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The effect of a weak magnetic field on a many-electron system in an isolated ground state is calculated 
by a perturbation-theoretical method. The calculation is based on the property of internal localization of 
both the one-particle density matrix and a certain two-particle Green's function of the system, and is per
formed in the independent-particle approximation. After splitting off phase factors, we derive recurrence 
relations for the expansion of the density matrix and Green's function in powers of the magnetic field 
strength H. From the density matrix one obtains the energy of the system, from the Green's function the 
magneto-optical coefficients. In an approximation linear in H the gyration vector is given explicitly; the 
contributions to polarizability tensor and energy vanish in this approximation. The gyration vector obtained 
is in agreement with the results derived (a) for small systems, accessible to nondegenerate one-particle 
perturbation theory, and (b) for ideal crystals, treated by Roth in a modified Bloch representation. 

1. INTRODUCTION 

DENSITY matrices and Green's functions provide a 
general approach to many-body problems. Such a 

"Green's-function method," as we shall call it for 
brevity, allows for taking the interaction among par
ticles into account, and a large amount of literature 
exists about this subject.1 If the interaction among 
particles is neglected, Green's-function methods remain, 
of course, valid; but an alternative is now offered by 
direct consideration of the one-particle states. An ap
proach which is based on an individual investigation of 
the one-particle states (orbitals) we shall designate as 
the "orbital method." 

For an independent particle model, the density 
matrices and Green's functions can be built up from the 
one-particle energy eigenfunctions and eigenvalues. 
Even then the Green's-function method may be of ad
vantage, however, since density matrices and Green's 
functions may be easier to handle and calculate than the 
orbitals themselves. 

We shall be concerned here with the effect of an 
applied magnetic field H on certain properties of a 
many-electron system in the independent particle 
approximation.2'3 The system is assumed to possess an 
isolated (i.e., discrete and nondegenerate) ground state. 
The ground state is then separated from the first excited 
state by a finite energy ha>G (that is, co^O). Prototypes 
of such systems are an atom or molecule with a non-
degenerate ground state, and an ideal insulating crystal 
(we are concerned here only with the electrons; the 

1 T . D. Schultz, Quantum Field Theory and the Many-Body 
Problem (Gordon and Breach, Publishers, Inc., New York, 1964); 
also C. Kittel, Quantum Theory of Solids (John Wiley and Sons, 
Inc., New York, 1963). Further references will be found in these 
monographs. 

2 A brief account of the presented work may be found in the 
Proceedings of the International Conference on the Physics of 
Semiconductors, Paris, 1964 (Academic Press Inc., New York, 
1965), hereafter referred to as P. 

3 Some of the material of the present paper is discussed in 
greater detail in NAVWEPS Quarterly Reports Nos. 8171 (1963), 
8183 (1964), 8192 (1964), and 8197 (1964), (unpublished), 
Foundational Research Projects, Naval Ordnance Laboratory, 
Corona, California. 

positions of the nuclei are assumed to be fixed). W hall 
see that for the ground state of such a system the effect 
of a weak magnetic field on the energy and on the 
optical properties in the spectral region of zero absorp
tion (that is, for circular frequencies co, with co <co<?) may 
be made the subject of a perturbation calculation. The 
energy may be obtained from the one-particle density 
matrix and the optical effects from a two-particle 
Green's function. Actually, it is the optical effects we 
are primarily interested in here, but since our calcula
tion of the Green's function will require a knowledge of 
the density matrix as a prerequisite and since the energy 
of the system may thus be obtained as a by-product, we 
shall to some extent include the energy in our discussions. 

Green's-Function versus Orbital Method 

Let us compare the assets of the Green's-function 
method with those of the orbital method in their 
application to diamagnetism and magneto-optical dis
persion effects. First we must notice an important 
difference between the energy of a system and the 
dispersion properties: The energy depends only on the 
occupied one-electron energy eigenstates, while dis
persion involves essentially all states. An approach to 
magneto-optical dispersion effects by the orbital method 
requires, therefore, that all one-electron energy eigen
states in the presence of the magnetic field be calculable, 
a requirement which is usually hard to meet. A certain 
simplification occurs for co close to COG, in which case the 
states close to the energy gap give the dominant 
contribution; this restricted set of states, as well as the 
set of occupied states for the determination of the energy 
of the system, is frequently easier to handle than the 
complete set. We shall illustrate this with the following 
two examples: 

(a) For a small system, say a molecule,4 an applica
tion of conventional perturbation theory on the low-

4 A perturbation theoretical treatment of Faraday rotation by 
molecules, using the orbital method, has been given by R. Serber, 
Phys. Rev. 41, 489 (1932). 
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lying orbitals should be fairly routine. A calculation of 
the ground-state energy of the system in the presence 
of the magnetic field then presents no major obstacles. 
Similarly, the one-electron states which dominate the 
magneto-optical behavior for co close to WG should be 
calculable by perturbation theory. For these phenomena 
the orbital method will, therefore, run into no major 
difficulties. In a general calculation of magneto-optical 
dispersion effects, however, the highly excited states 
must also be considered—even the ionization continuum. 
For these states the system may no longer be considered 
"small," and to treat the applied magnetic field as a 
small perturbation usually will not be justified. A 
Green's-function method will then be required, at least 
from a methodical point of view. 

(b) In large systems, like crystals, a straightforward 
perturbation approach for the one-particle energy 
eigenstates is hampered by the high (quasi-) degeneracy, 
quite similar to the case of the highly excited states in 
"small" systems mentioned above. For crystals, the 
translational symmetry allows a different kind of ap
proach, which, for states close to a band edge, results in 
the effective mass approximation; an applied magnetic 
field can then be taken into account with relative ease.5 

To calculate the dominant contribution to magneto-
optical effects for w close to co<?, the orbital method will 
therefore be adequate.6 To determine, however, the 
energy of a crystal and magneto-optical dispersion 
effects in general, one has to know also the states in the 
interior of the energy bands. I t is true that for these 
states an effective wave equation in the presence of a 
magnetic field can be established,7 but an explicit 
determination of the energy eigenstates should be rather 
awkward.8 This difficulty may be overcome by de
parting from a pure one-particle method. The normal 
diamagnetism of crystals has been discussed by many 
authors9 who, in one way or another, make use of a 
density matrix and either apply an effective wave 
equation or expand the energy of the crystal directly in 
powers of H. The situation is similar for magneto-
optical effects: Faraday rotation in crystals to first 
order in the magnetic field strength has been calculated 
by Roth10 for arbitrary frequencies, by making use of an 
effective Hamiltonian and the trace of a certain opera-

5 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955); 
J. M. Luttinger, ibid. 102, 1030 (1956). 

6 For recent work in this direction see I. M. Boswarva and A. B. 
Lidiard, Proc. Roy. Soc. (London) A278, 588 (1964); also J. 
Halpern, B. Lax, and Y. Nishina, Phys. Rev. 134, A140 (1964). 

7 E. Brown, Phys. Rev. 133, A1038 (1964), where further refer
ences will be found; also G. Eilenberger, Z. Physik 175, 445 (1963). 

8 Further complications may be introduced by the fact that for 
higher energy bands the problem of band degeneracy becomes 
increasingly severe and the spread of the Wannier functions in
creasingly large; again this is analogous to the behavior of "small" 
systems at higher energies. 

9 For recent work in this field see A. Morita, Y. Abe, and H. 
Yamazaki, J. Phys. Soc. Japan 18, 341 (1963); J. E. Hebborn, 
J. M. Luttinger, E. H. Sondheimer, and P. J. Stiles, J. Phys. Chem. 
Solids 25, 741 (1964). 

