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Perturbation theory can be applied to calculate the density of states of an electron moving in a random 
potential produced by impurity centers, but for small concentrations the usual approximations are unreliable 
and do not predict correctly the shape of the impurity band. A new chain of approximations is obtained by 
expressing the Green's function of the electron in terms of a "self-propagator." It is shown that this method 
leads to more realistic results. 

I. INTRODUCTION 

GOOD theories of random processes are needed in 
many areas of physics, but owing to mathematical 

difficulties, little progress has been made in this domain 
in the past. Indeed, many papers have been devoted 
to the study of the motion of electrons in random 
potentials and especially to the scattering of free 
electrons and the formation of impurity bands, but 
usually these effects have been considered separately 
and treated by different methods. For instance, the 
scattering of an electron can be easily calculated by 
perturbation theory and the first-order approximation 
gives quite reasonable results.1 On the other hand, the 
formation of impurity bands can be conveniently in
vestigated in the strong-binding limit.2 

Our aim here is to build a formalism leading to 
reasonable approximations for all values of the electron 
energy. Perturbation theory is used as a starting point 
and we want to predict the shape of impurity bands as 
well as scattering effects. In this paper, we are mainly 
concerned with the difficulties which are introduced by 
the random character of the impurity distribution. For 
this reason all the correlation effects due to electron-
electron interactions are neglected in spite of their 
importance, and we deal with independent-electron 
models only. 

In order to obtain finite results, we must sum the 
contributions of infinite series of diagrams. Unfor
tunately, there is no obvious way of knowing which 
diagrams are the most important. Actually, it will be 
shown that, for small densities of impurities, all the 
current approximations lead to unphysical results. Thus 
new physical ideas are needed to get a good picture of 
the situation. In the following, we visualize an electron 
as wandering from atom to atom and in order to de
scribe this process, we introduce a "self-propagator." 
The one-particle Green's function is expressed in terms 
of this propagator and not in terms of the usual self-
energy. A new series of approximations can be found 
in this way and we show that a first-order calculation of 

1 Detailed studies and references to earlier publications can be 
found in the work of J. S. Langer, Phys. Rev. 128, 110 (1962); 
127,5 (1962); 120, 714 (1960). 

2 An interesting classification of the energy levels in the tight 
binding limit has been given by I. M. Lifshitz, Zh. Eksperim. i 
Teor. Fiz. 44, 1129 (1963) [English transl.: Soviet Phys—JETP 
17, 1159 (1963)]; Advan. Phys. 13, 483 (1964). 

the propagator leads to nice results in the limit of 
small densities. For this purpose, we use a soluble linear 
model; for reasons of simplicity, it is assumed that the 
potential consists of attractive 8 functions distributed 
at random. 

II. MOTION OF AN ELECTRON IN A RANDOM 
POTENTIAL: FAILURE OF THE APPROXI

MATIONS FOR LOW DENSITIES 

In order to describe the motion of an electron in a 
random potential and to calculate the spectrum of the 
system, it is convenient to use one-electron Green's 
functions. For reasons of simplicity, we study here one-
dimensional problems only, but the generalization of 
our method to the three-dimensional case is trivial. 
Our Hamiltonian will be written 

H = - d2/&*H-Ei V(x-x3). (1) 

Here, xj indicates the position of an impurity center; 
these centers are randomly distributed and their density 
is denoted by N. 

Special attention will be paid to the simple case 

V(x)=~28(x) (2) 

which will be called the 8 model and will be used as a 
test for all the theories which we describe in the follow
ing. In fact, for this model, the density of states by 

FIG. 1. The density of states n(E), obtained for iV=J by 
calculating <3l(E) = JL-00

En (E)dE, as indicated in Sec. II, with a 
chain of 9000 impurity centers. Note that the impurity band 
remains fairly narrow. 
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(a) (b) 

FIG. 2. Typical diagrams for the 
Green's function, (a) 2-irreducible 
diagrams. The interactions of the 
electron with the impurity centers 
Mi, If2, and Mz are entangled. 
(b) 2-reducible diagram. The dia
gram can be split into two parts 
containing, respectively, Mi and 
i f 2, Mz. 

unit length n(E) can be obtained directly by using a 
computer. A simple method3 consists in calculating for 
a long chain of length L containing NL centers, the 
number 91(E) of zeros of a wave function of energy E. 
In the limit, of large L, we have 

i X(E) = L n(E)dE. (3) 

This method has been used for N—\ and a chain of 
randomly distributed impurity centers. The result is 
shown in Fig. 1. More sophisticated methods4 are also 
available, but these techniques apply only to the one-
dimensional case. Therefore, in order to deal with 
physical situations, we must examine more general 
perturbation methods. 

The Green's function is defined by 

(?(*,«) = (* | (w-fl)"11 *> 

and the density of states is given by 

n(E) 
1 r+co 

= I m / ( 
27T2 J-„ 

G(k, E+iO)dk. 

