave functions for the 
hydrogen molecule ion (H2

+) are often employed 
because the complicated nature of the eigenfunctions 
for this system invites approximation. In this note we 
use H2

+ as a model for testing approximate functions in 
evaluating the matrix element arising in the first Born 
approximation to scattering phenomena. For the case of 
inelastic scattering of electrons, this matrix element has 
been shown to be of the form1 

\e(K,R)\2=(—\f f sm8d8d£ 

dtexp(iK-t)*n(r,R)yn>*(t,R) X , (1) 

where ^fn and \Ev are the initial and final electronic 
eigenfunctions2 of H2

+, respectively. The angles 8, £ 
orient K with respect to R, where K is the momentum-
transfer vector and |R|=1£ is the magnitude of the 
internuclear separation. Equation (1) has been evalu
ated with the H2"1" eigenfunctions for a number of cases.1 

The result for the hag-2pau transition at R=2.0a0 is 
shown in Fig. 1 as the solid curve labeled BLS (Bates, 
Ledsham, Stewart). This matrix element is here evalu
ated for the same case by replacing the eigenfunctions 
with 

^ ± = i V ± ( * a ± d = # 6 ± ) , (2) 

where N± is a normalization constant and 

<f>.±= [ ( S ± ) V T T ] 1 / 2 exp ( -s± r< ) ; 

here r» is the distance to the nucleus labeled i, and 2+, 
%~ are variational parameters appropriate to the <rg9 cru 

states, respectively. When z=fc=l, Eq. (2) defines the 
linear combination of atomic orbitals (LCAO) functions 
for H2

+, and the result for these functions is shown by 
the dotted curve in Fig. 1. For R= 2.0a0 the variational 

* This work was supported by the U. S. Atomic Energy Com
mission. 

1 James M. Peek, Phys. Rev. 134, A877 (1964). 
2 D. R. Bates, Kathleen Ledsham, and A. L. Stewart, Phil. 

Trans. Roy. Soc. London A246, 215 (1953). 

parameters 2+, z~ are 1.2387, 0.90045, respectively,3 and 
the Born matrix element calculated with these functions 
is given by the dot-dash curve in Fig. 1. Finkelstein and 
Horowitz4 (F-H) were the first to investigate the ls<rg 

case near R=2.0ao with a function of this form, hence 
these functions will be referred to as the F-H functions. 
The matrix element of Eq. (1) has also been evaluated 
by Ivash5 where both screening parameters were taken 
equal to the F-H value, 1.228 for R=2Ma0. This cal
culation has been repeated, taking R= 2.0a0, and is the 
solid curve labeled I in Fig. 1. A simple interpretation of 
the differences in these results can be given. 

For very small K the integrand in Eq. (1) is strongly 
dependent on the behavior of the product tyr&n'* at 
large distances from the nuclei,6 that is, at large r. It is 
apparent that the LCAO and F-H functions are rela
tively poor in this respect. The functions used by Ivash 
give the best approximation in the small K range. How
ever, taking %+= #~3^ 1 does not have any physical mean
ing and the value used must be considered a parameter 
introduced for the sake of convenience. It is, in fact, 
possible to find a value, z±= 1.61, that will make the 
Ivash calculation exact at K—0. However, from the 
arguments given below, it can be seen that this value 
will be quite poor for larger values of K. 

At large K the Born matrix element will be most 
strongly dependent on the behavior of ^W ÊV* near the 
nuclei.7 The values of ^r&n'* at one of the nuclei are 
0.207 for the eigenfunctions,2 0.193 for the LCAO func
tions,2 0.198 for the F-H functions, 0.098 for the func
tions used by Ivash, and 0.007 for z±= 1.61. The utility 
of the test of the functions at the nuclei is demonstrated 
by the good agreement at large K shown in Fig. 1 for 

3 James M. Peek, Sandia Corporation Report No. SC-RR-65-77 
(unpublished). 

4 B. N. Finkelstein and G. E. Horowitz, Z. Physik 48,118 (1928). 
B E. V. Ivash, Phys. Rev. 112, 155 (1958). 
6 This is most easily seen by expanding exp(^K-r) in a power 

series and keeping the first nonvanishing term, which is iK-r for 
this dipole allowed transition. 

