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J. R. ANDERSONf AND A. V. GOLD{ 

Institute for Atomic Research and Department of Physics, Iowa State University, Ames, Iowa 
(Received 18 March 1965) 

The de Haas-van Alphen periods in lead have been studied in 200 kG impulsive fields, employing tech
niques with sensitivity and selectivity which are far improved over those used in an earlier study of this 
metal, and several new sets of oscillations have been discovered. The results confirm in detail the correct
ness of a nearly-free-electron Fermi surface based on four conduction electrons per atom, and the experi
mentally determined Fermi surface has been described in terms of an interpolation scheme using four 
orthogonalized plane waves for each wave vector k. As would be expected for a heavy metal such as lead, it 
is necessary to allow for the large spin-orbit interaction in order to achieve an accurate description of all 
portions of the Fermi surface. The four adjustable parameters required in the description have been deter
mined by a least-squares fit to eight observed extremal areas of cross section, and are found to be (in Ry): 
Fermi energy £ / = 0.718=b0.001; Fourier coefficients of the pseudopotential Vm=— 0.084±0.002 and 
F2oo= — 0.039d=0.002; and spin-orbit interaction \ = 0.096=b0.002. These values of the parameters refer to 
a specific interpolation scheme and assume that the mass in the kinetic-energy matrix elements is the free-
electron mass (i.e., no attempt has been made to consider explicitly many-body effects or the electron-
phonon interaction). When the above parameters are used, the total occupied volume is calculated to corre
spond to 4.02 ±0.02 electrons per atom, and the model confirms the experimental finding that the fourth 
zone is empty. The calculated dispersion curves JS(k) reflect the 'inert-pair' behavior which is so well known 
in the chemistry of lead salts, in that there is a large energy gap between a filled 65-like band and the lowest 
branch of the 6^-like bands which is never less than 0.13 Ry. The predictions of the model as regards the 
detailed orientation dependence of the de Haas-van Alphen periods are found to be in excellent agreement 
with experiment; comparison is also made with the Fermi-surface dimensions, cyclotron masses, magneto-
resistance, etc., as determined by other experiments. 

INTRODUCTION 

ON the basis of an earlier study of the de Haas-
van Alphen effect in lead using 80 kG impulsive 

fields,1 a simple, nearly-free-electron model was ad
vanced as a plausible approximation to the actual Fermi 
surface. At that time the limitations of the experimental 
technique were such that only a few oscillatory terms 
were observed in the susceptibility; however, if the 
simple model for the Fermi surface were to have any 
real validity, further oscillatory terms would be ex
pected. In this research we have succeeded in finding 
several of the predicted oscillations by extending the 
range of fields to 200 kG, by improving otherwise the 
sensitivity of the impulsive-field technique, and by 
using single crystals of much greater perfection than 
those used earlier. 

In the meantime, several authors have reported 
measurements of various properties of lead which are 
also directly related to the Fermi surface. These results 
are from the magnetoresistance effect,2-4 ultrasonic 

* Contribution No. 1648. The major part of this research was 
carried out in the Ames Laboratory of the U. S. Atomic Energy 
Commission. 

f National Science Foundation Graduate Fellow 1960-1962; 
National Science Foundation Postdoctoral Fellow, Royal Society 
Mond Laboratory, University of Cambridge 1963. Present ad
dress: Department of Physics and Astronomy, University of 
Maryland, College Park, Maryland. 

% Alfred P. Sloan Research Fellow. 
1 A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958). 
2 N. E. Alekseyevsky and Yu. P. Gaidukov, Zh. Eksperim. i 

Teor. Fiz. 41, 354 (1961) [English transl.: Soviet Phys.—JETP 
14, 256 (1962)]. 

3 R. C. Young, Phil. Mag. 7, 2065 (1962). The interpretation of 
magnetoresistance data (Ref. 2) is discussed in the appendix to 
Young's paper. 

4 J. E. Schirber, Phys. Rev. 131, 2459 (1963). 

attenuation,5,6 cyclotron resonance7-3'8 and the Kohn 
effect,9-11 and they have all been interpreted, with 
varying degrees of accuracy and reliability, in terms of 
features which are predicted by the nearly-free-electron 
model. The new de Haas-van Alphen measurements 
presented in this paper also confirm the basic correct
ness of the simple model; moreover, the present results 
are of sufficient detail and accuracy to permit a really 
quantitative description of the Fermi surface to be 
attempted. 

The use of pseudopotential theory in accounting for 
the band structures and the Fermi surfaces of non-
transition metals is now well established,12-18 and we 
have used an interpolation scheme with four orthogonal
ized plane waves (OPW's) for each wave vector k to 
describe the lead Fermi surface. In this model, the 
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FIG. 1. Envelope spectra of the de Haas-van Alphen periods in 
lead, as a function of temperature, for the magnetic-field direction 
along [001]. The profile of the impulsive field was essentially the 
same for all three discharges, but it is shown only in the top 
oscillogram for the sake of clarity. Maximum field: 120 kG; 
sweep time: 16 msec; time-frequency at resonance: 147 kc/sec. 

Fermi energy E/ and two Fourier components of the 
pseudopotential, Vm and F200, are regarded as fitting 
parameters. In a heavy metal such as lead, however, 
the rather strong spin-orbit interaction would be ex
pected to have a marked effect on the band structure, 
and it was found that agreement with experiment could 
be greatly improved when this interaction was allowed 
for in a phenomenological fashion by the introduction 
of a fourth fitting parameter, the spin-orbit coupling 
constant X. 

An approximate fit to the experimental data has 

already been discussed in a preliminary report of this 
work.17 In that report, fewer than four OPW's were 
used except in the neighborhood of the corners of the 
Brillouin zone, and approximate values of the two 
parameters Vm and F200 were found by fitting to two 
small areas of cross section of the Fermi surface, whose 
shapes could be expressed in analytical form; the 
larger areas were then found by graphical interpola
tions. It was also shown there that the probable effect 
of the spin-orbit interaction would be to improve agree
ment with experiment. In the present paper the dimen
sions and areas of all of the relevant sections of the 
Fermi surface have been computed numerically, no 
graphical constructions were necessary, and a total of 
eight experimentally determined areas normal to sym
metry directions have been used in a least-squares 
fitting procedure to determine the four parameters E/9 

Fin, F200, and X. This paper also contains a much more 
complete and reliable set of experimental data. 

EXPERIMENTAL PROCEDURE 
The basic impulsive-field technique for observation 

of the de Haas-van Alphen effect has been discussed 
fully elsewhere.1'19'20 Most of the technical details of the 
present apparatus (e.g., magnet construction, elec
tronics, etc.) have been described in our earlier report,17 

so that only a brief account of the experimental pro
cedure will be given here. 

The lead single crystals were prepared from zone-
refined material supplied by Cominco Products Inc. 
(Grade 69-A). In the early part of this study, the 
specimens were grown from seed crystals on a horizontal 
"Kapitza" furnace in which an oblique temperature 
gradient was set up in order to minimize the misorienta-
tions arising from the columnar growth. However, it 
was later found that crystals prepared by the Czochral-
ski technique of pulling from the melt were of sub
stantially better quality as far as the substructure was 
concerned, and such crystals were used for the major 
part of this study. The diameters of the cylindrical 
crystals ranged from 0.2 to 0.4 mm, and the resistance 
ratio P3OO°K/PI.2°K of the crystals was found to be typ
ically 4X104 (the low-temperature resistance values 
were obtained by extrapolating the transverse magneto-
resistance to zero applied field). 

The samples were oriented relative to their mount
ings by conventional back-reflection x-ray techniques,17 

and two methods were used to rotate the sample and 
pickup coil with respect to the applied field. In some 
early experiments, a nylon string was used to turn the 
pickup system from the top of the cryostat, and the 
angle of rotation was determined by a technique in
volving the energizing of two pairs of Helmholtz coils 
outside the cryostat.17 The string drive was later re-

19 D. Shoenberg, in Progress in Low Temperature Physics, edited 
by C. J. Gorter (North-Holland Publishing Company, Amster
dam, 1957), Vol. 2, p. 226. 

20 D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255. 85 
(1962). 
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FIG. 2. Typical plot of the values 
of \/E at cycle maxima versus in
tegers, made in the region where 
two resonances merge into one 
another. The periods are given by 
the slopes of the linear portions. 
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placed by a bevel-gear device, which had the great 
advantage of being quite positive and reproducible. 
Changes in the inclination of the specimens to the 
applied field could be determined to about | ° , but be
cause of small misalignments of the sample in the 
pickup system (usually less than 2°), the absolute 
inclinations were found to an accuracy of about 1° 
from the symmetries of the angular variations of the 
de Haas-van Alphen periods. It is believed that the 
sample could be set to rotate with the field direction 
always within 3° of any chosen crystallographic plane. 

A typical profile of the field pulse is shown at the top 
of Fig. 1; the highest peak field which could be achieved 
was 200 kG, and the duration of the pulse was about 
16 msec. Because of the many sets of oscillations which 
are found in lead at high fields, it was essential to use 
the resonance method1,20 in order to achieve a satis
factory degree of period separation. The observed 
resonances were enhanced over and above the natural 
ones due to the pickup system alone by the use of two 
electronic band-pass filters, each attenuating at a rate 
greater than 12 dB per octave above or below the narrow 
passing band.21 Figure 1 also shows typical resonance 
envelopes of the de Haas-van Alphen oscillations when 
the magnetic field is along a [001] direction. The tem
perature of the specimen could be varied between 1.0 
and 4.24°K, and it can be seen from the figure that the 
complexity of the oscillograms increases greatly as the 
temperature is reduced. 

In order to achieve maximum accuracy of period 
measurement, each resonance was expanded until the 
individual cycles could be resolved, and values of the 
reciprocal of the field strength at each maximum or 
minimum were plotted versus integers; for genuine 

21 Krohn-Hite Corporation, Model 315-^4 (R). The low-pass and 
high-pass sections were usually set at the same cutoff frequency, 
thereby resulting in the narrowest possible bandwidth. 

oscillations one should obtain a straight line, and the 
period is given by its slope. Figure 2 is such an integer 
plot, made in a region where one resonance gives way 
to another, and shows two linear regions corresponding 
to the two periods. As usual, period values from the 
corresponding expanded resonances on rising and falling 
fields were averaged in order to minimize various sys
tematic errors,20 and bucking techniques were used to 
provide optimum accuracy in the field measurement.1 

The large amount of measuring and data reduction was 
greatly facilitated by projecting each photograph of the 
oscillations and the associated field variation onto the 
screen of a device which would provide analog voltages 
corresponding to the positions of the field trace and 
calibration lines; these voltages were automatically 
transferred to punched cards for computer analysis. 