10 L. M. Roth, Phys. Rev. 133, A542 (1964). 

tor. One might say that this last feature amounts 
essentially to the introduction of some kind of a Green's-
function procedure. 

Scope, Purpose, and Contents 

Evidently, density matrices and Green's functions— 
sometimes in a hidden form—have been used before in 
connection with our problem, but it seems to us that no 
full advantage has been taken of these functions and, 
particularly, that the characteristic feature that makes 
them so useful for our purpose has not been pointed out. 
This characteristic feature is the property of internal 
localization, which will be discussed later in this paper. 
In much of the previous work that employs an ex
pansion of energy and magneto-optical effects in powers 
of H, it is not easy to see why such an expansion is some
times justified and sometimes not. (The expansion 
breaks down for the de Haas-van Alphen effect and the 
oscillatory magneto-optical effects.) I t will turn out 
that it is the property of internal localization of the 
density matrix and Green's function which is crucial for 
the possibility of such an expansion (be it convergent or 
asymptotic). 

I t seems to us that, quite generally, whenever the be
havior of a system can be expanded in powers of H, this 
should be traceable to the internal localization of some 
density matrix or Green's function of the system. To 
show this for the energy and the magneto-optical effects 
for cx)<o)o of a many-fermion system in an isolated 
ground state is the subject of this paper. Another case 
for which our point can easily be proven is that of the 
energy of a system of particles obeying Boltzmann 
statistics; the density matrix of such a system at a given 
temperature may be obtained from the Bloch equation 
by integration over the inverse temperature,11 starting 
from T— oo y for which temperature the density matrix 
reduces essentially to the Dirac delta function which has 
perfect internal localization. Such a kind of theory could 
be used to extend our present work to temperatures 
greater than zero, assuming that the tails of the hole 
distribution below and the electron distribution above 
the energy gap can be approximated by Boltzmann 
distributions; but we shall leave such an extension for a 
future, more general approach. 

The purpose of this paper is primarily a methodo
logical one. Consequently we shall strip the theory of all 
features which are nonessential to our method; the 
electron spin will be ignored, and we shall be interested 
only in frequencies less than the gap frequency.12 Also, 
we do not strive for mathematical rigor; on the con
trary, many of our estimates will be of a highly intui
tive nature. Nevertheless we hope to present reasonably 
convincing evidence as to the justifiability of our method 
and expect that, with the necessary mathematical 

11 A. H. Wilson, Proc. Cambridge Phil. Soc. 49, 292 (1953). 
12 Particularly for small systems there will exist, in addition, 

other nonabsorbing regions, but, for simplicity, we shall confine 
our considerations to co <COQ. 
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effort, our arguments could be put on a more rigorous 
basis. 

We shall derive here recurrence relations for an ex
pansion of the density matrix and Green's function in 
powers of the magnetic field strength. To illustrate our 
method it will suffice to calculate from these recurrence 
relations the first-order terms, i.e., the terms linear in H. 
There is no contribution to the system energy linear in 
H. All magneto-optical effects for CO<COG may be ex
pressed by a polarizability tensor a and a gyration 
vector G. The first-order contribution to a disappears, 
but G is nonvanishing in this order and determines the 
Faraday rotation. An explicit expression for the gyration 
vector to first order in the magnetic field strength will be 
given; agreement with the orbital method and with 
Roth's work10 will be shown. 

2. DENSITY MATRIX AND GREEN 
FUNCTIONS 

Let us consider a system of N electrons in a potential 
field V(t). The electron spin will be ignored. We shall 
give various definitions and general relations concerning 
density matrices and Green's functions for an inde
pendent-particle model, first in the absence and then in 
the presence of an applied magnetic field H. 

Definitions for H=0 

An electron in an energy eigenstate k is to have an 
energy §jc=fuak and is described by a wave function 
0*(r) obeying 

X o ( r )0*( r )=«***(r ) , (2.1) 
with 

3C0(r) = p 2 / 2 m + F ( r ) , p=-ihV. (2.2) 

The energy eigenfunctions are assumed to form a com
plete orthogonal set, normalized to unity over the whole 
system. 

We assume that the system is in its ground state"and 
that this ground state is isolated with an energy gap 
SG—hooG^O. If we enumerate the one-particle energy 
eigenstates such that COAXCOJ for k<l, then the states 1 
through N will be occupied and all others empty. 

The one-particle density matrix we shall be interested 
in is of the form 

Po(r,rO = i :* t*( r )0 i b ( rO, (2.3) 
k 

which is also known as Dirac zero-temperature density 
matrix.13 The superscript o of the summation sign indi
cates summation over all occupied states, while the 
subscript 0 of p refers to the absence of any applied 
magnetic field. If the density matrix is known, the 
ground state of the system is completely described.14 

13 N. H. March and A. M. Murray, Phys. Rev. 120, 830 (1960). 
1 4P.-0. Lowdin, Phys. Rev. 97, 1474, 1490 (1955). 

Of further interest to us will be the function 

G ( r , r W » 

k I 

(w<o>0). (2.4) 

Here o)ik=o)i—o)k and the superscripts o and u of the 
summation signs indicate summation over all occupied 
and unoccupied states, respectively. This function is 
closely related to various types of Green's functions and, 
for brevity and for lack of a better name, we shall like
wise call it a Green's function. 

The connection of (2.4) with the double-time two-
particle Green's functions of statistical physics15 we 
shall illustrate on the example of the retarded Green's 
function 

Gr(h)t2)=(i/h)d(h-t2)(\:A(h),B(t2)l), (2.5) 
with 

A(h) = tf(r,h)<f>(t',h), Bfo^+W'AWfr). (2.6) 

Here the <£ are wave functions in second quantization; 
6 is the step function; the square brackets indicate the 
commutator, and the angular brackets the average 
which, in our case, corresponds to the expectation value 
over the ground state of the system. The Green's func
tion (2.5) depends then on time only through t=t\—h. 
I ts Fourier transform16 is related to (2.4) for 0<co<co(? 
by 

G r ( r , r ' , r " , r ' " ; " ) 
= G(r , r , , r , , , r ' , ' ;co)+G(r , , , , r , , , r ' , r ; -co) . (2.7) 

Relations to other kinds of double-time two-particle 
Green's functions are discussed in Ref. 3. 

Projections 

The function (2.4) can be connected with Green's 
functions in a somewhat different manner by applying 
the concept of projections, which will be useful later in 
this paper. The expansion of an arbitrary function 

i?(r,r /) = E*,K*i«**(r)0i(r ') (2.8) 

can be split up in the form 

F(r,r ') = E Z^(r , r ' ) . (2.9) 

The subscripts s and t indicate the range of summation 
for k and /, respectively, where a subscript value of 1 
stands for a summation over all occupied states, and a 
value of 2 for a summation over all unoccupied states. 

15 V. L. Bonch-Bruevich and S. V. Tyablikov, The Green's 
Function Method in Statistical Mechanics (North-Holland Pub
lishing Company, Amsterdam 1962). 

16 This Fourier transform is 2ir times that given in Ref. 15. 
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The functions Fst(r,rf) are called the orthogonal pro
jections14 of F(r,t') on the corresponding subspaces of 
representation space. In supermatrix notation we may 
denote Fu, F22 as diagonal terms and Fu, F21 as cross 
terms. 