7 Because of the highly oscillatory nature of exp(^K-r) when 
IKI is large, contributions to the integral of Eq. (1) will be greatest 
from regions of rapidly changing ^n\Ev*. In general, wave func
tions for systems of this type vary most rapidly near the nuclei. 
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FIG. 1. \e(K,2.0)\2/K2 shown as a function of K, where both 
quantities are in atomic units. The curve labeled BLS was cal
culated with the H2

+ eigenf unctions; I refers to the work of 
Ivash; the dotted curve is the LCAO results and the dot-dash 
curve is the F-H results. Note the scale change by a factor of 10 at 
K=2.Q. For K<2.0 the ordinate is to the left and for K>2.0 the 
ordinate is to the right. 

the LCAO and F-H functions, while the Ivash calcula
tion is relatively inaccurate. 

The dependence of these approximations to the Born 
matrix element on the internuclear separation is also of 
some interest since an integration over R is required to 
arrive at an observable quantity.1 As R—>0 the be
havior of 'fyr&n* for the LCAO and F-H functions will 
be quite different. The F-H function for the lsag state 
goes to the correct eigenfunction in this limit where the 
LCAO function goes to a Is hydrogenic orbital on a 
nucleus of charge one rather than two. Neither function 
has the correct limit for the 2pau state3 although the 
F-H function is expected to be somewhat better than 
the LCAO function because of the variational param
eter. These functions are generally accepted to become 
better approximations as R is made large and, as shown 
in the next paragraph, this trend is observed for the 
Born matrix element. 

The preceding discussion indicates that the behavior 
of SE^^v* near the nuclei for both functions becomes 
worse as R approaches zero; hence the large K depend
ence of the Born matrix element will not be accurately 
predicted by the LCAO and F-H functions. In fact, it 
is easily shown for R=0 that these functions predict 
|e(iT,0)|2/i£2~ir~8 for large K where the correct be
havior is K~12. The behavior of the LCAO functions 
near the nuclei has been shown to become more accurate 

as R increases.2 This is borne out by numerical cal
culations at R=3.2ao where the LCAO functions are 
within 17% of the BLS results2 and the F-H results 
differ by less than 10% in the range 1.0<i£<2.6. The 
BLS case has not been studied for R>3.2ao but for 
large K and R the results for R=S.2a0 indicate that fair 
accuracy can be obtained without the extensive labor 
required in using the eigenfunctions. 

The small K behavior of the Born matrix element 
is most easily studied as a function of R by consider
ing the dipole-length matrix element. We have the 
relationship 

lim | e(K,R) | ^ - 2 = l | Q | * , (3) 

where \Q\ is the dipole-length matrix element, hence 
|<2| is a measure of the Born matrix element at the 
point K= 0. \Q\ has been calculated by Bates8 with the 
BLS and LCAO functions; these results are repeated in 
Fig. 2 by the curves labeled 1, 3, respectively. The F-H 
result is given by curve 4 and curve 2 is calculated with 
functions investigated by Cohen, Judd, and Riddell9 

(CJR). The formulas for \Q\ found for the F-H and 
CJR functions are available elsewhere3 and will not be 
repeated here because of their length. The superiority 
of the F-H functions over the LCAO functions at small 
R is evident while for R>2.Q there is very little differ
ence in the two approximations and, although the per
centage error decreases, these approximate results differ 
from the correct values by roughly a constant for 
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FIG. 2. The dipole-length matrix element shown as a function 
of R. Both quantities are in atomic units. Curve 1 was calculated 
with the eigenfunctions, curve 2 with the Cohen-Judd-Riddell 
functions (this curve is given only for R>1.5a0), curve 3 with the 
LCAO functions, and curve 4 with the Finkelstein-Horowitz 
functions. 

8 D . R. Bates, J. Chem. Phys. 19, 1122 (1951). 
9 S . Cohen, D. Judd, and R. J. Riddell, Jr., University of 

California Radiation Laboratory Report No. UCRL-8802, 1959 
(unpublished). 



E V A L U A T I N G T H E B O R N M A T R I X E L E M E N T F O R H 2
+ A1431 

4.0<R<9.0a0 . I t is also interesting that \Q\ for the 
CJR functions, which predict very accurate energies, 
departs from the BLS results (curve 1 in Fig. 2) and 
seems to be approaching the F-H, LCAO results at large 
R. 