CLASSIFICATION OF THE PERIOD RESULTS 

As we shall see later, all of the periods which would 
be expected on the basis of a nearly-free-electron model 
should be observable for field directions lying in a {110} 
plane (which contains the three symmetry directions). 
For this reason we have concentrated on measuring the 
period variations in this plane; some results for field 
directions in other planes are given in Refs. 1 and 17. 
The angular dependences of all the observed periods in 
the (110) plane have been collected and presented on a 
logarithmic scale in Fig. 3. Each point in the figure is 
the average of at least two independent measurements 
for both rising and falling fields; if, for any group of 
oscillations, more than one point is given for any ori
entation, then these points refer to results from entirely 
separate runs and frequently involve different specimens. 

Before proceeding with an interpretation of the vari
ous terms, it should be realized that not all of the 
periods in Fig. 3 are fundamental ones. In particular, 
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FIG. 3. Angular dependence of all the periods found in lead for magnetic-field directions in the (110) plane; the periods have been 
plotted on a logarithmic scale. O, <g>, ©, [001] crystals at 1.0, 2.0, and 3.5°K, respectively; A, [111] crystals at 1.0°K; Q [110] 
crystals at 1.0°K. Heavy solid curves: fundamental terms; light solid curves: harmonic terms predicted from fundamental curves; 
light broken curves: combination terms predicted from fundamental curves. 

the exceptionally strong fi oscillations are very rich in 
harmonic content, and from Fig. 1 it can be seen that 
the fundamental and its retinue of harmonics /3(2), j3(3), 
• • •, etc. completely dominate the low-temperature os
cillograms at [001], swamping other fundamental terms 
of lesser amplitude. The branches a, /3, y, and 8 in Fig. 3 
are undoubtedly fundamental ones,22 and heavy curves 

22 The a, 0, and y oscillations are those which were originally 
reported in Ref. 1. In that paper, the period variations for the y 
oscillations are given for two further planes of rotation; at that 
time, the a oscillations could be detected with certainty only 
within about 25° around the [110] direction. 

have been drawn through the points in these branches 
to satisfy the requirements of crystal symmetry. When 
drawing the heavy curves through the points for the y 
oscillations, it has been assumed that the separate 
branches cross rather than touch one another at both 
the [001] and [111] orientations in this plane. It is, in 
fact, extremely difficult to distinguish experimentally 
between these two possibilities, since a detailed analysis 
would require a careful study of the beat patterns near 
the symmetry directions; however, the resonance tech
nique is required for the very detection of the y oscilla-
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TABLE I. Extremal areas of cross section. 

^ ( ( 2 T T / 0 ) 2 ) 

Oscillation 
orientation 

a [001] 
a [111] 
a [110] 
7 [001] 
T [ H I ] 
7 [HO] 
7T [ 0 0 1 ] 
(3 [001] 
5 [111] 
e [001] 
<f> [ H I ] 

. . - [110] 

. . . [110] 

. . . [110] 

WPiG-1) 
experimental 

4.51±0.05 
6.17±0.05 
5.94±0.05 

39.4 ±0.6 
42.6 ±0.4 
53.2 ±0.5 b 

27.1 ±0.4 
18.6 ±0.2 
8.76±0.15 

4.1 ±0.2 
2.6 ±0.1 

Interpretation: 
zone 

2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

orbit 

* i 

* i 

* i 

r 
r 
r 
£ 
*> 
e 
V 
<r 
OJ 

Kd 

rd 

Experimental, 
from P 

1.29 ±0.01 e 

0.940d-0.008e 

0.976±0.008° 
0.147±0.002 
0.136±0.0015

e 

0.109±0.001e 

0.214±0.003e 

0.311±0.004« 
0.66 ±0.01 e 

1.41 ±0.07 
2.2 ±0 .1 

... 

4-parametera 

Fermi surface 

1.2869 
0.9346 
0.9851 
0.1502 
0.1364 
0.1078 
0.1917 
0.3089 
0.6346 
1.4429 
2.3035 
0.2380 

~0.68 
~1.86 

(1.2763) 
(0.9413) 
(0.9820) 

(0.1356) 
(0.1073) 
(0.1911) 
(0.3115) 
(0.6293) 
(1.4511) 
(2.3021) 
(0.2378) 

Empty-lattice 
model 

1.792 
1.097 
1.141 

0.183 
0.155 
0.128 
0.322 
0.661 
1.696 
2.491 
0.355 
... 
... 

a The results in brackets are those obtained by setting the normalization parameter Np equal to 0.5 rather than to zero (Appendix I). 
b At [110] the y oscillations exhibit long beats with 42.5 ±0.5 cycles per beat, indicating two distinct periods which differ by 2.2%; the two terms have 

comparable amplitudes since the beat pattern has narrow minima. The value quoted for P is the mean of the two periods. 
0 Nonextremal with respect to ^ in the empty-lattice model; the value for J40 from the 4-parameter model refers to the extremal section which is found 

to be about 0.04(27r/a) distant from points K or U. 
d Nonextremal with respect to ^A in both empty-lattice and 4-parameter models. 
e Areas used in the least-squares fitting procedure. 

tions near [001], and this method is not suitable for 
an accurate determination of beat periods. (Two 
branches of the 7 oscillations were once assumed to 
touch one another at [001 ],* but we shall see later that 
our interpretation in terms of a nearly-free-electron 
model requires that the curves should cross.) Close to 
[001], the a period can be measured reliably only 
above about 2.0°K, since at lower temperatures these 
oscillations are completely masked by the harmonic /3(4) 

(see Fig. 1). 
In order to demonstrate which of the remaining 

terms in Fig. 3 are harmonics, thin solid curves have 
been drawn to represent exact integral submultiples of 
the periods of the fundamental terms, and it can be 
seen that many of the period values lie on such har
monic curves. The identification of the harmonics has 
been further confirmed at symmetry orientations by 
making rough estimates of the associated effective-
mass parameters (from the temperature dependence of 
the amplitudes), and checking that these are approxi
mately integral multiples of the effective masses for the 
relevant fundamental terms. In addition to the har
monics, yet further nonfundamental terms are expected 
on account of the basic nonlinearity of the magnetic 
properties of the crystal,20,23 of which the simplest are 
obtained from sum or difference combinations of the 
fundamental frequencies. The expected period varia
tions for such terms are shown as the broken curves in 
Fig. 3, and several of the remaining points are seen to 
follow some of these dashed curves quite closely; in 
particular the combination term a-\-ft is found to be 
very strong at 1.0°K and near [001]. A curious feature 
is that only certain sum terms have been found, and in 

23 A. B. Pippard, Proc. Roy. Soc, (London) A272, 192 (1963). 

no instance do points appear to follow the broken curves 
predicted for the difference terms; this apparent absence 
is not yet understood. 

We conclude this review of the basic data with a 
discussion of three groups of low-amplitude oscillations 
7r, <j>, and e, which are very difficult to measure reliably. 
The 7r oscillations have been detected only in the im
mediate vicinity of [001], and we believe these oscilla
tions to be fundamental ones since they do not appear 
to fall anywhere into the scheme of either harmonics 
or of combination tones; the same conclusion would 
seem to apply to the short-period <t> oscillations which 
are found around the [111] direction. The classification 
of the weak e oscillations near [001] is not, however, so 

FIG. 4. Primitive Brillouin zone for the fee structure, showing 
a tetrahedral cell similar to the one used for the orbit calculations. 
A smaller cell could have been chosen, but would have been less 
convenient when tracking large orbits. 
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FIG. 5. The empty-lattice hole sur
face in the second zone (to scale), i/a, 
central [111] extremal orbit; */% non-
central [111] extremal orbit. 

FIG. 6. A portion of the empty-lattice electron surface in the third zone (sche
matic). The orbits K and r are nonextremal with respect to area, and the broken 
curves depict the open orbits p and p. 

straightforward. As can be seen from Fig. 3, the e 
period values appear to lie on the dashed curve pre
dicted for the Q J + 7 combination term; however, if this 
interpretation were correct, it would be difficult to 
understand why there should be a lack of experimental 
points corresponding to the portion of the dashed curve 
between about 15° and 40°. We shall see later that the 
model Fermi surface actually leads one to expect a 
fundamental term with a predicted period close to the 
e results. 

As far as the interpretation of the results in terms of 
the shape of the Fermi surface is concerned, we shall 
henceforth consider only the terms a, ft 7, and 5, which 
are definitely fundamental ones, as well as the three 
weak terms w, $, and e discussed above; the harmonics 
and combination tones will not concern us any further. 
The period values for these seven basic terms at sym
metry directions are given in the second column of 
Table I. The results for the w- and ex-oscillations at 
[001] are from the more reliable measurements at 
higher temperatures (Fig. 3), and in estimating the 
reliability of all the results, we have considered not 
only the scatter of the individual measurements before 
averaging, but we have also taken into account effects 
of small misalignments of the specimens by considering 
the rapidity of the period variations in the neighborhood 
of the symmetry axes. In the fourth column of Table I 
we give the associated areas of cross section of the 
Fermi surface, calculated from the Onsager-Lifshitz-
Kosevich relation 

iA0=2we/chP. (1) 

The values of <AQ have been expressed in the convenient 
unit of (2T/O)2, where a=4.90 A is the lattice constant 
of lead at 0°K; the difference between the lattice con
stant at room temperature 4.94 A and the value of 

0°K has been estimated from thermal-expansion data.24 

Equation (1) then becomes numerically 

^ 0 = 5 . 8 0 X lO^P- 1 (2TTA)2 . (la) 

We now turn to a comparison of the periods of the 
basic oscillations with the periods calculated from the 
various areas of cross section of the Fermi surface sug
gested by the free-electron model; this identification 
can now be carried out in more detail than was originally 
done in Ref. 1. Figure 4 shows the primitive Brillouin 
zone for the fee structure, with symmetry points and 
lines labeled according to the notation of Bouckaert 
et al.25 If we assume that lead may be regarded as having 
four free electrons per atom, then the empty-lattice 
model (in which the sole effect of the lattice is to permit 
Bragg reflections of the electrons, but otherwise leave 
them completely free) predicts1,14 a completely filled 
first zone, a large surface containing unoccupied states 
in the second zone (Fig. 5), and a multiply connected 
surface containing occupied states in the third zone 
(Fig. 6); the model also predicts small electron pockets 
in the fourth zone, centered on the zone corners W 
(these pockets are not illustrated). While the empty-
lattice hole surface in Fig. 5 has been drawn to scale,14 

the multiply connected electron surface in Fig. 6 has 
been presented in a simplified schematic fashion, solely 
for convenience in visualization; the {110} "arms" in 
the figure have been drawn considerably thinner than 
in the idealized model.14 