As an important example, consider the Dirac 5 func
tion, which may be written as 

* ( r / ) = E****( r )0*( r ' ) . (2.10) 

Obviously, the cross terms of this function are zero, 
while the diagonal terms dn and 822 are equal to the 
density matrix p0 defined in Eq. (2.3) and its comple
ment po, respectively. The density matrix and its 
complement act as projection operators: 

dss (t,t")F (r",r"')5« ( r ' V ) * " * ' " 

= F.«(r,r'), (* ,*=1,2) . - ( I l l ) 

The concept of projections may easily be applied also 
to functions of more than two variables. Of particular 
importance to us will be functions of four variables 
which we expand according to 

^( r , r ' , r " , r ' " ) 
= I:^^,m,n^^mn0ib*(r)0z(r ,)0m(r ,O0,*(r , , ,). (2.12) 

Such a function may be written as17 

/?(r,r / ,r / , ,r , , ,) = E..«.».» F . l w ( r , r / , r , , , r / , / ) , (2.13) 

where the subscripts s, t, u, v characterize the ranges of 
k, I, m9 n in the expansion (2.12). 

Consider now the function 

X 0 K O * * ( O * i * ( r " O . (2.14) 

This function obeys the differential equation 

[5Co*(r)-5Co(r ,)+^]8(r ,r , , r / / , r , , , ;co) 

= -$ ( r , r ' ' )S ( r " ' , r ' ) , (2.15) 

and deserves, therefore, to be called a Green's function. 
Actually, this Green's function is not completely defined 
by (2.14) because of the singularities occurring in the 
summation for pairs of states with 00 z&—-co=0. However, 
we shall be interested only in two projections of g, 
namely 81212 and 82121. For —coc?<co<co(?, both of these 
projections are well-defined because the occurring co ik 
have COG as a lower bound for their magnitudes. Obvi
ously, 

9 m 2 ( r ) r ' ! r" , r" ' ;co) = G(r )r ' , r" , r '" ;co), 

8 2 1 1 1 ( r , r ' , r " , r » » = - 6 ( r ' " , r", r', r ; -co) . 

The retarded Green function in Eq. (2.7) is the differ
ence between these two terms. 

The Qstst obey differential equations which are the 

17 Throughout this paper the subscripts s, t, u, v have the range 
1,2. 

corresponding projections of (2.15). They have the im
portant property that the cross terms of the solution of 
the inhomogeneous differential equation 

[Oe0*(r)-5Co(r /)+««]g(r,r ,) = / ( r , r / ) (2.17) 

may be given in the form 

*.,(r,r') = - [Jg.M(i,r',*",*'";«) 
Xf(j",T'")dT"dT'", (S9*t) , (2.18) 

as may readily be verified. 

Definitions for Hj^O 

In the presence of an applied magnetic field the one-
particle energy eigenstates will be characterized by 
Greek letters. An energy eigenfunction will be desig
nated by ^K(r) and obeys 

X ( r ) * , ( r ) = S ^ ( r ) . (2.19) 

In Coulomb gauge 

3C(r) = 3C0(r)+ (e/?nc)A-p+ (e2/2mc2)A2. (2.20) 

We shall assume the magnetic field H to be uniform 
and write the vector potential in the form A(r) = J H x r. 
The density martix and the Green's function are 
designated by p and T and are defined according to 
Eqs. (2.3) and (2.4), but made up now from energy 
eigenfunctions and eigenvalues in the presence of H. 

Relations for p and T can be established similarly to 
those for po and G. A word of caution is required, how
ever : The projection of a function depends on the under
lying set of orthogonal functions; in this paper, projec
tions will always be understood with respect to the 
4>h, that is, with respect to the set of one-particle energy 
eigenfunctions for H = 0 . 

3. INTERNAL LOCALIZATION 

We shall give here a short discussion of the internal 
localization of the density matrix and the Green's 
function. I t will suffice to consider the case where H = 0; 
in the presence of an applied magnetic field a similar 
treatment would be possible. The problem of internal 
localization could be approached systematically by an 
iteration procedure (see Ref. 3) rather similar to the 
one that will be developed in Sees. 4 and 5 for taking 
the effect of an applied magnetic field into account. 
Such an approach, however, would go beyond the scope 
of our present paper, and we shall confine ourselves to a 
straightforward derivation of upper bounds for the 
mean-square internal diameters of |po|2 and |G|2 . 

Density Matrix 

We shall be interested in the dependence of po(r,r/) 
on (r— r'). This difference might be considered as the 
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argument of something like an internal structure of 
po. The internal localization of po may be characterized 
by the integrals 

<*«(*) = (1/AO f [\K- ( r - rO | ' |po( r , r ' ) | 2 ^r ' , 

fr>0), (3.1) 

where k is a unit vector. Because of d(0)= 1, Eq. (3.1) 
represents the mean vth. power of the internal diameter 
of | po |2 in the direction k. For brevity, we shall refer to 
d(p) also as the ^th moment. 

It will be illuminating to discuss the internal localiza
tion of po for some special cases. If we consider any 
quantum-mechanical system of finite extension in a 
state where all the fermions are bound to that system, 
then the density matrix made up from these bound 
one-particle states is internally localized in a trivial 
manner. This property of internal localization is con
nected to the discreteness of the ground state by the 
usual identification of bound states with discrete energy 
levels. If the decay of the bound wave functions outside 
the system is of an exponential kind, as may be expected 
for most practical cases, then d{v) will exist, i.e., be of 
finite magnitude, for each finite v>0. The numerical 
order of magnitude of d(v\ however, will depend criti
cally on the kind of system under consideration: 

(a) For an atomic system the diameter of any low-
energy electron orbit will be of the order of the Bohr 
radius, which obviously will also characterize the 
internal diameter of po. 

(b) For a large system the situation becomes more 
interesting. Although the internal diameter of po can 
essentially be no larger than the size of the system, it 
may be much smaller. For illustration, take an ideal 
crystal of infinite size. No "trivial" internal localiza
tion occurs in this case because the energy eigenfunc-
tions are no longer localized to any finite region in 
space. Nevertheless, the density matrix of a crystal 
in an isolated ground state may easily be seen to be 
internally localized. The condition of an isolated ground 
state means that the crystal has to be an insulator. 
The SQ corresponds to the forbidden energy gap be
tween the top of the highest valence band and the 
bottom of the lowest conduction band. The one-
particle energy eigenfunctions are the Bloch waves. 
Expressing the Bloch waves by Wannier functions 
aw(r) and taking into account that the summation in 
(2.3) extends over full bands, one finds readily 

Po(r,rO = E E a»*(r-R)a n ( r / -R) . (3.2) 
n R 

The summation over n goes over all occupied bands, 
that over R over all lattice points. From the properties 
of the Wannier functions18 we conclude that the internal 

18 W. Kohn, Phys. Rev. 115, 809 (1959); E. I. Blount, Solid 

localization of p0 is of an exponential kind19; d(p) will 
exist then as above. 

(c) For comparison, let us finally consider an ideal 
free fermion gas in infinite space. In this system the 
ground state is not discrete. It will be sufficient to con
sider the one-dimensional case. The one-particle energy 
eigenfunctions of the system are of the form eikx. 
Under the assumption that in the ground state of the 
gas all states are occupied up to | k \ = K, the density 
matrix becomes 

po(x,xr) — \jr(x-~xf)'J~1 sin[iT(#—x')~]. (3.3) 

For every given K>0 the density matrix therefore goes 
to zero for \x—x'\ —» <*>, but d^v) (for v>l) does not 
exist, i.e., it becomes infinite for this model. Such a 
kind of "weak" internal localization will prove insuffi
cient for a perturbation expansion with respect to an 
applied magnetic field. 