The argument based on the behavior of SE^^Jv* at 
large distances from the nuclei is difficult to apply for 
3.0<R<9.0ao. This is because the region in space of 
interest is not clearly appropriate to either the com
bined atom or separated atom picture of H2

+ . In addi
tion, it probably is the case that qualitative argument 
based on the local behavior of ^r&n* is not capable of 
explaining the (rather small) differences observed in this 
range of R or the unusually slow convergence to the 
BLS results as R becomes large. 

When it is necessary to use approximate functions, 
the above arguments make it possible to pick the func
tions best suited to the situation.10 As an example, con
sider the total cross section for two different types 
of processes calculated from the H2+ Born matrix ele
ments shown in Fig. 1. The total cross section for the 
ls<Tg-2p<ru transition in H 2

+ caused by collision with an 
electron is proportional to the integral of the Born 
matrix element divided by Kz and then integrated over 
momentum transfers allowed by energy conservation.1 

The information given in Fig. 1 shows that the cross 
section will then be dominated by small momentum 
transfers except for very low energy collisions. I t has 
been shown for electron scattering1 that the Ivash cal
culation gives errors of about 17% and calculation with 
the LCAO approximation gives twice this error. An 
analysis of ^nSEv* at large distances from the nuclei, 
for these various functions, gives the same prediction, 
qualitatively, without extensive calculations. 

The Born matrix element for the lso-g-2pau transition, 
when caused by a hydrogen atom, becomes 

| 6 ( Z , i ? ) | 2 { l - [ 1 6 / ( 4 + ^ ) 2 ] } 2 , (4) 

where \e(K,R)\2 has the same significance as before. 
Dividing Eq. (4) by Kz to obtain the integrand required 
to calculate the total cross sections for this case shows 
that the dominant momentum transfers are about 1 
atomic unit. The LCAO results, for a hydrogen atom 

10 The analysis given here is suggestive of a technique that 
utilizes a sectionally continuous potential. See, for an example, 
B. Zapol, P. Kunin, I. Taksar, and Z. Tsurule, Latvijas PSR 
Zinatnu Akad. Vestis No. 10 (195), 54-6 (1963). [Phys. Abstr. 67, 
2753 (1964).] 

projectile, are about 7% higher than the BLS results 
and somewhat better than the Ivash approximation. 

The R dependence of these two types of total cross 
sections is just what one expects from the discussion of 
R dependence given above. Calculations show for the 
internuclear separations of 1.4 and 3.2ao that, in the 
electron case, the upper bounds to the errors found for 
the LCAO functions were 60 and 20%, respectively. The 
hydrogen atom case had upper bounds to the errors of 
29 and 5%, respectively. 

This example indicates that processes strongly de
pendent on large momentum transfers are rather accu
rately calculated by the LCAO functions, for inter
mediate or large R, and that these simple functions will 
serve quite well for most purposes. The prediction, by 
the LCAO functions, of processes dependent on small 
momentum transfers are found to have significant errors 
at intermediate values of R. To obtain high accuracy in 
this case, it is necessary to use more complicated wave 
functions, or as an alternative, empirically adjust the 
LCAO functions to give SEvEv* the correct behavior at 
large distances from the nuclei. 

Note added in proof. A recent paper by D. R. Bates 
and A. R. Holt, in Proc. Phys. Soc. 85, 691 (1965), 
provides an interesting treatment of a process domi
nated by small momentum transfer. In calculating the 
total cross section for the excitation of the \sag-2pau 

transition in H 2
+ by a proton, they scale the LCAO 

Born matrix element by a ratio consisting of \Q\2 calcu
lated with the eigenfunctions8 divided by the same 
matrix element evaluated with the LCAO functions. 
Hence Eq. (3) is satisfied in the sense that the scaled 
LCAO Born matrix element has the same small K limit 
as the Born matrix element evaluated with the eigen
functions. This procedure, as can be demonstrated from 
the data given in Fig. 1, will lead to accurate total cross 
sections for this case if one restricts attention to rela
tively large collision energies. This restriction, already 
imposed by the first Born approximation, arises because 
of the dependence of the total cross section on large 
momentum transfers for small collision energies and 
the fact that this scaling is not valid for the larger 
momentum transfers. 
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