Most of the orbits shown in Figs. 5 and 6 are typical 
extremal areas of cross section which would be expected 
to give rise to de Haas-van Alphen oscillations. We 

24 G. K. White, Phil. Mag. 7, 271 (1962). 
25 L. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. 

50, 58 (1936). 
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FIG. 7. A comparison of the empty-lattice period variations (arrowed curves) with the fundamental period values from Fig. 3. The 

broken curves refer to orbits which contain a symmetry point (e.g., W, K, or U) but which need not be extremal with respect to area. 
The field directions are in the (110) plane and the periods are plotted on a logarithmic scale; see Fig. 3 for an explanation of the symbols 
for the experimental points. 

have used Harrison's method26 to find their areas by 
graphical construction and Eq. (la) to find the corre
sponding periods, and the empty-lattice period varia
tions for the (110) plane are shown in Fig. 7 (arrowed) 
for comparison with the experimental results. The 
branches for orbit f have been constructed assuming 
that the plane of the extremal orbit always contains the 

26 W. A. Harrison, Phys. Rev. 116, 555 (1959). 

symmetry point K (or U) for arbitrary orientation of 
its normal. There is, however, no symmetry require
ment that this need be so for two of the branches, and 
these are distinguished by the dashed curves; in fact 
according to the literal empty-lattice model there is no 
extremal area of cross section for type-f orbits near 
[001],17 but the variation of the area along the direction 
of the normal does develop a minimum as the lattice 
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potential is introduced. Similarly, it has been assumed 
that all extremal sections through the tetrahedral 
fourth-zone electron pockets contain the zone corner W, 
but again this is not required by symmetry for one of 
the branches. 

The most striking features of Fig. 7 are the remark
ably close agreements of the empty-lattice periods for 
orbits v and 6 with the observed p and 8 branches, 
respectively. Also the form of the period variations for 
orbits f and \pi agrees roughly with what is observed 
for the 7 and a oscillations, respectively. Moreover, if 
we suppose that a weak lattice potential is introduced, 
this would be expected to have the effect of increasing 
the number of electrons in the second zone at the ex
pense of electrons in the third zone, and from Eq. (1) 
we would expect the period curves for both of the orbits 
f and \pi to rise, giving better agreement with experi
ment. We therefore associate the a oscillations with 
orbit ^ i and the y oscillations with orbits of type f. 
By similar arguments, the lattice potential would be 
expected to shrink the fourth-zone electron pockets, 
thereby raising the associated branches above the 
empty-lattice ones. However, a careful experimental 
search has revealed no evidence of periods which are 
longer than those for the y oscillations, and this lack 
of data leads us to conclude that the fourth zone is 
completely empty. The size of the hole-type orbit £ on 
the third-zone surface would be expected to be larger in 
reality, i.e., of shorter period, and we associate the ir 
oscillations with this orbit even though their range of 
observation is so limited. Finally, it is possible that the 
e and <f> oscillations might be ascribed to orbits rj and a, 
respectively, although the combination terms and har
monics which occur in these regions make any inter
pretation difficult, and no evidence has been found for 
oscillations corresponding to orbit co. The above in
terpretation of the experimental results in terms of 
orbits suggested by the empty-lattice model is sum
marized in Table I, and the empty-lattice areas of 
cross section for symmetry directions are given in the 
last column of the table. 

Our interpretation of the strong P oscillations in 
terms of orbit v calls for some comment, since these 
oscillations were originally attributed to the £ orbit1; 
while the empty-lattice periods for orbits v and £ 
differ in magnitude, the angular variations are actually 
very similar (Fig. 3). The present assignment is be
lieved to be correct for the following two reasons: 

(i) As we have already pointed out, the period values 
of thep oscillations agree closely with the empty-lattice 
curve for orbit v. Introduction of small band gaps im
proves the over-all agreement with experiment as far 
as the other orbits are concerned, whereas this good 
agreement is lost if the P oscillations are associated 
with orbit £ instead.17 

(ii) The effective mass for the P oscillations is found 
from the temperature dependence of the amplitude to 
be close to 1.20mo at [001], and a mass parameter 

having essentially the same value has been found in 
cyclotron resonance experiments.7-3-8 When that par
ticular cyclotron resonance is studied at [001] for 
different microwave polarizations, the results show that 
the relevant orbit is one for which only the average 
electron velocity in the direction of the magnetic field, 
vz, is zero, while vz itself is not zero at all points on the 
orbit. The vanishing of only the average velocity is a 
property of orbit v, whereas v2 = 0 at all points on orbit £. 

Before leaving the subject of the orbit assignments, 
we wish to point out that the empty-lattice hole surface 
in the second zone will also support noncentral extremal 
orbits \p2 in addition to the central ones of type \f/± 
(Fig. 5), and it might well be asked whether the periods 
labeled a-\-y in Fig. 3 might not be ascribed to oscilla
tions arising from such noncentral orbits. However, in 
the final four-parameter mode] for the actual Fermi 
surface, which will be shown to account remarkably well 
for all the other oscillations, the empty-lattice Fermi 
surface is "sandpapered" to such an extent that no 
noncentral orbits are possible in reality; this rounding-
off is illustrated for areas normal to the [111] direction 
in Fig. 8. We therefore conclude that the points a+y 
do indeed represent a combination tone. Also included 
in Fig. 6 are two further closed orbits n and r which are 
not extremal, and indeed no oscillations have been 
found which could reasonably be ascribed to them. 

To sum up, we have seen that the empty-lattice 
model with four free electrons per atom appears to be a 
reasonable approximation to the actual Fermi surface. 
However, this is perhaps surprising when one considers 
that there is a sizeable energy gap of about 0.7 Ry be
tween the 6s and 6p states in the free lead atom.27 In 
the lead salts, the 6s2 electrons frequently appear to 
behave as an "inert pair" of core electrons, and one 
might ask whether or not a model based on the assump
tion of only two (6p2) electrons would be equally satis
factory. However, a nearly-free-electron model with 
only two electrons per atom does not predict, in par
ticular, a single large hole surface in the second zone,14 

and it would not be possible to account for the observed 
branch of short-period a oscillations. The ultimate 
success of the four-electron model will become apparent 
in detail after our final four-parameter calculation, in 
which the parameters are found to have values which 
are physically reasonable. However, we might point 
out at this stage that further confidence in the model 
can be obtained from a consideration of the sections in 
the extended- and reduced-zone schemes which are 
formed by the intersection of the Fermi surface with 
the central [110] plane through T (Figs. 9 and 10). 
Irrespective of the detailed shape of the Fermi surface, 
the total occupied area in the extended-zone scheme of 
Fig. 10 is given by 

^[iio]ex t=2c^ [11o3
Bz+2o^(r [iio])-o^(^i, [iio3), 

27 F. Herman and S. Skillman, Atomic Structure Calculations 
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963). 
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FIG. 8. Variation of 
the [111] area of cross-
section of the second-
zone hole surface as a 
function of the normal 
distance from the zone 
center r . Upper curve: 
empty-lattice model; 
lower curve; model 
Fermi surface, with the 
parameter values given 
in Eq. (30). \pi and ^2 
refer to the orbits shown 
in Fig. 5. 
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where ^A[n^z is the central cross-sectional area of the 
Brillouin zone normal to p.KT|> a similar expression 
holds for the central slice normal to [111]. For a four-
electron sphere, the area of the diametral cross section 
is c^ofe=4.832 (2w/a)2, and from the areas deduced from 
the periods of the 7 and a oscillations (Table I) we find 

and 
^no] e x t= (i.oi±o.oiMofe 

^ [ i i u e x t = (0.99±0.01)^f0
fe. 

Thus, within experimental error, these total areas are 
indistinguishable from the diametral area of the Fermi 
surface for four completely free electrons per atom. We 
might also mention that positron annihilation experi
ments also support our model.28 Later on we shall calcu
late the band structure E(k) using the experimentally 
determined parameters, and it will be shown that the 
energy bands do indeed reflect something of an inert-
pair behavior in the metal; however the 6s-like band is 
by no means narrow, and thus it would appear to be 
wrong to regard the 6s2 electrons as localized. 

CALCULATION OF THE FERMI SURFACE 

Having established that the empty-lattice model 
can account qualitatively for the experimental results, 
we now proceed with a quantitative calculation of the 
shape of the actual Fermi surface. To do this, we make 
use of an interpolation scheme which is similar to that 

28 A. T. Stewart, Can. J. Phys. 35, 168 (1957). 

suggested by Harrison13 and which is based on the 
pseudopotential concept.12-15 In this approach the ordi
nary lattice potential V(r) is replaced by a weak 
pseudopotential, which is actually a complicated inte
gral operator containing terms which result from the 
orthogonalization of the crystal wave function to the 
occupied core states Is, 2s, • • •, 5d, as well as exchange 
terms. In the interpolation scheme used here, the non
local pseudopotential is replaced by an ordinary func
tion of coordinates, and to introduce the notation, as 
well as for the sake of clarity, we give first a brief outline 
of the method when the spin-orbit coupling can be 
ignored. 