In the absence of interaction, we have, of course, 

C?0(A,o))=(a>-ft2)-1, 

n0(E)=(2w(E)^)~\ (JE>0). 

(4) 

(5) 

(6) 

(7) 

The function (?(&,co) can be expanded as usual in 
terms of the interaction and typical diagrams are shown 
in Fig. 2. The contributions of each diagram are aver
aged with respect to the positions of the impurity 
centers. For this reason, the Green's function is diagonal 
in the momentum space. A factor Np appears in the 
contribution of a diagram if p different impurity centers 
appear on this diagram (for instance p=3 for the dia
grams of Fig. 2). Therefore G(k,a>) can be expanded 
with respect to N but the terms of this expansion have 
strong singularities which must be eliminated by sum
ming up infinite series of these terms. Actually, as a 

t> —> 

FIG. 3. First-order self-energy 20(&,a>). 
3 H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840 

(1953). 
4 M . Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958); H. 

Frisch and S. Lloyd, ibid. 120, 1175 (1960). 

result of the averaging process, the momentum k must 
appear several times on the electron line of a diagram, if 
all the interactions do not overlap with each other; in 
this case, we say that the diagram is 2 reducible (for 
instance, in Fig. 2, diagram (a) is S irreducible, but 
diagram (b) can be split into two irreducible parts). 
Now, the Green's function can be expressed in terms of 
the irreducible 2 parts: 

G(k^) = Go(k^)+Go(ky^(k,o))Go(kyo))+ • • •. (8) 

More explicitly, we have 

<?(*,«)= («-#-2(ife,«))r-i. (9) 

2(&,co) itself can be expanded in terms of the density 
N and the diagrammatic representation of the first-
order term 2Jo(&,w), proportional to the diagonal part 
of the t matrix, corresponding to one impurity, is given 
in Fig. 3. 

Now we may wonder whether 20(&,a>) is a good 
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FIG. 4. First-order calculation of the density of states n(E). 

approximation to 2J(£,co) in the limit of small densities. 
For our 8 model, we have 

20(k,a) = a(a>) = -2N(a>)1/z/(o)1!2--i). (10) 

The pole of this expression for a>= — 1 corresponds to the 
bound state of an electron in the field of one impurity. 
By replacing 2(&,co) by a(oo) in Eq. (9), we get a value 
of G(k,u) which, for E<0, leads to the following level 
density: 

n(E) 
2d_! 

1-l-El1'2 

E\v*QE\-

- 1 > £ > -

- | l /2 

!-2iV)J £| i /2_ 2JV). 

-(!+22V+Hl+8i\0"2). (11) 

In principle, this function should give an approximate 
expression for the level density in the impurity band 
but the result is obviously wrong (see Fig. 4). The level 
density n(E) must be strongly peaked on the value 
E = — 1 and the broadening of the impurity level must 
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be symmetric, in the strong coupling limit. This fact 
can be demonstrated in many ways. For instance, a 
can be easily verified when the impurities form it 
periodic lattice. In the random case, the same conclu
sion can be reached by assuming that each center 
interacts only with its nearest neighbor. This crude, 
but realistic, approximation gives for small values 
of \E+1\ 

n(E) = W(\E\+l)~1+N, (12) 

an expression which bears no resemblance to Eq. (11). 
Finally, this approximate symmetry of the impurity 
band for low values of N appears clearly on the spectra 
calculated by exact methods (see Fig. 1). 

Thus, simple perturbation methods seem to give 
very bad results for negative values of the energy, and 
it is not difficult to show that the situation is hardly 
improved by calculating 2(&,co) up to second order. 
Therefore, it seems quite necessary to use a self-con
sistent approximation. 

The so called Brueckner or Matsubara-Toyazawa 

: ^ 

(a) (b) 

FIG. 5. Brueckner approximation: (a) A typical diagram, (b) 
general representation of a diagram contributing to 2(o>). The 
black line corresponds to the self-consistent Green's function. 

approximation5 seems very appealing and has been 
described in the literature as "a scheme quite adequate 
for most practical problems." In this approximation, 
when a center interacts with an impurity, the influence 
of all other impurities is taken into account by using a 
self-consistent Green's function (see diagrams of Fig. 5). 
In the d model, this propagator can be simply written 

<?(*,«) = [ W - ^ - Z C O J ) ] - 1 . (13) 

7(c0)==[c02_S(C0)]l/2j (14) 

we obtain the self-consistent equation 

72 (w) = w + 2Ny (a>)/[> (co) - f\ (15) 

which determines 2 (co). The corresponding level density 
n(E) is given in terms of y(co): 

By setting 

n(E) = (l/2ir) Re[y(E+iO)2~1. (16) 

FIG. 6. The density of states in the Brueckner approximation for 
N=i and N= YQ. For N = TS, the gap between the impurity band-
band and the conduction-band is already very small; for N = i, 
the impurity band is completely smeared out. 