The above examples offer reassurance that for a 
system in an isolated ground state the density matrix 
actually does possess the property of internal localiza
tion. Nevertheless, it is somehow unsatisfying that we 
should have to rely on the individual properties of 
one-particle states to investigate the internal localiza
tion of po. At least for v=2, an upper bound for (3.1) 
can easily be established on more general grounds. 
Calculating d(2)(k) by substitution of (2.3) in Eq. 
(3.1) and applying the closure property yields 

d<» (*)= (2/N)i: E0eT4,)0e.r«*). (3.4) 
k I 

Comparing this with the Thomas-Reiche-Kuhn /-sum 
rule 

(2m/h)i:i:^lk{k'tkl){K'tlk)=N, (3.5) 
k I 

and taking into account that the occurring ooa have 
COG as a lower bound, we arrive at 

d™(k)<h/nmG. (3.6) 

As a typical case of a large energy gap, take that 
occurring for an hydrogen atom in its ground state. 
There we have co(?=|wj, where o)i=h/2mao2 is the 
ionization frequency of the hydrogen atom and 
ao=h2/me2 the Bohr radius; the right-hand side of 
(3.6) then becomes equal to (8/3)a0

2. Smaller gaps, 
such as usually occur in crystals, will allow larger 
internal diameters. 

Instead of comparing Eq. (3.4) with the /-sum rule, 

State Phys. 13, 305 (1962); D. S. Bulyanitsa and Yu. E. Svetlov, 
Fiz. Tver. Tela 4, 1339 (1962) [English transl.: Soviet Phys.— 
Solid State 4, 981 (1962)]. 

19 In recent work by J. des Cloizeaux, Phys. Rev. 135, A685, 
A698 (1964) the exponential character of the density matrix for 
an insulating crystal has been shown directly, without the detour 
over the Wannier functions. Actually, the density matrix occurs 
there as the more fundamental quantity. 
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one can derive with20 

Vki=ifno)ki^ki (3.7) 

the inequality 

^)( /c)<(2/m 2 co G W)i:(p 2 )^ . (3.8) 
k 

If we assume that the average kinetic energy per 
electron is < hcoi (which is equal to the kinetic energy 
of an electron in the ground state of the hydrogen atom), 
then we obtain 

d^(k)< &h/m)<aiv<r*. (3.9) 

Through this inequality is weaker than (3.6) and its 
derivation less rigorous, we shall prefer it in later 
applications. The reason is that (3.9) seems more 
indicative of the range of exponential decay of the 
density matrix than inequality (3.6) which is rather 
sensitive with respect to the particular definition (3.1) 
of d(2). While in our applications there will be attached 
to each density matrix po(r,r') at most a linear factor 
(r— r') and no higher powers, nevertheless these factors 
will occur in expressions more complicated than (3.1). 
We shall feel safer than by resorting to the more 
"robust" inequality (3.9). Obviously, this distinction 
is relevant for small energy gaps only; for large gaps, 
that is (ao~o*ij inequalities (3.6) and (3.9) essentially 
agree. 

Green's Function 

The internal localization of the Green's function 
(2.4) may be characterized by the quantities 

d^)(/e>X;co) = 6 ^ > ( ^ ; w ) / c W ( « ) , (3.10) 

with 

«<*'> (*,*;«)= /*••• / ' | ^ ( r - r ' 0 H X - ( r ' , ' - r ' ) i ' ' 

X | G ( r , r / , r / / , r / / / ; « ) l 2 * ' " * / , / , 

b,v>0), (3.11) 

where k and X are arbitrary vectors of magnitude unity. 
For n=v=0 the quantity e(ti'v) is independent of k 
and % and we therefore omit these vectors in the argu
ment of e(00). 

According to its definition dm is unity, while em is 
found as 

e (oo ) ( c o ) = £ £ [*(«„-«)}*. (3.12) 
k I 

For &=(), v—2, one obtains, by invoking the closure 
property, applying (3.7), and performing some algebraic 

20 Equation (3.7), which enters also in a derivation of the/-sum 
rule, is known to hold if the two energy eigenfunctions involved 
(a) have the property that at least one of them disappears suffi
ciently rapidly for |r|—>°o, or (b) are the Bloch waves of an 
infinite crystal. 

manipulations, 

d^(k,%;a>)<Sh2/me(a>). (3.13) 

Here use has been made of Eq. (3.12) and an upper 
bound l/e(co) has been introduced according to 

X- (pp)-X/2^2(co^-co)2<l/e(a)) , (1>N). (3.14) 

The question arises if such an e(co)>0 exists. At least 
for cases of practical interest, the answer seems to be in 
the affirmative. The matrix elements of the momentum 
products over 2m in inequality (3.14) have the corre
sponding expectation value of the kinetic energy of a 
particle as an upper bound; because of the quadratic 
energy denominators we expect that the left-hand sides 
of these inequalities will have their maxima in the 
vicinity of the energy gap. Estimating the kinetic 
energy in this region as < hcoi again, we obtain 

e(co)>&(coG-a,)2/W. (3.15) 

In a similar manner we may estimate d(20) and arrive at 

d^(k,%;oo)} Sheer 
« \S . (3.16) 

^20>(/c,X;co)J m(cos-co)2 

For co=0 this upper bound agrees essentially with that 
in (3.9). 

We want to emphasize that the mean-square internal 
diameters of the density matrix and Green's function 
may stay much smaller, of course, than their upper 
bounds. This is particularly true as far as the singular 
behavior of the inequalities (3.16) for co—>COG is con
cerned. Consider, e.g., an insulating crystal with one or 
more conduction and valence bands. The conduction 
bands are assumed to have their minima at k = 0 and to 
be degenerate there; a corresponding assumption is made 
for the maxima of the valence bands. Let us assume 
furthermore that, as is usually the case, the matrix 
elements of the momentum operator within and be
tween the conduction bands disappear for k = 0 and 
similarly for the valence bands. If all bands are now 
parabolic in the vicinity of k = 0 , it is easy to see that 
e(00) (co) will have no singularity for (coG—«) —» + 0 , while 
dm and ^(20) will have only logarithmic singularities. 

4. PERTURBATION THEORY FOR THE 
DENSITY MATRIX 

From the definition of the density matrix p, we find 
that it obeys the ultrahyperbolical "Schrodinger 
equation" 

[3C* (r) - 3C (r')]p (r,r') = 0 (4.1) 

and the idempotency condition 

jpW)p{r",T>)dT" = p{r,r'). (4.2) 

These equations are not yet in an appropriate form 
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for a perturbation approach because for large orbits the 
terms containing the vector potential A(r) may not be 
considered as small. This difficulty may be overcome by 
denning a phase factor 

7 ( r / ) = exp[ - fo /2 fe )H. (r x r ' ) ] (4.3) 

and performing the transformation 

p ( r / ) = 7 ( r / ) r ( r / ) . (4.4) 

The phase factor introduced is the same as that used 
by Sondheimer and Wilson21 in the treatment of the 
diamagnetism of free electrons. 

The function r is found to obey the equations 

[ 3 e o ( r ) - 3 e 0 ( 0 > ( r , r 0 
- (e/2mc)E.Z(t-/) x ( p - p ' ) > ( r , r ' ) = 0 (4.5) 

and 

J exp[Q(r , r ' , r " )>( r , r " ) r ( r " , r ' )*" = r(r,r'), (4.6) 

where 

G(r,r',r") = (fo/2fe)H. (r x r ' + r ' x r " + r " x r ) . (4.7) 

The sum of cross products in the last equation may also 
be written as (r— r") x (r '—r"), and we see that the 
position vectors occurring explicitly in Eqs. (4.5) and 
(4.6) are combined now in the form of differences. This, 
together with the internal localization of r, furnishes 
the basis to our perturbation approach. 