We follow closely the Phillips-Kleinman approach12 

and introduce functions <j> to represent the "smooth" 
parts of the crystal wave functions x; n^w functions \p 
are then constructed from the </>'s by orthogonalization 
to the core states, and each % is expanded in terms of 
the new basis set \p, 

X k = L K C W , (2) 

where K is a reciprocal-lattice vector. When the simpli
fied pseudopotential Vp(r) is expressed as a Fourier 

series 
F*(r) = L,V>« (3) 

and the smooth functions <t> are taken to be plane 
waves (i.e., the crystal wave functions are expressed as 
linear combinations of OPW's), the Schrodinger equa-
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tion yields the set of coupled equations 

r ( k - i c ) C . k + 2 > CK>*VK>-K=E(k)C*, (4) 

in which the matrix elements of the kinetic energy are 
given by 

T ( k - K) - (¥/2m) ( k - K)2 . (5) 

With these approximations the Eqs. (4) reduce formally 
to those for the classic plane-wave expansion (Sommer-
feld and Bethe29). We now assume that higher Fourier 
components of the pseudopotential are negligibly small 
and that only a few components with small | K | are 
required to fit the experimental results, with the VK 

regarded as adjustable parameters. Although fewer than 
four OPW's are sufficient to resolve the empty-lattice 
degeneracies at most points in the Brillouin zone, at 
least four are required at the zone corners W. Awkward 
graphical interpolations17 can be avoided if four OPW's 
are used for each wave vector k and with this choice the 
resultant Hamiltonian matrix from Eqs. (4) becomes 
truncated to 

3CZ= 

T ( k ) F20o F u i F i n 
F2OO r(k-K2) Fin Fin 
F m F i n T ( k - K 3 ) F200 
.Fin F m F2 0 0 :T(k-K 4 )J 

, (6) 

where a typical set of reciprocal-lattice vectors for the 
fee structure is, in units of (2ir/a), 

K I ^ O , K 2 = (0,0,2), K 3 = (1,1,1), K 4 = ( 1 , - 1 , 1 ) . (7) 

Of course, more than four OPW's could be used, but 
then the essential simplicity of the model would be lost. 
This four-OPW model with a local pseudopotential is 
the same as that used by Harrison13 and by Ashcroft.18 

The secular equation resulting from the use of the 
Hamiltonian (6) may be formally written as 

F{E(k),Fm,F2oo,k} = 0 , (8) 

and the zeros of the polynomial F were found as a 
function of k for fixed values of £ ( k ) , F m , and F20o by a 
computer calculation. In this manner, surfaces of con
stant energy could be traced out in k space; the inter
sections of these surfaces with symmetry planes 
determined the cross-sectional areas corresponding to 
the various closed orbits in different bands. In fitting 
to the observed areas (Table I) , we have regarded the 
Fermi energy Ef as a third fitting parameter, and have 
set E(k) = Ef. One of the zone corners, Wa say, was 
taken to be the center of a calculation region, a tetra-
hedral cell bounded by the {110} planes which bisect 
the lines joining Wa to its four nearest equivalent 
neighbors, Wb say; such a cell is shown in Fig. 4. Only 
those reciprocal-lattice vectors K; ( i=2 ,3 ,4) corre
sponding to Bragg planes intersecting at Wa are 
included in the Hamiltonian matrix (6), and the vectors 

29 A. Sommerfeld and H. Bethe, Handbuch der Physik, edited 
by H. Geiger and Karl Scheel (Julius Springer, Berlin, 1933), 
Vol. 24(2), p. 333. 

given in Eqs. (7) are those appropriate to the cell 
centered on the zone corner (|,0,l)(27r/a). However, 
for a point k lying in one of the adjacent elementary 
tetrahedra corresponding to one of the corners Wb, the 
function F had to be changed by replacing the K* used 
for Wa by those appropriate to that particular Wb, and 
so forth. The calculation was programmed so that such 
changes were effected automatically, and in this manner 
orbits on a constant-energy surface could be followed 
continuously. The details of the procedures used in 
these computations are given elsewhere.30 

When preliminary calculations were carried out with 
just three fitting parameters Ef, F m , and F2oo, reason
ably accurate fits to the second-band hole surface and 
to the third-band electron surface could not be achieved 
simultaneously; in fact, when a good fit was made to 
orbits on one surface, a mismatch of typically 5 or 6% 
was found between the calculated and experimental 
areas for the other surface. I t seems unlikely that the 
inclusion of higher order VK would improve the agree
ment for the following reason. We note that, in the 
empty-lattice model with four electrons per atom, the 
region of occupied states does not extend very far 
beyond the fundamental Brillouin zone. Even if the 
higher order VK were to have magnitudes similar to 
F m and F200, they would be expected to contribute 
little to the energy on account of the large energy de
nominators in second-order perturbation theory. (Actu
ally, interactions with higher states are included to 
second order in the experimentally determined pa
rameters F m and F2oo.31) On the other hand, it is well 
known that relativistic effects become important in 
heavy elements, and to seek a better description of the 
Fermi surface it seemed desirable to take into account 
the simplest of the relativistic terms, the spin-orbit 
interaction. 

The spin-orbit coupling term in the Hamiltonian has 
the form32 

0 = (h/4mV)(WXr)*9, (°) 

where F(r ) is the actual potential seen by the electron, 
P is the momentum operator, and the components of 
<r are the Pauli spin matrices. For free atoms, Eq. (9) 
reduces to 

0«= ( l / 2 w V ) ( ( l / f ) ( J 7 / d r ) ) l - 8 = f (f)l-s, (10) 

and it is customary to characterize the strength of the 
interaction by the one-electron atomic parameter 

Jo 
i2(r)%(r)r2dr, (u) 

where Rni is the radial part of the wave function; for 
lead the atomic parameter ^p is quite large, namely 

30 J. R. Anderson and M. K. Rhyne, U. S. Atomic Energy Com
mission Report IS-1106 (unpublished). 

31 M. H. L. Pryce, Proc. Phys. Soc. (London) A63, 25 (1950). 
32 Cf: H. Jones, Theory of Brillouin Zones and Electronic States 

in Crystals (North-Holland Publishing Company, Amsterdam, 
1960), Chap. 7. 
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0.066 Ry.33 When the spin-orbit interaction is included 
in the pseudopotential formalism, the Eqs. (4) must be 
modified to read 

=£(k)CK
k . (12) 

As in Eqs. (4), the kinetic-energy and pseudopotential 
matrix elements refer to the plane waves <f>, whereas 
the spin-orbit matrix elements are evaluated using the 
OPW's \p; since we have been using four OPW's for 
each point k in the absence of the spin-orbit interaction, 
a total of eight will be required when the spin is taken 
into account. Because ft depends on the potential 
gradient [Eq. (9)], we should expect that the main con
tributions to the spin-orbit terms will come from re
gions near the ion cores. In such regions we assume 
that the OPW's will resemble quite closely the wave 
functions 6s, 6p, • •, for the free atom, and the poten
tial V(r) will be approximately spherically symmetrical 
about each nucleus. In order to determine the form of 
the spin-orbit interaction for metallic lead, it should 
thus be a reasonable approximation to treat the actual 
wave functions as linear combinations of 6s and 6p 
atomic functions, and we shall neglect all states of 
higher angular momentum (6d, • • •); however, the rela
tive strengths of the s and p contributions are not 
known a priori. We therefore introduce a phenomeno-
logical spin-orbit constant X which contains all the 
radial dependence in the spin-orbit matrix element; 
while X takes the same form as £6p, it will be regarded 
here as a fourth fitting parameter. 

In order to explain our final choice of a basis set of 
wave functions, we consider first the regime at a zone 
corner W, the center of our calculation cell. The points 
W are of particular interest since the empty-lattice 
Fermi surface in any band is always close to one of 
these symmetry points. Furthermore, it can be shown 
that, for the nearly-free-electron model, the energy in 
the fourth band always has a local minimum at W (at 
least for X=0), and we wish to impose upon our final 
model the experimental requirement that the fourth 
band be empty; in the three-parameter model, the 
Fermi level was found to be only barely below the 
minimum. It is thus important that the wave functions 
at W be chosen properly. Moreover, the formalism at 
W is particularly simple since symmetry requires that 
the s-p wave functions at this point be either s-like or 
p-like, but not mixed.34 In the absence of spin-orbit 
coupling, consider the following combinations of the 
four OPW's $i 

1 
* i '= iGM-iM- iM-*4) , *s'=—Gfr-iW, 

i (13) 

fc' = 1(^1+^2— ^3 — ̂ 4), ^4/== (^3 — ̂ 4) . 
v2 

33 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (The Macmillan Company, New York, 1935). 

34 Cf. Chap. 3 of Ref. 32. 

At any point W these combinations result in pure s and 
pure p functions, and for the particular zone corner 
(f,0,l) we demonstrate the symmetries explicitly by 
writing 

These symmetries can be easily verified by supposing 
that the fa may be replaced by simple plane waves 
exp{i(k—Ki)«r} ; we set k = k ^ = (§,0,l)(27r/a) and the 
appropriate K»- are given in Eq. (7). The functions \pz 
and i/V are degenerate; they may be transformed into 
one another by particular operations of the group of k 
at PF.35 For this reason, any linear combinations of \f/^ 
and $4 would be equally satisfactory. 

When spin is taken into account we consider the eight 
functions 

*»=***/ (*=1, • • • 4 ; i = l , 2 ; m = i + 2 [ ( - i y + l ] ) , 
(15) 

where ctj is a spinor. There are evidently several natural 
directions along which the spin could be quantized, and 
we choose the direction parallel to k8 for the sake of 
definiteness. At W there are two irreducible representa
tions of the double group, We and W7, and a correct 
basis set must contain each of these irreducible repre
sentations twice. We now use the zero-spin set (13) as a 
guide, and construct the set <£' given by 

$x'= 
#2 ' = 
$8 ' = 
# / = 
$ / = 
$6 ' = 
$ / = 
$8 ' = 

= i tyi+fc+fc+4'dai 3 
= §[(̂ i—i/2)oc2+i(\f/z— 
= h (^1+^2—^3—^0«i > 
= i [— (^1—^2)^2+^(^3 
= \ (^1+^2+^3+^4)01:2 , 
- 1 [ _ (fa—yf/^ai—ityz 

= 1(^1+^2—^3—^4)0:2, 

= J[(^i—\h)ai— ^ 3 — : 

iWai], 

- ^ 4 ) ^ 1 ] , 

—iWofe], 

^Oofe]; 

at W the functions <£/, $2', 3V, and <£6' belong to WQ 

and the others belong to W7. The set <£' is formally re
lated to the initial set <£ by the similarity transformation 

$' = £ $ , (17) 

where the 8X8 matrix S is given in Appendix I; the 
similarity transformation used for the wave functions 
will, of course, also change the matrix elements in Eq. 
(12). It should be pointed out that the basis set (16) 
is by no means unique. The above choice turns out to 
be convenient since it leads to the correct form for the 
spin-orbit terms not only at W but also over the entire 
plane kz—2w/a (square face of the Brillouin zone); 
moreover, the use of the set (16) also results in a par
ticularly simple spin-orbit Hamiltonian [block-diagonal 
matrix in Eq. (20)]. 