Therefore, in this case, by using Cardan's formula, 
n(E) can be calculated immediately. Qualitatively, the 
results are reasonable; for small values of TV a narrow 
symmetrical impurity band is obtained and this band is 
separated from the conduction band by a gap; this 
gap disappears as expected when N increases. How
ever, quantitatively, the method is very bad, as can 
be seen by comparing the results obtained for N=\ by 
using this approximation (see Fig. 6) and the nearly 
exact results calculated for the same density of impurity 
centers (see Fig. 1). 

Thus, for small values of TV, this approximation fails 
to give a physical picture of the formation of impurity 
bands; the broadening predicted by this theory is 
much too large. For large values of TV, this method may 
be useful, but for small values of N, the problem must 
be carefully re-examined. 

III. METHOD OF THE SELF-PROPAGATOR 

In order to build a new chain of approximations, we 
start from the basic idea that each electron is wandering 

>o 

(a) (b) (c) (d) 

8 J. R. Klauder, Ann. Phys. (N. Y.) 14,43 (1961); F. Yonezawa, 
Progr. Theoret. Phys. (Kyoto) 31, 357 (1964). 

FIG. 7. Simplified diagrams. The articulation points are indi
cated on the atom circles by dots. Here the drawings (a) and (b) 
correspond, respectively, to the diagrams (a) and (b) of Fig. 1 
(and also to other diagrams having the same structure). The con
tribution associated with diagram (c) is the matrix /(o>), and is the 
sum of the contributions corresponding to all the diagrams of 
Fig. 2. The diagram (d) corresponds to the diagram (a) of Fig. 4. 
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FIG. 8. Expansion of G(k,ca). The articulation points are repre
sented by squares and the operators S(k,oi) by a wavy line. 

from atom to atom, and therefore, that the Green's 
function should be expressed in terms of diagrams 
corresponding to this picture. Consequently, we intro
duce a new set of diagrams by suppressing, in our 
previous diagrams, all the interaction lines. Now, in 
these simplified diagrams, the atoms are represented by 
small circles (see Fig. 7); successive interactions of an 
electron with an atom A are symbolized by a point on 
the corresponding circle; and if an electron interacts 
with an atom A and immediately after with an atom B, 
we draw a line directed from A to B. Thus, each new 
diagram corresponds to a collection of the old diagrams. 
The contribution of one of these new diagrams can be 
calculated as follows: To each line joining two atoms, 
we associate the propagator G0(kyo)), and to each point 
of contact of the electron line with an atom circle, we 
associate the ^-matrix t(co) [the diagonal part of which 

i s i V - ^ o O W ] . 
We can now define the 5 reducibility of these new 

diagrams by introducing the notion of articulation 
point. By definition, a point belonging to an atom circle 
A is an articulation point if all centers M' (M'^A) 
which are met by the electron before reaching A at this 
point, are different from the centers M" (M'r9^A) 
which are reached by the electron after leaving M. This 
definition can be illustrated by the drawing of Fig. 7, 
where the articulation points are indicated by dots. 

Now, we can split a diagram into irreducible S parts 
by cutting the lines which are connected to this point. 
There are two kinds of irreducible parts. The irre
ducible parts of the first kind have both ends rooted on 
the same center M; the sum of their contributions (the 
ends are excluded) can be represented by an operator 
N 6,(03) independent of the wave number k. On the 
contrary, an irreducible part of the second kind con
nects two different centers M and M' and carries a 
momentum k. The sum of the corresponding contribu
tion can be represented by an operator (B(£,co). The 
self-propagator is defined by 

S(fe,w)=Cfc(u)+(B(Jk,w). (17) 

Now, it is easy to express G(k,co) in terms of this 
operator; we attribute to each articulation point the 
factor Nt(oi), where t(oy) is the one-impurity t operator 
and we describe the motion of an electron between two 
articulation points by S(£,co). A graphic representation 
of G(k,oo) is given in Fig. 8, and we can write accordingly 

or, more simply, 

G(*,«) = G0(*,w)+Go(*,w)<*|^(«)|Jfc>Go(M 
+Go(^co)^l^(^)S(^,w)W(co)|^)(?o(^,co) 

+Go(M î̂ (^)s(M^(^)s(M^(w)l̂ )Go(M+- • • 

G(^,a)) = G ; o ( ^ , c o ) + G o H M ^ I ^ ( ^ ) C l - ^ S ( M ^ ( w ) ] - 1 ^ } . 