Recurrence Relations 

We shall expand r in a power series in H : 

>(r,rO= L r W(r,rO. (4.8) 

Substituting this expansion in Eqs. (4.5) and (4.6), we 
may compare equal powers of H in each of these 
equations. The equations in zero order, or equivalently, 
for H = 0 , are obviously satisfied by 

r « » ( r / ) = po(r,r'). (4.9) 

For P = 1 , 2, ••• we obtain then certain recurrence 
relations. The cross terms of r^v) we shall calculate from 
Eq. (4.5) and the diagonal terms from (4.6). Comparison 
with Eq. (2.18) shows that the cross terms of the solu
tion of (4.5) are given by 

r.|W(r,rO = - ifi/lmc) j f g s ^(r , r ' , r " , r ' " ; 0) 

X [ H - ( r ' ' - r ' ' ' ) x ( p ' ' - p ' ' ' ) ] 

X r ^ - ] ) {x"?",)dx"dx,n, (S9*t) . (4.10) 

2 1E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London) 
A210, 173 (1951). 

The product in Eq. (4.6) will give rise to a sum of terms 
from which the two terms containing r(f,) can be sep
arated; if we use (4.9) and form the diagonal parts 
according to (2.11), we obtain 

rMW(r,rO = = F E £ « , . * * - „ - [ f [lQ(r",*'",*iv)l* 
«=ox,„=o K\ J J J 

Xdss (r,r")r<x> (x,\xiv)r^ (r V " ) 

Xbss{r",,r')dr"dr'"dxi\ (4.11) 

The upper sign stands for s= 1, the lower sign for s= 2. 
Because of time reversal symmetry, the rst

(v) obey the 
relation 

r s i ^ ( r , 0 = ( - l ) ^ r , s W ( r ' , r ) . (4.12) 

Equations (4.10) and (4.11) are recurrence relations 
from which, starting with (4.9), the r(,,) can be suc
cessively calculated. The first-order term r (1) is given 
in Eq. P(9).22 The expression in the first bracket there 
may be written as po(r",r'")-~Po (*",*"')> where the 
Po comes from m ( 1 ) and the — po from T22(1). In the 
second bracket the first Green's function originates from 
ri2(1), the second (including the minus sign) from T2i(1). 

Estimates 

To estimate the size of the Tst
(p)(x}x

f), let us consider 
the integrals 

Dst^= (1/iV) J n T . « « ( r , r / ) | « r d r / . (4.13) 

In zero order we find J D H ( 0 ) = 1 , while the other com
ponents vanish. As far as the diagonal parts of the 
first-order term are concerned, we consider the square 
root of the right-hand side of (3.9) as an approximate 
upper bound for each occurring factor of position 
vector differences and expect then,23 for s=t, 

DstV<(2o>co>iM*, (4.14) 

where coc=eH/mc is the cyclotron frequency of a free 
electron and 27= | H | . In the cross terms of first order, 
we estimate the position vector difference as before, and 
the momentum operators as < h/ao. Substituting these 
cross terms in (4.13), one sees easily that each Green's 
function may contribute at most a factor 1/SG, and the 
resulting upper bound for Dst

a)(s9^t) is then, up to 
an irrelevant numerical factor of f, the same as in 
(4.14). From the combinations of density matrices and 
Green's functions occurring in the expression for r (1) 

and the fact that the upper bounds in (3.9) and (3.16) 
(for co=0) agree with each other, we shall expect the 
same upper bound to be approximately valid again for 
the mean-square internal diameter of rs*

(1). Once the 
properties of r (1) have been established we may proceed 
along similar lines to an investigation of r (2), etc. 

22 That is, Eq. (9) of P (Ref. 2). 
23 The internal diameter of p0 is obviously the same as that of p0. 
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For our perturbation expansion for the density 
matrix to be useful we have to require £>s*

(1)<3Cl; 
according to (4.14) this will be satisfied for magnetic 
fields weak enough that 

COC^WGVCOJT. (4.15) 

I t might be of interest to compare this condition for 
H with what we should anticipate from a consideration 
of the orbitals. Application of a magnetic field causes 
the edges of the energy gap to shift. The effect of the 
magnetic field on the ground state of the system will be 
expected to be obtainable by a perturbation theoretical 
approach if these shifts are small compared to the size 
of the energy gap. 

For small systems like atoms or molecules, the 
diameter of the orbit of a one-particle state with an 
energy in the vicinity of the energy gap will be assumed 
to have the square root of the right-hand side of (3.9) 
as an upper bound. Estimating the magnitude of the 
momentum as < h/ao, we obtain from the term linear 
in H in the Hamiltonian (2.20) an edge shift < foocwj/W 
This upper bound for the shift to be small compared to 
&G requires O>C<ZCWG2/O)I, which agrees with (4.15). The 
term in (2.20) quadratic in H yields a shift < foocVr/W2; 
this results in the condition coc<3C(co<?3/W)1/2, which is 
not stronger than (4.15). 

For a crystal in an approximation linear in H, there 
are two contributions to the shift of a band edge: One 
is caused by the quasifree behavior of an electron and 
will be written as eH/2m*cy where m* is the effective 
electron mass; the other is due to its intracellular 
properties and is given by zk%g*fiH where g* is the 
spectroscopic splitting factor and (3=eh/2tnc the Bohr 
magneton. Since both ni/ni* and %g* are of the order 
MI/COG (or smaller), the resulting shift is S^CVI/COG, 
which again leads to (4.15). 

System Energy 

E = J [ 5 C ( r 0 p ( r , r 0 > . ^ r . (4.16) 

Substitution of (4.4) gives the energy in the form 

E= / " [5eo( r0 r ( r , r0>-^ r , (4.17) 

which no longer contains any large perturbations. 

Substitution of (4.8) results in an expansion of E in 
powers of H. The terms of odd order disappear because 
of time-reversal degeneracy, as may be seen by use of 
(4.12). 

5. PERTURBATION THEORY FOR THE 
GREEN FUNCTION 

From the definition of T one can derive various 
equations satisfied by the Greeks function. I t will turn 
out that the inhomogeneous differential equation 

[3C*(r) - X ( r ' ) + haf\T (r ,r ' , r" ,r '" ;«) 

= ~ P ( r , r " ) p ( r ' V ) , (5.1) 

together with the homogeneous integral equations of 
the first kind 

/ p(r,riv)T(riv
ir'}T",t"';a>)dtiv=0, (5.2a) 

/ 
p(tiv,r')T(i9r

iv,t''9T
,";<a)diiv=0 (5.2b) 

is sufficient for a perturbation calculation of T. Here 
p is the density matrix in the presence of the magnetic 
field and p(r,r') = S(r,r')—p(r,r'). 