We have already assumed for our simplified pseudo-
potential that the matrix elements VK are independent 

35 Cf: G. F. Koster, Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1957), Vol. 5, 
p. 173. 
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of k, and we now make a similar assumption for the 
spin-orbit terms, namely, that the results calculated at 
W using a proper basis set (16) for this point will be 
valid for all other points in the Brillouin zone; this 
simplification is discussed in Appendix I. To find the 
form of the spin-orbit matrix elements at W we now 
use Eqs. (13) and (14) to express the functions (16) in 
a manner which will reflect the atomic-like character 
of the OPW's in the core region. We then have, again 
explicitly for the zone corner (|,0,1), 

be of block-diagonal form 

5Cg 

where 
\ 0 Aso*l' 

A 

2 

0 0 

0 2Ni 
0 0 

0 
0 

0 

0 
0 

-2Nz/Nz 

[0 0 -Ni/Nl -2Ni 

(20) 

(20a) 

$1' -> N^sah $ 2 ' -

$5' —> Ni\l/Sa2, $ 6 ' " 
$7' - » iN&l/Pxa2, $ 8 ' " 

• A ^ p / x i + ^ x ^ ) , 

where the A7'* are unknown normalization coefficients. 
The matrix elements for spherically symmetrical V(r) 
may be written in the form 

<*» / |0 |#»/>=<#» , | / ( r ) l -8 |*»/> = X W | l - 8 | ^ / > , (19) 

in which the radial integration has been absorbed into 
the phenomenological constant X [compare Eq. (19) 
with Eqs. (10) and (11) for the free atom], and the 
functions <p' are the angular and spin parts of the func
tions <£'. When the elements (19) are evaluated in the 
representation (18), the spin-orbit matrix is found to 

A so is real when evaluated at W, but would be complex 
in general (Appendix I), and in order that A80 be 
Hermitian, it is necessary to set INi/N^Nz/Nz. We 
now take the p functions to be normalized over some 
appropriate volume and set A r22=i for the sake of 
definiteness, i.e., we assume A^2=v2/2 and Ns= 1. 

In order to determine the total Hamiltonian matrix 
at any point k in the Brillouin zone, the lattice Hamil
tonian 5Ci [Eq. (6)] must be transformed into a form 
appropriate to the set of eight basis functions (16) and 
then combined with the spin-orbit matrix 3Cso' [Eq. 
(20)]. The required transformation for 3Ci is 

pCi On 
Xi'=s Is-1 

LO 3Cj 
(21) 

and the total Hamiltonian matrix is then finally given by 

where 

Aao+Ai= 

and 

#0+^200+27x11 

-i(U*-Uz) 

X i no i\nr> 1 I 
(Am+A 0 Bi 

- S i (Aso+Ay) ,)*} (22) 

Ut+Ut-Ut-Ui i(Ui-U,) 

U0- F2oo+X/2 

U1+Ui-Ui-Ui -iiUi-Uz) 

1{UA-UZ) 

4 

-Ut-Uz+Uz+Ut 

4 4 

-i(Ui-U,) -Ui-U^+Us+Ui i(Ut-Us) 

-HUi-Ut) 
* 7 o + F 2 o o - 2 F m A^X/2 

-V2X/2 t / 0 - F 2 0 o - X / 2 

(23) 

5 i = -
(U2-UO 

0 1 0 - 1 

- 1 0 - 1 0 

0 1 0 - 1 

1 0 1 0 

(24) 

In the above matrices 

Ui=Qt2/2m)\k+Ki\2, ^ 1 , 2 , 3 , 4 , 

Uo=(W/2m)j:Ui/4, 

and the K* are given in Eq. (7). Since the spin-orbit 
interaction cannot remove the Kramers degeneracy of 

(25) 
the energy levels in the independent-particle model, the 
eigenvalues of the 8X8 Hamiltonian matrix (22) must 

(26) always occur in four degenerate pairs. While we have 
not been able to transform the total Hamiltonian into a 
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simple block-diagonal matrix, the simple form of the 
submatrix B\ enables the secular equation to be factored 
by standard determinantal operations into two identical 
terms, each containing the determinant of only a 4X4 
matrix. This factoring did not introduce any simplica-
tions as far as the formal statement of the problem was 
concerned, but it did result in a substantial reduction 
in the time required for computer calculations. 

The surfaces of constant energy were calculated from 
the secular equation 

G{£(k),Fm,FM O |X,k} = 0 (27) 

in the same manner as for the three-parameter model 
(see Appendix II) , and the following physical considera
tions were taken into account in order to limit the many 
possibilities in initial trial-and-error fitting calculations. 
I t would seem reasonable to suppose that \^£ep and 
also that Ef^Ef{0\ the free-electron Fermi energy. As 
far as the pseudopotential coefficients are concerned, a 
discussion of the ordering of the energy levels is helpful. 
At W all combinations of the U% (i= 1, 2, 3, 4) vanish 
in Eqs. (23) and (24), and the eigenvalues relative to 
the empty-lattice energy (5/4) (h2/2m) (2w/a)2 are readily 
found to be 

E1(W) = 2Vin+V2oo, 

£2(PF) = - F i i i - X / 4 - { ( 7 2 o o -

E3(TF) = - F 2 o o + X / 2 , 

J E 4 (^) = - F 1 1 1 - X / 4 + { ( F 2 o o -

F m +X/4) 2 +X 2 / 2} 1/2 

•Fin+X/4)2+X2 /2}1 / 2 . 
(28) 

The level Ei(W) is the s-like level JF6(JFi) a n d i s i m 
pendent of X. I t is reasonable to expect this level to be 
the lowest of the four because of the large s-p splitting 
in the free atom; for X = 0 it is easy to see that this 
condition requires Vm to be negative, a conclusion 
which remains valid even for X^O if we make reason
able choices for the values of the parameters. More
over, a negative choice for Vm causes the energy of the 
uppermost level E±(W) to increase when spin-orbit 
coupling is introduced, i.e., the minimum energy in the 
fourth zone is raised, thereby ensuring that this band 
remains unoccupied. Little can be predicted in advance 
about the sign of F2oo, but preliminary estimates gave 
decidedly better fits to the experimental data when 
both F m and F2oo were taken to be negative. 

The four parameters were determined by a least-
squares fit to the areas of eight of the major symmetry 
orbits. The particular orbits used are denoted by 
asterisks in Table I ; they were chosen not only to give 
a good representation of the Fermi surface in both the 
second and third zones but also because the associated 
period values were the most reliable. Values of Ef, X, 
Fin , and F2oo were chosen to minimize the sum of the 
squares of the weighted deviations 

0 = Z M c a l c 4 ' ( ^ / , X 5 F 1 1 1 , F 2 o o ) - ^ e x p 9 / ( ^ 0 2 , ( 2 9 ) 

(30) 

where the h<Al are the uncertainties in the experi
mentally-determined areas (Table I ) . In a preliminary 
calculation, Q was evaluated at points on a coarse grid 
in the four-dimensional (£/,X,Fm,F2oo) space, and the 
position of minimum Q was found approximately by 
rough graphical interpolation. The point thus found 
was then used as a starting point for a linear least-
squares iteration calculation which is described in 
Appendix I I , and the iterations were carried out until 
the minimum in Q was located with a precision^which 
was compatible with the accuracy of the experimental 
information. The point Qmin was demonstrated to be an 
absolute minimum in the four-dimensional space; second 
derivatives of Q were evaluated at this point and they 
confirmed a positive-definite quadratic form.36 The final 
values of the parameters at Qmin are, in rydbergs, 

7 m = _ 0 . 0 8 4 ± 0 . 0 0 2 , E / =0.718±0.001 

CE/°> = 0.7079), 

7 2 0 0 = -0.039zL0.002, X=0.096±0.002 

fep=0.066), 

and these parameters completely specify the shape of the 
Fermi surface within the framework of our model; a 
discussion of the uncertainties quoted above will be 
deferred until later (Appendix II) . 

In Fig. 9 we compare the shapes of the various sym
metry orbits calculated from the model Fermi surface 
(heavy curves) with the corresponding empty-lattice 
sections (circular arcs). The combined effects of the 
lattice potential and spin-orbit coupling are seen to 
result in a rounding-off of the sharp corners, but other
wise the calculated and empty-lattice shapes are very 
similar. The principal differences are also apparent in 
Fig. 10, in which we show the central [110] section 
through the Fermi surface in the extended-zone scheme; 
the model Fermi surface lies remarkably close to the 
free-electron sphere except near the intersections with 
the Bragg planes. 

Although the values of the parameters X, F m , and 
F2oo given by Eqs. (30) may have little significance for 
energies other than Ef, we have nevertheless used them 
to compute the eigenvalues E(k) of the Hamiltonian 
(22) along principal directions in k space. The ensuing 
energy bands are shown in Fig. 11, and the energy levels 

TABLE 

Point 

II. Energy eigenvalues at symmetry points (Ry). 

Ei Ei Ez E^ 

r 
w 
X 

K, U 
L 

-0.0138 
0.3693 
0.3623 
0.3541 
0.2397 

1.3169 
0.5392 
0.4943 
0.5249 
0.4282 

1.4297 
0.6630 
0.9149 
0.6410 
1.1938 

1.8771 
0.7335 
0.9945 
1.0155 
1.3652 

V1U= -0.0841 Ry, F2oo= -0.0387 Ry, 
Ef= 0.7180 Ry, X= 0.0961 Ry. 

36 Cf. T. Apostol, Mathematical Analysis (Addison-Wesley Pub
lishing Company, Reading, Massachusetts, 1957). 

-0.039zL0.002
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at the principal symmetry points are listed in Table II. 
The most striking feature of Fig. 11 is the distinct gap 
between the filled lowest band, in which the wave 
functions have predominantly s-like symmetry, and the 
lowest branch of the ^-like bands. For any k, the gap 

is never less than 0.13 Ry and, as we have pointed out 
earlier, it is a reflection in the metal of the large s-p 
splitting in the free atom ("inert-pair" behavior). One 
major effect of the spin-orbit coupling is to split the 
otherwise degenerate level Wz into the two levels 

M 
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[010], 

FIG. 9. The shapes of the symmetry orbits as calculated from the four-parameter model Fermi surface. The empty-lattice sections 
(arcs of circles) are also shown. The principal dimensions (between corresponding points labeled with small letters) are summarized 
in Table III. 

W%(W9) and W7(Wz), which are found to be separated 
by about 0.124 Ry. Also shown in Fig. 11 is the calcu
lated Fermi level Ef, and there is a gap of about 
0.015 Ry between this energy and the minimum in the 
fourth band [WVOfY)]; it is gratifying to find that the 
model can account for the apparent lack of experimental 
results which could be attributed to the presence of any 
electrons in the fourth zone. 