(18) 

(19) 

This relation is rather similar to Eq. (9) and both are 
rigorous, but $(k,u>) and 2(£,co) are not related in a 
simple way; actually, 2 reducibility and S reducibility 
are very different notions. This new expression of 
G(k,o)) can be used as the starting point of a new 
approximation, since $(k,u>) can be expanded in terms 
of N. I t will be shown now that, in the lowest order 
approximation and for small values of N> this kind of 
expansion leads to fairly good results. 

For the d model, simplifications occur in the expres
sion of G(&,co). In this case, the matrix elements of 
t(u>) are independent of the momentum transfer: 

N(k\t(<a)\u)=v(<a). (20) 

Therefore, by setting 

S(k,a>)=T,(u\S(k,o>)\v), (21) 

we can write 

G ( M = ^o(^,co)+G0
2(M 

<r(co) 

l-cr(«)S(ft,«) 
, (22) 

or more explicitly, by using Eqs. (6) and (10), 

G(*,o>) = -
1 1 2iV(co) 1/2 

(23) 
u-k2 (co-&2)2 u1l2-i+2N(o>)1l2S(k,o)) 

S(k,<a) is the sum of two terms, 

S(k,a)) = A(a>)+B(k,a>). (24) 

The lower order terms are independent of N and corre
spond to the full interaction of an electron with two 
centers (see Fig. 9). A straightforward calculation gives 

AQ(a>) = -il J [2 l n ( ^ / 2 - i ) 

-ln(co1/2)-ln(co1/2-2^)], (25) 

2n+l ' "' x2w 

£o(ft,o>)=£ (26) 
n=Q (27H-l)2CO-£2 

By replacing S(k,u>) by the sum of these two terms in 
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Eq. (22), we obtain the first-order approximation which 
will be examined now. 

As the interaction of an electron with two centers is 
treated in an exact way, the present approximation 
should give results in agreement with the crude nearest-
neighbor approximation. This remark can be checked 
by calculating n{E) in the vicinity of the value E= — l. 
In this case 

i lo^^-CI-El^-lJ lnl lEl^- l l 
-UTTWEI^-U (27) 

B0(&,£)~47r 11E11/2~ 11 tanh (±wk) 
X s i n ( H n | | £ | 1 / 2 - l | ) 

-§*7r( |£ |1 / 2- l ) c o s ( £ l n | | £ | 1 / 2 - l | ) . (28) 

The function B0(k,E) is a function which oscillates 
strongly and it is easy to show that its contribution to 
the calculation of n(E) for small values of | £ + 1 | is 
negligible. In this approximation, we get 

^ ( E ) - A r 2 ( 2 | | £ | 1 / 2 - l | [ l - 2 7 V l n | | E | 1 / 2 - l | ] 2 ) - 1 . 
(29) 

This expression has a form which is not very different 
from Eq. (12) since both expressions are nearly 
proportional to N2/1 | E | — 11 except at the singularity 
point. Moreover, we verify easily that 

L n(E)dE=N, (30) 

a result which was expected a priori. 
In this approximation, the function n(E) retains a 

singularity for E== — 1 and also, as can be easily shown, 
for E=0. This unsatisfactory behavior shows that our 
method can only be applied in the low-density region. 
However, in its range of validity, it gives fairly good 
results as it appears by comparison of our results, 
calculated for 2V=f and plotted in Fig. 10 with the 
exact calculations of Fig. 1. Thus for low values of the 
density of impurity centers N, this method seems to 
lead to realistic approximations6 and therefore can be 
used to study more complicated problems. 

FIG. 9. Diagrams represent
ing So (k,ui) = A o (co) +.Bo (k,co) : 
(aMo(«); (b)50(«) . 

(a) (b) 
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6 However, for E <4 , the approximation breaks down completely 
and in this domain our approximate Green's function has a real 
role which is spurious. 
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FIG. 10. The density of states obtained for iV=-§• by using the 
"self-propagator" method to the lowest order approximation. 

IV. CONCLUSION 

The motion of an electron in a potential produced by 
random atoms can be studied by perturbation theory 
but in different ways. When the density of atoms is 
large, the "Brueckner method" seems adequate. On 
the contrary, if the atoms are dilute, good results can 
be obtained by using the " self -propagator" method 
which has been described in the preceding section. 

Now in order to deal with practical questions, two 
main problems remain to be solved. First, we need 
new approximations which could be valid both for low 
and high densities. For this purpose, it is necessary to 
take into account, in an accurate way, the interaction 
of an electron with the nearest atoms as well as the 
interaction with distant atoms. On the other hand, the 
correlation effects which have been neglected here 
are rather important in the low-density limit and must 
be properly treated. In principle, these problems can 
be easily solved by perturbation theory, but difficulties 
arise from our requirements of convergence and 
simplicity: An approximation must be both realistic 
and easy to compute. Of course, the new mathematical 
models would find a wide range of applications in the 
study of random processes such as the conductivity of 
electrons in impurity bands, or the electrical properties 
or liquids. 
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