We define a function K by 

T ( r / , r " , r ' " ; « ) = y(t,r")y(r'",r')K(r,r',r",r'"; co), (5.3) 

Once the density matrix is known, the total energy where the phase factors 7 are given in (4.3). Substitution 
of the system may easily be calculated from of (5.3) into (5.1) and (5.2) give for K the equations 

{3e0(r)-3Co(r')+feo- (e/2mc)R'Z(r-i") x p - ( r ' " - r ' ) x p ' ] + (e2/8mc2)[H x ( r - r " ) ] 2 

- (e2/8mc2)[H x ( r ' " - r ' ) ] 2 }K(r , r ' ) r " , r ' " ;« ) = - r ( r , r " ) f ( r ' " , r ' ) , (5.4) 

/ eiqplQ(t,i",tiv)2f(T,riv)K(tiv,i',i",r'";co)diiv=0, (5.5a) 

/ a p K ( i V " . « 0 > ( r * l t O K ( r I t * l t " ) r " » < f t f c - 0 , (5.5b) 

where f(r,r') = 5(r,r')—r{r,t'). As in Eqs. (4.5) and (4.6), the position vectors operating on K enter in the form of 
differences only; combined with the internal localization of p0 and G, this furnishes the basis to our perturbation 
approach. 
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Recurrence Relations 
Let us expand K in a power series in H: 

K(r,r',r'',r'";") = £ K<"> (r,r',r",r'" 5«). (5.6) 
j ;=0 

For the zero-order term we take 
Kco) ( r / / ' / " . w) = <?(r,r',r",r'"; co). (5.7) 

Obviously G, as denned in Eq. (2.4), satisfies Eqs. (5.4) and (5.5) for H= 0. Substituting (5.6) and comparing equal 
powers of H, we obtain then from Eqs. (5.4) and (5.5) certain sets of equations. To solve these equations in the form 
of recurrence relations for K(j,) we have to decompose K(v) in its components according to (2.13). From Eq. (5.4) 
we get17 

E«.. K W ° (r,r',r",r"/;co) = - J J G(r,r',r*V»; «)/w(r-,rV",r '"; o>)dr*tfr*, (5.8) 

with 

^ ( r , r / r ; / , r " » = (e/2wc)H-[(r--r") x p - ( r ' " - r ' ) xp']K^-1>(r,r,,r,,,r,,/; co)- (^2/8m2) 

X{[H x ( r - r " ) ] 2 - [ H x (x"f-x,)J}KSv-V(t?,,x",x",',o>)- E T^(r,r '0f^>(r ' ' ' , r ' ) , (5.9) 

where for ?= 1 the second term on the right has to be omitted. Here T(V) is defined in (4.8), and the f{v) are given by 

f«)(r,r') = 5(r,r')-r«»)(r)r') = p„(r,r')) 

f«(r,r') = - r « ( r , r O , ( ,= 1,2,--.). 

In Eqs. (5.5) we split off the term with M= V and obtain 

'Et.u,v^tm
M(r,r',r",i'";w)=- £ £ S„,«+x+M- f f f i ^ ^ W ^ l r W r ' ; " ) * * ! (5.11a) 

K,X=O /i=o K! ./ 

Z.....K.i-.w(r,r',r",r"/;co) = - £ S 5 , , , ^ - /"cQ(r-,r"')r')]*r(W(riV')K(">(r,r«,r",r'";W)Jr». (5.11b) 

Because of time-reversal symmetry the components of Estimates 

^ Investigating the size of the KCv), we could consider 
Ks tuv ̂  (t}i'}t"}t

f"; co) each component separately, as was done in the preceding 
= (—l)vKuvst

M(t//,rf//r,rf')o)). (5.12) section for the density matrix, but we shall confine 
ourselves to a discussion of 

It is easy to see how Eqs. (5.8) and (5.11) comple
ment each other; Eqs. (5.11) are unable to give a f f 
projection EW'>, which is provided, however, by C(r)(«)= / '"J |K<'>(r,r^V";«)l* 
Eq. (5.8). To obtain K(y) as a sum over all projections, vdr- • •dr'"/V00)(r ) (5 14) 
we have to allow for the fact that Eqs. (5.11a) and 
(5.11b) overlap: the terms E W > occur in each of H e r e e<oo)(w) j s g i v e n in (3.12) and, trivially, one finds 
these equations. Suppressing the arguments, we may D^(o)) = l. In an estimate of D<M(a>), one has to take 
write, for instance, m t 0 a c c 0unt that the magnitude of the Green's function 
iT-oo —v v: 00 4-V K w and also its internal diameters depend on co. For co close 

, y, (y) ,~ 1 ^ to COG we shall expect then the dominant contribution 
-h2-«.«.. **«» . [p.u) tQ c o m e f r o m t h e d o u b l e i n t e g r a l i n Kd) ( s e e R e f 2) . 

Here the second term is given by Eq. (5.8) and the Substituting this double integral into (5.14), it is easy 
third term by (5.11a). The first term is a projection to see that each of the Green's functions containing 
of Eq. (5.11b) and may be calculated from this equa- r and V as the first two arguments contributes at most 
tion by applying the appropriate projection operator, a factor 1/ (<§<?— hoi). We shall estimate the effect of 

Equations (5.8) and (5.11) are recurrence relations each momentum operator by a factor <V#o, and the 
from which, starting with (5.7), the components of position vector differences according to (3.16). This 
K(y) can be successively calculated. K(1) has been written results in 
out in Ref. 2. D^\ (CO)<[2COCCOZ/(COG-CO)2]2, (5.15) 
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From the remaining terms in K(1) those containing Q 
will make contributions to (5.14), the approximate 
upper bounds of which will be smaller by a factor 
[(COG—co)/co(?]2; those containing r(1) will lead to 
approximate upper bounds smaller by the square of this 
factor. If co is not close to the gap frequency, i.e., if 
(COG— CO) is of the same order of magnitude as COG, all 
these upper bounds will agree with each other and also 
with the upper bound for Z)(1) in (4.14). 

For our perturbation expansion of the Green's func
tion to be useful, requires Z)(1)(co)<<Cl. According to 
(5.15) this will be guaranteed if 

coc^C(co(?—co)2/coj. (5.16) 

One may ask again how this is compatible with the 
shift of the edges of the energy gap due to the magnetic 
field. We expect a necessary condition for a perturbation 
theoretical treatment of the Green's function to be 
that the edge shift is small compared to (COG—co), 
because otherwise COG would no longer be a useful 
approximation for the width of the energy gap in the 
presence of H. The edge shift has been estimated in the 
preceding section to be < hooc^i/coG, which results in the 
condition coc<<C(co(?—CO)COG/COJ. This inequality is weaker 
than (5.16); if the "expandability condition" (5.16) 
holds, the "edge shift condition" is satisfied a fortiori. 
I t is possible, however, that the inequality (5.16) is 
unnecessarily stringent. 

6. MAGNETO-OPTICAL PHENOMENA 

We consider a macroscopically homogeneous system 
like a gas or a crystal in the presence of an applied 
static and homogeneous magnetic field. The system is 
assumed to possess a frequency region in which no 
absorption of electromagnetic radiation occurs. For an 
electromagnetic field with a frequency co in that region, 
the dielectric displacement D may then be connected 
with the electric-field component E and its time deriva
tive according to24 

D = e E + (l/co)G x dE/dt. (6.1) 

Here G is the gyration vector, and e = l + 4 x a is the 
dielectric tensor, with a the polarizability tensor. In a 
system with cubic symmetry—important in practical 
application—the dielectric constant e is a scalar, and 
G will have a nonvanishing component only along the 
direction of the applied magnetic field; this component 
we designate by G. The gyration vector leads to a 
Faraday rotation 6—ooG/2cn, with w= \ (n++nJ), where 
n±= (ezLG)112 is the index of refraction for right and 
left circularly polarized radiation, respectively. Our 
further considerations will not be restricted, however, 
to systems of any particular symmetry. 