COMPARISON WITH EXPERIMENT 

(a) Detailed Shape of the Fermi Surface 
The areas calculated from the four-parameter Fermi 

surface for the eleven possible orbits at symmetry 
directions are compared in Table I with those found 
experimentally, and in Fig. 12 we show the angular 
dependence of the de Haas-van Alphen periods pre
dicted by the model Fermi surface (arrowed curves) for 
direct comparison with the observed period variations 
in the (110) plane. For many of the curves, the calcu
lated and experimental periods are indistinguishable 
from one another within the accuracy of the experi
mental results. The good quantitative agreement 
brought about by the four-parameter model can also be 
appreciated by referring back to the comparison made 
with the empty-lattice period variations in Fig. 7; 
however, we note that the model Fermi surface cannot 
quite reproduce the very good match of the 8 oscilla
tions with the empty-lattice curve for orbit 0, but this 
feature is of relatively minor importance compared to 
the excellent over-all agreement. Also shown in Fig. 12 

are the predicted limiting angles for the existence of 
extremal orbits; the calculated orbits cease to exist for 
angles which exceed by more than 0.25° the ranges 
shown in the figure. We have not attempted to establish 
precisely the limiting angles for the branch for which 
orbit f is noncentral (broken curve), since considerable 

TABLE III. Principal dimensions of the Fermi surface (2ir/a). 

Dimension 
in Fig. 9 

aa 
bb 
cc 
dd 
ee 
ef 
ff 
gg 
hh 
kk 
mm 
nn 
00 

PP 
QQ 
rr 
uu 
vv 
WW 

Tb (Fig. 10) 
Ye (Fig. 10) 

4-parameter 
Fermi surface 

1.403 
0.968 
1.183 
1.033 
0.439 
0.439 
1.317 
0.333 
0.583 
1.547 
0.863 
0.475 
0.872 
0.416 
0.683 
0.426 
1.556 
1.889 
0.940 
1.248 
1.190 

Other experiments 

1.44(i?) 

1.44(£) 

0.41 (R) 

1.30(#) 
0.37 (R) 
0.31 (R)? 
1.6i(U) 

2.0oCR) 
0.90 (R) 

1.25±0M(B),l.25(PW) 
1.19±0.01(5), 1.1S(PW) 

(2<n-/a = 1.282 X108 cm"1) 
R, magnetoacoustic effect (Ref. 6); B, 

(Ref. 10); 
PW, Kohn effect (x rays) (Ref. 11). 

Kohn effect (neutrons) 
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FIG. 10. The central [110] section 
through r in the extended-zone scheme. 
The section through the four-parameter 
Fermi surface (solid curves) is compared 
with that through the free-electron sphere 
(circle). The small letters correspond to 
those in Fig. 9. 

effort would be required to find these angles reliably; 
a substantial effort would also have been involved in 
extending the curve for orbit a to larger angles from 

an]. 
The chief weakness of the four-parameter model is 

that the calculated curve for orbit £ is found to lie 
significantly higher than the period values for the x 
oscillations; however, it was just for these oscillations 
that the discrepancy with the relevant empty-lattice 
curve was greatest (Fig. 3), and the present model 
certainly represents a vast improvement. Moreover, the 
weak T oscillations have been detected only in the 
immediate vicinity of [001], whereas the model pre
dicts that the £ orbit should exist up to a maximum of 
28.5° from [001]. A further difficulty is that we have 
found no evidence whatsoever for any oscillations which 
could possibly be attributed to orbit o>; our model 
predicts that such period values should lie between the 
curves for the harmonics y(2) and y(3) (compare Figs. 3 
and 12), but a careful search has revealed no further 
oscillations in this region. On the basis of rough agree
ment with experiment, it would seem that our tentative 
assignments of the weak e and <£ oscillations to orbits 
rj and a, respectively, are probably correct. 

We have already shown in Fig. 8 that the second-zone 
hole surface predicted by the model has been "sand
papered" to such an extent that it will not support 
noncentral orbits of type fa normal to [111] (Fig. 5), 

and this conclusion is valid for the [001] and [110] 
directions as well. A similar search for noncentral orbits 
has also been carried out for the third-zone electron 
surface and the calculated variation of cross-sectional 
area along an arm of this surface is presented on an 
open scale in Fig. 13. In addition to a narrow minimum 
at the center of an arm (plane containing points U or 
K), the variation of the area becomes extremely flat at 
a distance of about 0.1 (2w/a) from the center before 
the onset of the rapid increase as one approaches a 
zone corner W. While the flat region is neither a maxi
mum nor a minimum, but is rather like a region of 
inflection, we believe that the variation of area is never
theless gentle enough to give rise to a de Haas-van 
Alphen effect. If this assumption is correct, the model 
would predict for the central and noncentral type-f 
orbits at [110] two periods which differ by about 2.2%. 
This prediction is in exact agreement with the observa
tion of long beats with 42.5±0.5 cycles per beat in the 
y oscillations at [110]. Examples of the beat patterns 
in the y oscillations have been given in Ref. 1 [Figs. 
l ( a ) - l ( c ) ] ; for an arbitrary orientation the beat en
velopes are quite complex, but they reduce to a simple 
two-period pattern at [110]. The origin of these beats 
has for long been a mystery, and it is encouraging that 
the model Fermi surface can account for them in such 
a natural way. 

The principal diametral dimensions of the various 
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FIG. 11. Energy bands and 
Fermi level for lead as calculated 
from the four-parameter model. 1.0 
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symmetry sections through the model Fermi surface 
are summarized in Table I I I ; the letters refer to those 
in Fig. 9. Where comparison can be made, the calculated 
dimensions are found to be in reasonable agreement 
with those determined directly by the magnetoacoustic 
effect.5-6 Although the accuracy of the magnetoacoustic 
results is not very high, partly on account of the limited 
number of cycles which can be observed, these results 
usefully complement the de Haas-van Alphen measure
ments. In particular, it is for the large orbits t\ and <r 
that the de Haas-van Alphen results are very meager, 
whereas the effects of these orbits show up strongly in 
the magnetoacoustic effect. Although there appears to 
be some question of interpretation,37 two dimensions 
deduced from the Kohn anomalies in the phonon spec
tra9-11 are also given in Table I I I ; these dimensions are 
seen to be in accord with those calculated from the 
model. 

The arms of the multiply connected electron surface 
are sufficiently thick to support open orbits for certain 
directions of a magnetic field, and two such orbits, p 

37 W. A. Harrison, Phys. Rev. 129, 2512 (1963). 

and ju, are shown in the schematic drawing of Fig. 6. 
Magnetoresistance experiments2-4 yield valuable in
formation concerning the boundaries of the allowed 
field directions for the existence of these orbits, but it is 
rather difficult to predict these boundaries from the 
model Fermi surface without lengthy computer calcula
tions. As Young has pointed out,3 the existence of the 
large hole orbits of type r (Fig. 6) at a particular ori
entation implies the presence of a " type-II" open orbit 
at that orientation. We have used the model to calculate 
the angular range for the occurrence of the (nonex-
tremal) r orbits, and find that they cease to exist beyond 
about 3.8° and 4.7° from [110] for field directions in the 
(001) and (110) planes, respectively. On the other hand, 
the magnetoresistance results4 show that the corre
sponding angles at the boundary of the type-II open-
orbit region are considerably greater, both being about 
8.15°. I t is thus clear that the existence of the hole 
orbit r is a sufficient but not a necessary condition for 
the occurrence of type-II open orbits; large extended 
hole orbits must play the role of orbit r in Young's 
criterion in the intervening region where the r orbits 
themselves no longer exist. 
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70 

50 r 

45.0 

FIG. 12. A comparison of the period variations calculated from the four-parameter model (arrowed curves) with the fundamental 
period values from Fig. 3. The broken curves refer to orbits of type $ which contain the symmetry points K or U but which need not be 
extremal with respect to area. The field directions are in the (llO) plane and the periods are plotted on a logarithmic scale; see Fig. 3 
for an explanation of the symbols for the experimental points. Also shown are the limiting angles for the existence of orbits on the 
four-parameter Fermi surface. 

(b) Differential Properties and Total Volume 
Detailed studies of the orientation dependence of 

cyclotron resonance in lead have been carried out by 
Khaikin and Mina7'8 and by Young.8 The cyclotron 
mass 

m*= (W/2w) (d<A/dE)Ef (31) 

measured in such experiments is evidently a differential 
property of the energy surfaces in the neighborhood of 
the Fermi level, and only those sections for which m* 
is extremal contribute to the resonance. If the areas <A 

of these sections are also extremal, t hen^^ / = c ^o and 
direct comparison can be made between the cyclotron-
resonance masses and the corresponding ones found 
from the temperature dependence of the de Haas-van 
Alphen effect14; with the exception of those orbits f 
whose period values follow the dashed curves in Fig. 12, 
symmetry requires all of the orbits which contribute to 
the de Haas-van Alphen effect to be extremal with re
spect to both tA and m*. We have mentioned already 
how information obtained from cyclotron resonance as 
a function of the polarization of the microwave field 
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TABLE IV. Cyclotron masses and curvature factors. 

Oscillation 
orientation 

a [001] 
a [111] 
a [110] 
7 [001] 

7 [ H I ] 
7 [HO] 
•K [001] 
0 [001] 
S [111] 
6 [001] 
0 [111] 

•••[110] 

•••[110] 
•••[110] 

Interpretation: 
zone 

2 
2 
2 
3 

3 
3 
3 
3 
3 
3 
3 
3 

3 
3 

orbit 

<Ai 
* i 

* i 

rb 

*• 
r 
€ 
p 

6 
V 

<r 
0) 

K° 

rc 

Experimental** 

1.58(iOf), 1.64(P) 
l.U(KM) 
1A2(KM) 

0.74COT), 0.75(F) 
0.68 (P) 
0.69 (KM) 

0.55OOf), 0.56(F) 
0.90(XJIf), 0.85 (P) 
1.22 (JOf), 1.20 (P) 

1.21 (jOf) 
2.59 (JOf) 

1.26(JOf)orl.41(iOf) 
1.35(F) 
2.47 COf) 

m^/mo 

4-parameter 
Fermi surface 

0.796 
0.581 
0.576 

0.306 
0.228 
0.353 
0.570 
0.544 
1.197 
1.602 
0.591 

~1 .1 
~1 .4 

Empty-lattice 
model 

0.668 

0.602 

0.586 

. . . 

0.242 

0.233 

0.194 

0.484 

0.417 
1.000 
1.000 
0.529 

Wexp 

W*4-p.m. 

2.02 
1.96 
1.94 

2.25 
2.41 
2.48 

2.12 
2.22 
2.16 

2.13-2.38 

—2.2 

/ d 2 ^ A 
( ) 
[ 1 \dkJ>/o 

-44 .8 
-2 .62 

-14 .4 

+1.38 
+18.6 

+4.48 
-0 .29 
+4.88 

-21 .8 
-12 .3 
+ 14.1 

» KM, from cyclotron resonance (Refs. 7, 8); F, from cyclotron resonance (Ref. 3); P , from the temperature dependence of the amplitude of the de Haas-
van Alphen oscillations (R. A. Phillips, private communication). 

b Nonextremal with respect to ^4 in the empty-lattice model; for this orbit m* could not be calculated reliably from the 4-parameter model since it was 
found that the position of minimum area became displaced as Ef was varied. 

0 Nonextremal with respect to tyi in both empty-lattice and 4-parameter models. 

has proved helpful in confirming our interpretation of 
the P oscillations. In Table IV we list the cyclotron-
resonance masses for the various symmetry orbits, and 
we also give four values of m* found from the de Haas-
van Alphen effect (detailed mass results will be pub
lished later); these four results are seen to agree well 
with the more reliable values obtained directly from 
cyclotron resonance. It is, of course, quite possible to 
imagine that orbits exist which may be extremal with 
respect to w* but not with respect to<A\ indeed Khaikin 
and Mina7'8 find a resonance which they attribute to 
orbit K (Fig. 6, Table IV), for which the area is cer
tainly not stationary. 

The anisotropics of those cyclotron-resonance masses 
which can be related to orbits of stationary area are of 
the same general form as the de Haas-van Alphen 
period variations, and they confirm in some detail the 
correctness of the model Fermi surface, e.g., as regards 
the limiting angles for the various orbits. The apparent 
persistence of a cyclotron resonance from orbit v over 
the entire (001) plane would seem to be an exception. 
However the phase involved in the cyclotron resonance 
experiment is very low when compared to the high 
phase in the de Haas-van Alphen effect, and thus the 
former experiment does not select out such narrow 
groups of carriers as those which contribute in the 
latter. For this reason, cyclotron resonance may be 
observed when w* is not exactly extremal, but only 
nearly so,38 and possibly such nearly extremal orbits 
enable the type-*> resonance to be found near [110]. 
Khaikin and Mina7,8 also report the finding of several 

additional resonances which do not seem to be associ
ated with orbits of extremal area, and these resonances 
have not yet been satisfactorily accounted for. 

From Table IV it can be seen that the masses pre
dicted by the model band-structure do not differ much 
from those given by the simple empty-lattice model14; 
the only large differences occur for orbits ir and <r. Also 

0.115h-

(27r/a)2 

0.I09H 

0J06 

! F. W. Spong and A. F. Kip, Phys. Rev. 137, A431 (1965). 

distance along zone line (2-r/a) 

FIG. 13. Variation of the [110] area of cross section through an 
arm of the third-zone electron surface, as a function of the normal 
distance (along [110]) from the midpoint of a zone line, K or U. 
The curve is calculated from the model Fermi surface, with the 
parameter values given in Eq. (30). 
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FIG. 14. The density-of-states curve in the neighborhood of the 
Fermi energy as calculated from the four-parameter model; the 
individual contributions from the second, third, and fourth bands 
are also shown. Dot-dash curve: free-electron model; O, from 
measurements of the electronic specific-heat coefficient y (Ref. 
42). The calculation of the third-band contribution is extremely 
awkward above the point of minimum energy in the fourth zone 
and it has not been carried out; however no startling changes are 
expected until the energy reaches ^0.91 Ry (see Fig. 11). The 
ordinates have not been doubled to include the spin degeneracy. 

given in the table are values of the ratio of the masses 
found experimentally to those calculated from the four-
parameter model. No matter whether one considers 
large or small orbits on the multiply connected surface, 
this ratio is remarkably constant and never deviates 
much from 2.2; for orbits on the hole surface, the ratio 
appears to be about 15% smaller. The fact that the 
experimental and "band-structure" masses do not agree 
does not cause us to lose faith in the shape of the pro
posed Fermi surface. All along we have been regarding 
the mass which appears in the kinetic energy [Eq. (5)] 
as the free-electron mass mo; however, if another choice 
were made, its sole effect would be to alter the energy 
scale, and hence the numerical values of the fitting pa
rameters, but the shape of the Fermi surface would not 
be affected. Both the Fermi surface and the differential 
properties could thus be reasonably well accounted for 
by supposing that the mass in the kinetic energy was 
increased to about 2.2w0? at least for electrons near the 
Fermi surface. This type of effect is indeed expected on 
account of the electron-phonon interaction,39-41 which 
is particularly strong for lead. 

The total occupied volume in k space is of consider
able interest, not only as a check on the consistency of 
the model Fermi surface but also as a prelude to deter
mining the density-of-states curve. The volumes con
tained by the hole surface and by the electron surface 

39 S. Nakajima and M. Watabe, Progr. Theoret. Phys. 30, 772 
(1963). 

40 R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 
(1964). 

41 J. C. Swihart, D. J. Scalapino, and Y. Wada," Phys. Rev. 
Letters 14, 106 (1965). 

have been calculated by integrating numerically the 
areas of unoccupied and occupied sections, respectively, 
in the smallest possible calculation region (1/48 of the 
Brillouin zone). The final volumes are found to corre
spond to 0.393 electron/atom and 0.375 hole/atom for 
the third and second zones, respectively. These two 
volumes should be identical for our model, and in fact 
the calculated values may be taken to be the same within 
the reliability of the calculation and of the four fitting 
parameters. The total occupied volume in the first, 
second and third Brillouin zones thus corresponds to 
2+(2-0 .375)+0 .393 = 4.02±0.02 electrons per atom. 
I t should be remembered that Ef was not determined 
by conservation of electrons, but it was treated as a 
fitting parameter on the same footing as Fin , F200, and 
X; within the accuracy of the calculation and of the 
parameters, the total volume agrees, as it should, with 
the free-electron volume. 

Values of 91(E), the density of electronic states, have 
been calculated for our model band-structure from the 
derivatives of the occupied volumes with respect to 
energy; the "Fermi energy" was treated as a variable 
and the other fitting parameters [Eq. (30)] were held 
constant. In Fig. 14 we show the contributions from 
the various zones to the total density-of-states curve 
for energies near the actual Fermi level, and as far as 
the general trend is concerned, the "band-structure" 
91(E) curve does not differ much from the curve for 
perfectly free electrons. Also shown in the figure is the 
experimental value of 91 (Ef) inferred from the electronic 
specific heat.42 The experimental value is 2.23 times 
greater than the "band-structure" value, a discrepancy 
which is virtually the same as that which was found 
when comparing the experimental and calculated cyclo
tron masses (Table IV). This observation is thus in 
keeping with recent theoretical predictions39-40 that the 
electron-phonon interaction should manifest itself in the 
same quantitative manner in the two phenomena. The 
calculated 91(E) curve does not show the "peaking" at 
the Fermi level which has been suggested on the basis 
of a crude analysis of some transport properties.43 

However, if the Fermi level were to be changed by 
alloying, such a peaking might indeed show up in an 
experimentally determined 91(E) curve when collisions 
with impurities begin to interfere seriously with the 
electron-phonon interaction. 

CONCLUDING DISCUSSION 

From the experimental information provided by the 
angular variations of the de Haas-van Alphen periods 

42 Good agreement is found between values of the electronic 
specific-heat coefficient y determined calorimetrically and those 
determined thermodynamically from the superconducting critical-
field curve. For recent determinations, which also give references 
to earlier work, see: N. E. Phillips, M. H. Lambert, and W. R. 
Gardner, Rev. Mod. Phys. 36, 131 (1964) (calorimetry); D. L. 
Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 112, 1888 
(1958) (critical fields). We have taken the value 3.05 mj mole J 

deg-2. 
43 A. V. Gold, Phil. Mag. 5, 70 (1960). 
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in lead we have been able to arrive at a quantitative 
description of the Fermi surface in terms of a simple 
model involving only four parameters, and with this 
model it should be possible to make accurate calcula
tions of any physical properties which depend directly 
on the geometry of the Fermi surface. Furthermore, we 
have seen that the model will also account reasonably 
well for differential properties near the Fermi energy if 
the free-electron mass in the kinetic energy of an elec
tron is increased by a factor of about 2.2 to allow for the 
effects of the electron-phonon interaction; when this 
change is made, the model could be used to calculate, 
for example, meaningful values of the Fermi velocity at 
any point on the Fermi surface. The accuracies quoted 
for the four fitting parameters [Eq. (30)] are dis
cussed in Appendix II , but we might point out here that 
the dimensions and areas of cross section predicted by 
the model Fermi surface will actually be more reliable 
than the percentage accuracies of Vm, F200, and X 
might suggest. As would be expected from the qualita
tive similarity with the empty-lattice model, the dimen
sions of the Fermi surface depend much more critically 
on the fourth parameter Ef, and it is this parameter 
which has been determined with the greatest precision. 

Before any attempt is made to attach direct physical 
significance to the numerical values of the fitting 
parameters, it must be remembered that they have 
been evaluated within the framework of a model which 
is undoubtedly oversimplified. Thus any k-dependences 
of the Fourier coefficients of the pseudopotential and of 
the spin-orbit matrix elements have been ignored (but 
see Appendix I for a further discussion of the spin-orbit 
terms), and a detailed band calculation from first 
principles is badly needed to check these assumptions. 
The spin-orbit interaction is, of course, the lowest order 
relativistic correction, but since it is the only correction 
which involves the electron spin,44 we might expect 
that a fundamental relativistic calculation would yield 
a value for X which is reasonably close to that given by 
our simple model. On the other hand, the relativistic 
terms of higher order are functions of coordinates only,44 

and thus their effects are implicitly incorporated in our 
fitted pseudopotential coefficients. 

From the large spin-splitting of the levels WQ(Wz) 
and W7(Wz), as well as from the observed trends in the 
numerical calculations of the areas, it is clear that in 
lead the spin-orbit interaction is just as effective as the 
ordinary lattice potential in modifying the energy bands 
and in creating band gaps. For our choice of normaliza
tion parameter N2 (or Nz), the value for X turns out to 
be some 50% greater than the value of the parameter 
£GP for the free atom; some enhancement over £GP 

might be expected because the wave function near the 
ion cores should be of somewhat greater amplitude in 
the metal since the volume of normalization is re-

44 Cf: M. E. Rose, Relativistic Electron Theory (John Wiley & 
Sons, New York, 1961). 

stricted to a unit cell.45 I t is also interesting to note 
that the value of Ef turns out to be slightly greater than 
the free-electron Fermi energy. A calculation by second-
order perturbation theory (for \ = 0 ) actually predicts 
a decrease in the Fermi energy when the effect of just 
one of the appropriate Bragg planes is considered.17 

However the {111} and {200} Bragg planes all intersect 
along lines which are very close to the Fermi surface, 
and thus it is perhaps unrealistic to suppose that the 
total change in the Fermi energy should be given by a 
simple superposition of the results for individual planes, 
Finally as far as the dependence on | K | is concerned. 
the fitted values of Vm and F200 seem to follow the 
trend suggested by Harrison46 from considerations of 
the resistivities of various lead alloys. 