From semiclassical radiation theory, one obtains in 

24 J. Frenkel, Z. Physik 36, 215 (1926). 

the electric dipole approximation, for a system of 
volume V, 

rnnv * » OJ\K\WAK —UJ j 

4:irie2 o « P K X X P A K 

G= £ £ , (6.3) 
m2fiooV K x cox*2—co2 

where P = p + (e/c)A is the kinetic momentum operator. 

Polarizability Tensor 

In (6.2) we make use of 

Y\K=imca\KT\K, (6.4) 

and it is then easy to see that the polarizability tensor 
may be written as 

a=-(2e2/V) /r r(r,r,r ' ,r '; co) (r-r')(t-r')drdi', (6.5) 

where Tr is defined as in (2.7) but made up from Green's 
functions in the presence of H. The position vectors 
enter the dyadic product only in the form of differences, 
which permits an expansion of a in powers of H by 
virtue of the internal localization of T. Because of 
(5.3), Eq. (6.5) remains correct if Tr is replaced by 
K r(r,r,r ' ,r '; co), where Kr is defined by 

Kr(r,r',r",r'"; co) = K(r,r',r",r"'; «) 

+ K ( r ' V V / , r ; - c o ) . (6.6) 

A general method for the calculation of K{p) has been 
given in the preceding section and a in this sense is 
calculable up to arbitrary order in H, but we are inter
ested here only in first-order terms. However, in an 
expansion of a in powers of H, the term linear in the 
magnetic field disappears, as do all other terms of odd 
order, because of (5.12). Consequently, we shall here
after ignore a and concentrate on the gyration vector 
which is known to have a nonvanishing contribution 
linear in H. 

Gyration Vector 

In the above expression for the gyration vector we 
could substitute (6.4) and, by application of the closure 
property, rewrite (6.3) to show the correct low-fre
quency dependence, i.e., proportionality to co for 
co —> 0, which gives a Faraday rotation proportional to 
co2.6 For later comparison with other methods it will, 
however, be advantageous to retain G as given in 
(6.3), which leads to Eq. P(6).25 Further substitution of 

25 Notice that for frequencies in the nonabsorbing region the 
Fourier transform of the causal Green's function is identical with 
that of the retarded Green's function (2.5). 
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(5.3) yields 

G = - (27r^ 2 MVF) j [{[$' xp"+%(e/c)(JEL x ( r ' - r " ) ) x ( p ' + p ' 0 ] K r ( r , r ^ r ' " ; «)},_^ r»w'dr '<fir". (6.7) 

Note again the dependence on (r '—r"), which allows an expansion of G in powers of H. In such an expansion the 
terms of even order in H disappear because of time-reversal symmetry. To obtain G(1), the contribution to G linear 
in H, one has to act with the cross product of momentum vectors in (6.7) on Kr

(1), and with the triple cross product 
on Kr

(0), where Kr
(v) is the term of order v in an expansion of Kr in powers of the strength of the magnetic field; 

K<°> is given in Eq. (5.7), and K<» in Ref. 2. 
Relating to the existing literature, we wish to note that the possibility of expressing transport coefficients (of 

which the magneto-optical coefficients a and G are examples) by Green's functions is, of course, well known.26 The 
novel feature here is the perturbation expansion of the Green's function with respect to the magnetic field and the 
consequent expansion of the magneto-optical coefficients. 

For later applications it will be convenient to expand K(v) and r ( r ) according to (2.12) and (2.8), respectively.27 

Decomposing the gyration vector into a, b, and c terms, 

G ^ = G<ltt>+G<1&>+G(lc>, (6.8) 

and denning an operator ^ by its matrix elements 

Itki for k<N, 1>N; or k>N, KN; 

10 otherwise, 

we arrive, with the abbreviations 

C=2iri(?/m*ch2(aV, (6.10) 

r z . = (coz,2-co2)-1, (6.11) 

after some calculation and use of time-reversal symmetry, at 

G<ia>= -mC(i: Z - E I))r,ib{*(H x Zkl) xvik+iZn [(p*i xpZ n)H- (? * * ) » * - £ , ( P ; i *Pi»)H- (*»* x fry)]} 
h i I k 

o u o u 

~ 2 C C C E - E E . ) ( W w n f c ) ( p * i X p J n ) H - ( p x 5 - 5 x p ) n t , (6.12a) 
k l,n l,n k 

G<i» = - C ( £ £ - E I ) ( w J t + U | „ ) T » r , „ [ ( p t ( x P ! „ ) H . (^ xp ) M *-2 5Zi(p« *Pw)H- (&. x p n i ) ] , (6.12b) 
k,n I I k,n 

o u o n 

G ( l c ) = ( i C / m ) ( E IL — T, E J ^ Z ^ Z n + W z ^ Z i + W z ^ z y + W ^ T z / c T Z n T z ^ p f c z X p z J H ^ p ^ X p y f c ) . ( 6 . 1 2 c ) 
k,n,j I I k,n,j 

The grouping into a, b, and c terms has been performed 
according to the possible singular behavior of the 
terms for co—>co(?: the a terms contain one factor rik, 
the b terms two, the c term three. We say "possible 
singular behavior" because the occurrence of n such 
r factors does not necessarily result in a pole of order 
n\ depending on the behavior of the matrix elements 
involved, the pole could be of a lower order or there 
could occur no infinity at all. 

The derived expressions for G, and particularly for 
G(1), are the main result of this paper. They hold for 
any system in an isolated ground state. Note that 

26 An application of the Green's-function method to magneto-
optical phenomena has been given by G. Ciobanu and L. Banyai, 
Phys. Status Solidi 3, 2299 (1963). 

27 TW and K(1) in energy representation are given in Ref. 3. 

Eqs. (6.12)—and the same is true for the energy 
representation of r(1) and K(1)—contain no large terms 
in the sense that the matrix elements of £ may be 
estimated from (3.7) and that the occurring rik are 
bounded for given co(<a>(?). The matrix elements of p 
can, of course, become large, but—at least for cases of 
practical interest—we expect this to be accompanied by 
large energy differences and, therefore, small Tik, such 
that the high energy states should not cause any 
difficulties. 

7. COMPARISONS 

In this section we shall compare our result, Eqs. 
(6.12), first with that obtained from nondegenerate 
one-particle perturbation theory, then with that of 
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Roth10 for a crystal These comparisons are performed 
in more detail in Ref. 3. 

Assuming that the effect of the applied magnetic 

k I I k 

where M is the angular-momentum operator. This is 
essentially the method applied by Serber4 to Faraday 
rotation by molecules. On the other hand, after some 
manipulations one obtains the same expression by 
adding the contributions to G(1) in Eqs. (6.12). The 
results of the two methods agree therefore. 

To compare our result with that of Roth for an 
ideal infinite crystal, we have to take (6.12) in crystal-
momentum representation. The energy eigenfunctions 
are now the Bloch waves. Taking into account that the 
z component of the gyration vector is related to the 
xy component of the antisymmetric part of the con
ductivity tensor according to 

Gz— (47r/co)<rX2/, (7.2) 

we may derive from (6.8) and (6.12) an expression for 
axy which becomes identical with Roth's result if 
applying her Eq. (45)10 to an insulating crystal at zero 
temperature and neglecting spin. 

8. DISCUSSION 

The problem posed for this work was to find a general 
approach to magneto-optical effects in the nonabsorbing 
region; the results achieved for small systems (treated 
by application of perturbation theory to each individual 
orbital) as well as those for insulating crystals (Roth10) 
should be contained as special cases. The required 
agreement of the gyration vector (6.12) with both the 
results of nondegenerate one-particle perturbation 
theory and Roth's method has been indicated in the 
preceding section. 

I t turned out, however, that the result of the non-
degenerate orbital method represents not merely a 
special case of (6.12) but is identical with it whenever 
(3.7) holds, whether the application of nondegenerate 
perturbation theory is justified or not. In an extension 
of that, we are inclined to think that almost any 
formally correct perturbation approach based on an 
expansion in powers of H will give the correct final 
result.28 This suggests consideration of our problem from 
two different angles: 

28 Although we have performed no explicit calculations in this 
direction, we believe this to be true also for the energy of the 
system, i.e., for the problem of normal diamagnetism. 

field on each orbital may be obtained by nondegenerate 
perturbation theory one finds from Eq. (6.3), in first-
order approximation, 

From a pragmatic point of view it will be sufficient 
to obtain the correct result and to ignore the question 
of the justifiability of the method. One might as well 
then choose the simplest possible approach, which is 
probably that of nondegenerate perturbation theory 
applied to the one-particle energy eigenstates. This 
approach is formally possible, e.g., even for an infinite 
crystal: from Eq. (7.1) we may go to Eqs. (6.12), which 
in crystal-momentum representation lead to Roth's 
Eq. (45).10 No new theoretical approaches are required 
then and all it takes is a rearranging of terms. 

From a methodic-theoretical point of view, on the 
other hand, we wish to refrain from introducing any 
unwarranted assumptions and shall require the pertur
bation caused by the magnetic field to be small in 
every step of the calculation. Our Green's-function 
method, based on the internal localization of the 
density matrix and the Green's function, seems to 
satisfy this requirement both for small systems (atoms, 
molecules) and for crystals. 

Atoms, molecules, and ideal insulating crystals are, 
of course, not the only systems covered by our theory. 
Another case of interest to which Eqs. (6.12) apply 
is that of an impurity atom in an insulating crystal. 
Faraday rotation due to a bound donor electron has so 
far been discussed only for a very simple model.29 

The gyration vector can be calculated either from 
(6.7) or from (6.12). The first choice requires a knowl
edge of the density matrix and Green's function of the 
system (for H = 0 ) , while the latter equations make 
direct use of the one-particle energy eigenstates (also 
for H = 0 ) . The two methods are intimately related, 
since the density matrix and Green's function can be 
built up from the one-particle states. The primary 
obstacle in evaluating G(1) is represented by the fact 
that, even in the absence of the magnetic field, the com
plete set of orbitals—or, equivalently for (6.7), the 
exact expressions for density matrix and Green's 
function—are known only for the simplest physical 
models. A rigorous calculation of the magneto-optical 
coefficients is therefore out of the question at present. 
For o) close to COG, however, or if the energy gap itself 

2 9 1 . M. Boswarva, R. E. Howard, and A. B. Lidiard, Proc. Roy. 
Soc. (London) A269, 125 (1962). 

+ ( E Z - Z E ) ( c o z f c + c o z , ) r Z f c r Z n ( p f c z X p z O H . M w , - 2 ( Z Z - E Z ) ( r ^ / a J n f c ) ( p H X P Z n ) H . M w f c ] , (7.1) 
k,n I I k,n k l,n l,n k 
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is small, the dominant contribution is usually given by 
the states in the vicinity of the gap, and the properties 
of these states are frequently well known. In the Green's 
function formalism these dominating states give rise to 
certain dominating expressions for the zero-magnetic-
field density matrix and Green's function. 

From the form of Eqs. (6.12) one might expect that 
for co—->co<? the leading contribution to the gyration 
vector comes from (6.12c), but this is not necessarily 
so. Take, for example, a crystal model as discussed in 
the last paragraph of Sec. 3. Each one of the two matrix 
elements in the last cross product in (6.12c) becomes 
a homogeneous linear function of the components of k 
(for k small) and vanishes, therefore, for k=0. This 
reduces the singularity of G(lc) to that of G(16), i.e., 
proportionality to (COG—CO)~1/2 for (COG—W) —> +0 . Ac
tually, it is only the first term in (6.12b) which shows 
this kind of singularity, while the second term has no 
infinity in the indicated limit. For the crystal model 
under discussion, the dominant behavior of the gyration 
vector for frequencies close to the gap frequency is, 
therefore, determined by G(lc) and the first term of 
G<16> in (6.12). 

While in the present paper the Green's-function 

THIS paper reports experimental results which indi
cate that the maximum transition temperature 

of compounds with the fi-W type structure 0415) 
generally occurs at the stoichiometric composition, 
AJB. In this structure type the A atom is a transition 
metal of the 4th, 5 th, or 6th column of the periodic 
table and the B atom is either a transition or a non-
transition metal. The effect of varying the composition 
on the transition temperature has been reported for 
several ^415-type compounds in which B is a non-
transition metal.1 These include VsSi, VsGa, Nb3Al, and 

* Also at the University of California, La Jolla, California. 
f On leave from the California Institute of Technology, 

Pasadena, California. 
1 B. W. Roberts, Progress in Cryogenics, edited by K. Mendels

sohn (Academic Press Inc., New York, 1964), Vol. 4, p. 159. 

method has been introduced primarily for methodo
logical reasons, Green's functions are of advantage also 
in the actual calculation of specific problems. In a 
treatment of magneto-optical effects in insulating crys
tals with multiple valence and conduction bands at 
frequencies close to the gap frequency it can be shown, 
e.g., that the dominating part of the Green's function 
may be written in a form which is covariant with respect 
to unitary transformations among the basis functions 
characterizing the edges of the valence bands or the 
conduction bands, respectively. This facilitates calcula
tion of the dominating behavior of the gyration vector, 
and we anticipate reporting about this subject in a 
later paper. 

The model on which our considerations have been 
based and the results we have derived can easily be 
extended and generalized. Explicit expressions for effects 
depending on higher powers of the magnetic field, like 
diamagnetism or Voigt effect, can readily be derived 
from our general formalism. An extension of our model 
to include spin effects is straightforward. Finally, by 
the very nature of our approach as a Green's-function 
method, it should lend itself—with appropriate modifi
cations—to take particle interactions into account. 

Nb3Sn. It is always the stoichiometric compound which 
has the maximum transition temperature. 

In order to illustrate the fact that the maximum Tc 

occurs at the ideal composition, the A 15-type compound 
Nb3Ge was investigated. This compound is isoelec-
tronic with Nb3Sn but its transition temperature is con
siderably lower. Geller2 pointed out that the lattice 
constant of 5.168 A for an Nb3Ge compound as reported 
by Carpenter and Searcy3 was larger than his predicted 
value of 5.12 A and suggested that the fi-W type phase 
did not have the correct stoichiometry. Carpenter4 

examined the composition range of Nb3Ge and found 

2 S. Geller, Acta Cryst. 9, 885 (1956). 
3 J. H. Carpenter and A. W. Searcy, J. Am. Chem. Soc. 78, 

2079 (1956). 
4 J. H. Carpenter, J. Phys. Chem. 67, 2141 (1963). 
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Superconductivity of Nb3Ge 
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Evidence is presented to show that the maximum transition temperature of compounds with the 0-W type 
structure (.415) occurs at the stoichiometric composition ASB, when B is a nontransition element. The 
niobium-germanium A 15-type compound, which normally forms with excess Nb, has a transition tempera
ture of 6.9 °K. It has been found that Nb3Ge compounds prepared by rapid-quench techniques, in the 
presence of excess germanium, have transition temperatures as high as 17 °K. This large increase in transition 
temperature is attributed to a closer approach to the stoichiometric 3:1 composition. 