In the experimental part of this study, little emphasis 
has been placed on obtaining information from the 
amplitudes of the de Haas-van Alphen oscillations. 
Unlike the periods, the amplitudes depend critically on 
the experimental conditions and their detailed behavior 
is not yet fully understood. Nevertheless, for the sake 
of completeness we have given in the last column of 
Table IV values of the curvature factors d2zAo/dkz

2 

predicted by the model Fermi surface; these factors 
and the orbit masses m* have a large control over the 
final amplitudes. The very low curvature factor for 
orbit v certainly helps to account for the abnormally 
large amplitude of the associated ff oscillations, but the 
entries in Table IV offer no real clues as to why the T 
oscillations should be so weak or as to why any mani
festations of orbit o) have thus far escaped observation. 
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Notes added in proof, 
(a) We have computed the total free area of the 

4-parameter Fermi surface. In terms of the surface area 
of a sphere containing four electrons per atom we find 
that the contributions from the hole and electron sur
faces are 0.220 and 0.369, respectively. The sum of 
these, 0.589, is in excellent agreement with Aubrey's47 

value of 0.55±0.05 from the anomalous skin effect in 
polycrystalline lead. 

(b) A first-principles relativistic APW calculation for 
lead has been carried out recently by Loucks.48 Loucks' 
theoretical energy bands bear strong resemblance to 
those predicted by the 4-parameter OPW interpolation 
scheme (Fig. 11), and the two sets of bands are in re
markably close agreement for energies in the neighbor
hood of the Fermi level. 

(c) Dr. V. Heine (private communication) has sug
gested an alternative Hamiltonian matrix which differs 
from that given in Eq. (23) only by the suppression of 
the factors V2 in the off-diagonal spin-orbit terms 
[with corresponding changes in Eqs. (28)]. In our 
scheme, these factors are an immediate consequence of 
the basic requirement that the spin-orbit matrix (Eq. 
20a) be Hermitian, and no further assumptions have 
been made regarding the normalization of the wave 
functions. While Heine's proposal does not appear to 
be consistent with our scheme, we have nevertheless 
investigated its merit as an alternative model for a de
scription of the Fermi surface. The fitting parameters 
have been redetermined and are found to be: 

7in /=-0.08S±0.002 Ry, E / = 0.718±0.001 Ry, 
F200'= -0.040±0.002 Ry, X/ = 0.099d=0.002 Ry. 

Not only do these values hardly differ from those given 
in Eqs. (30), but also the value of Qm{n was found to be 
lowered by only 10%. In fact the fit to the dominant 
experimental periods (areas) is just as close as in our 
original model; the major difference is a 3% increase in 
the area of the £ orbit at [100], i.e., in the sense of 
improving slightly the agreement with the period of the 
7r oscillations (Table I). 

APPENDIX I: SPIN-ORBIT MATRIX ELEMENTS 
FOR ARBITRARY WAVE VECTOR 

For any point k, the transformation matrix which 
appears in Eqs. (17) and (21) is given by 

1 / Si S*\ 

2 \ - S 2 Si*)9 
(AI.1) 

where 

5 i = 

fl 1 
0 0 
1 1 

[o o 

1 
i 

- 1 
i 

11 
- 1 
- 1 
—i. 

, S 2 = 

r o 
I 
0 

l - i 

0 0 0] 
- 1 0 0 

0 0 0 
1 0 0. 

(AL2) 

In order to calculate the form of the spin-orbit 
matrix elements for an arbitrary point k, allowance 
must be made for the fact that the basis functions (16) 
will not in general reduce to either pure s or pure p 
functions in the ion-core region as they did for k = W . 
As can be readily verified by considering plane-wave 
expansions of the OPW's, s-p mixing appears only in 
the functions $ / and $5 ' , and the other functions in 
the set (18) remain unchanged. As we leave kw, the 
two affected functions are given by 

*W-*[#.*.+#,{& — ^Px+ky^Py 

+ ( ^ - l ) ^ J > i , « 2 . (AI.3) 

In our problem the relative strength Np/Ns of the 
^-like and s-like contributions is not known a priori, 
and if Np9^0 the functions (AI.3) may not be orthogonal 
to the other wave functions in the set. The matrix ele
ments are readily evaluated as before, and in the spin-
orbit part of the Hamiltonian (20) we now have 

3C£ 

/ A SO -L>SO \ 

o'=( J , (AI.4) 

where 

and 

Ao=X/2 

( 0 

iNvNzW+P*) 

-iNpNziW+fi*) 
-2NMk.-r/o) 

5»=X/2 

0 
iNPN£(p~P*) 

-wjrMP-p) 
-iN^tf-p*) 

-iN^W+P*) 

2iV2
2 

0 

0 

-iN^W-P*) 
0 
0 
0 

iNpNzW+P*) 

0 

0 

-Nz/Nt 

iNvNtiip-p*) 
0 
0 
0 

-2NPN2{kx-ic/a) 

+iNpmW+P*) 
0 

- 2 ^ 2 / ^ 3 

-Wi 

iNvNtW-P*) 1 
0 
0 
0 

• 

« J. E. Aubrey, PHI. Mag. 8, 1001 (1960). 
48 T. L. Loucks, Phys. Rev. Letters 14, 1072 (1965). 

(AI.5) 

(AI.6) 
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Here/3=ky—i(kz— (2w/a)). We note that ^ s o =0 on the 
plane kz=2w/a and Ns enters the calculations only 
through the normalization of the wave functions. We 
have set Nr=^l/2 and N%= 1 as explained in the text. 

For our model Fermi surface we have simply taken 
Np= 0, and in order to make some check on the validity 
of this simplifying assumption, we have calculated the 
areas of the eleven symmetry orbits taking Np=0.5 and 
using the same values of the parameters which were 
obtained from the best fit for Np=0 [Eq. (30)]. The 
results for Np=0.5 are given in brackets in Table I, 
and it can be seen that these area values are almost 
identical to those for A^p=0, i.e., the shape of the Fermi 
surface is evidently not very sensitive to the choice of 
this parameter. Strictly speaking, the parameter values 
should all be redetermined for each choice of Np, but 
the very tedious computations which would be in
volved do not seem justified in view of the close agree
ment between the two sets of calculated areas in 
Table I. 

A somewhat simpler approach for estimating the 
spin-orbit matrix elements was tried initially, in which 
it was assumed that in the core region the OPW's 
could be represented by functions of the form 

ATp.ka,, (AI.7) 

where N is a normalization coefficient and p«k is the 
projection of an atomic p function in the direction k. 
In this approach the wave functions in the core region 
have the same symmetry as the OPW's, but any s 
contribution to the wave function is neglected. How
ever, with the choice (AI.7) for arbitrary k, the results 
did not match up properly with those calculated for the 
point W using the basis set (18) and this simplified 
approach had to be abandoned. 

APPENDIX II : THE LEAST-SQUARES ITERATION 
CALCULATION AND ACCURACY OF THE 

FITTING PARAMETERS 

The sum of the weighted squared deviations Q [Eq. 
(29)] for the eight principal symmetry orbits was 
minimized subject to the simplifying assumption that 
in the neighborhood of Qmin each of the calculated areas 
was a linear function of the fitting parameters. When all 
the calculated and experimental areas ̂  are normalized 
by dividing by the corresponding experimental uncer
tainties bzA1 (Table I), we may write 

a^iXj+dX^^a^KXd+BijdXj, (AII.l) 

where Xj stands for a trial set of the parameters X, Ef, 
Fin, and F200, and Bij=dacai\c

i/dXj. The least-squares 
solution for the changes dXj which would be required 
to bring Q to Qmin is, in matrix form,49 

5X= - (BB)~lBC=WC, (AII.2) 
49 Cf: O. Kempthorne, Design and Analysis of Experiments 

(John Wiley & Sons, New York, 1952), Chap. 5. 

where the element in the ith row of the column vector 
C i s a0alo*(-X")"-«exp*. 

The initial trial values of the parameters Xj were 
the coordinates of the point at which an approximate 
minimum in Q had been found by rough graphical in
terpolations (see main text). However, while some of 
the calculated areas were found to vary linearly with 
some parameters, others did not, and for this reason 
Qmin had to be approached by an iterative process. For 
each iteration, the Xj were changed by one-twentieth 
of the predicted 8Xj, and the areas t^caic* and the de
rivatives Bij were re-evaluated^ at each stage. The 
variance-covariance matrix WW— (BB)~X was also 
evaluated after each iteration, and the process was re
peated until the square of any predicted change 8Xj 
became typically less than 10% of the smallest element 
in the row (or column) of WW appropriate to that 
variable Xj. 

When the iteration calculation was terminated, the 
matrix WW had the numerical value given below, in 
units of 10~6 Ry2, 

X X Ef F i n ^200 

X 3.96 1.02 -2.46 -0.54 
Ef 1.02 0.72 -0.32 -0.89 (AII.3) 
Fin -2.46 -0.32 3.29 -1.74 
F200 -0.54 -0.89 -1.74 2.93 

There is evidently a strong covariance between the 
parameters since all the elements are more or less of 
the^same magnitude. Had there been no covariance, 
WW would have been diagonal, and the standard devia
tions of the parameter values would have been given by 
the square roots of the appropriate diagonal elements; 
however, in order to give some indication of the uncer
tainties involved, we have simply quoted in Eq. (30) 
the square roots of the diagonal elements of the non-
diagonal matrix (AII.3). It must be remembered that 
the least-squares fit was made to only eight symmetry 
orbits, whereas if all the period values in the (110) 
plane had been taken into account, the almost perfect 
fit for the a, /?, and y oscillations (Fig. 12) would have 
resulted in much smaller uncertainties in the param
eters. On the other hand, the agreement with the 8 
period values is not quite so good, and the discrepancy 
between the T period values and those calculated for 
orbit £ should not be overlooked. For these and similar 
reasons, we believe that the uncertainties quoted in 
Eq. (30) are quite realistic. No doubt slightly different 
parameter values would have been found if the total 
occupied volume had been constrained to correspond to 
exactly four electrons per atom throughout the least-
squares fitting procedure; the volume constraint was 
not incorporated because of the prohibitive amount of 
computer time which would have been involved in 
arriving at accurate volume values for each step in the 
iterative fitting calculation. 



FIG. 5. The empty-lattice hole sur
face in the second zone (to scale). fa, 
central [111] extremal orbit; fa, non-
central [111] extremal orbit. 



FIG. 6. A portion of the empty-lattice electron surface in the third zone (sche
matic). The orbits K and T are nonextremal with respect to area, and the broken 
curves depict the open orbits p and p. 


