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The Knight shift K6 of nontransition-metal superconductors is discussed in terms of three contributions, 
namely: (a) The Van Vleck part of the contact shift attributed to the spin-orbit coupling force of the periodic 
potential which, in the presence of an external magnetic field, causes virtual high-energy rearrangements 
of conduction electrons near and inside the Fermi surface; (b) that part of the contact shift which is attributed 
to low-energy rearrangements of conduction electrons and affected by spin-reversing scattering; and (c) 
the diamagnetic orbital shift. For the calculation of (a), Wannier's theory of a Bloch electron in a magnetic 
field is generalized to the original Pauli Hamiltonian 3Co, describing the relativistic dynamical behavior of a 
conduction electron in the effective periodic potential of the lattice. This leads to an effective Hamiltonian 
which couples only Bloch-type spinors of the same band index, but of the same and of different spin indices. 
With the help of the eigenfunctions of 3Co, the hyperfine contact interaction is treated by perturbation 
theory. To arrive at simple expressions for the corresponding Knight shift and nuclear spin-relaxation 
time, valid for arbitrary strength of spin-orbit coupling, the energy-band function in the absence of the field 
is approximated by a parabola. Formulas for (b) and (c) are taken from the literature. The relative im
portance of the three contributions to Ks is discussed for Al, Sn, and Hg, where the Knight shift has been 
observed in the normal and in the superconducting states. If one assumes that spin-reversing scattering 
is caused merely by spin-orbit interactions at atomic imperfections such as displaced surface atoms of small 
particles, and not by paramagnetic impurities, one finds that in Al neither of the two spin-orbit coupling 
effects is sufficiently strong to account for more than ^ 2 % of the residual shift KS(Q). For the experimental 
Sn sample, (a) and (b) have the ratio 1:3 and, together with the orbital shift, can account for § of the 
observed Ks(0). For Hg, (a) and (b) are of comparable magnitude at T = 0 and together account for more 
than | of the observed shift Ks(0). 

INTRODUCTION 

ALTHOUGH the original BCS theory of super
conductivity uses a rather simplified effective 

electron-electron interaction,1'2 it is by now widely ac
cepted that this theory gives the correct answer for 
the ground-state wave function of the many-electron 
system in nontransition metals—namely, that it con
sists of some coherent superposition of quasibound 
electron pairs which are in singlet spin states. Since the 
BCS theory is a nonrelativistic theory, spin-orbit 
coupling and other relativistic effects which arise from 
the periodic electric field of the crystal lattice are 
ignored. Then, each electron of a "ground pair" is in a 
pure spin state; one is in a spin-up state and the other is 
in a spin-down state. The corresponding spin suscepti
bility is associated with the low-energy rearrangement of 
electron spins in the vicinity /3eH of the Fermi surface 
(—jSe= Bohr magneton). In the superconducting state, 
it decreases with temperature as some exponential func
tion and vanishes for the ground state.3 This prediction 
of the BCS theory was apparently contradicted by 
earlier nuclear-magnetic-resonance (NMR) measure
ments on Hg and Sn, where it was found that the Knight 
shift does not vanish as T—>0.4,5 The contradiction 
occurs if one assumes that the Knight shift is merely 
caused by the contact part of the hyperfine interaction. 

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1957), referred to as BCS. 

2 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962). 
3 K. Yosida, Phys. Rev. 110, 769 (1958). 
4 F. Reif, Phys. Rev. 106, 208 (1957). 
5 G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961). 

With this assumption, several distinct explanations 
have been offered to resolve the discrepancy.6 In particu
lar, Anderson,7 Ferrell,8 and Abrikosov and Gor'kov9 

have shown that spin-reversing scattering, arising from 
spin-orbit interactions at displaced surface atoms, plays 
an important role in small specimens.10 Consequently, 
NMR experiments were undertaken on two super
conducting metals with small atomic numbers, V 
and Al. 

For vanadium, a 3d transitional metal, Noer and 
Knight11 observed no change in the Knight shift below 
the transition temperature Tc. This result is attributed 
to the dominant role of the orbital part of the hyperfine 
interaction.12 The significance of this interaction for 
transition metals, where it gives rise to virtual high-
energy transitions of d electrons, was suggested by Kubo 
and Obata.13 The orbital paramagnetic Knight shift was 
first observed on VsGa and VgSi by Clogston, Jaccarino, 

6 See J. M. Blatt, Theory of Superconductivity (Academic Press, 
Inc., New York, 1964), p. 301 ff., for literature references. 

7 P. W. Anderson, Phys. Rev. Letters 3, 325 (1959). 
8 R. A. Ferrell, Phys. Rev. Letters 3, 262 (1959). 
9 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 

42, 1088 (1962) [English transl.: Soviet Phys.—JETP 15, 752 
(1962)]. 

10 Small specimens, with a dimension d<^d ( = penetration depth) 
must be used in order to obtain a homogeneous magnetic field 
(Meissner effect). 

11 J. Noer and W. D. Knight, Rev. Mod. Phys. 36, 177 (1964). 
12 The observed temperature dependence of the nuclear spin 

relaxation time, which is found to be the same in the normal and 
the superconducting state (Ref. 11), can, however, not be ex
plained in terms of the orbital interaction. 

13 R. Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956). 
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FIG. 1. Observed temperature 
dependence of the ratio of the 
Knight shift in normal and super
conducting states for nontran-
sition metals. 
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Gossard, and Yafet.14 These authors15 have also pre
sented a theoretical analysis of the orbital Knight shift 
for the 5d transition metal Pt, based on the tight-
binding approximation and with incorporated spin-orbit 
coupling. They have been able to separate the total 
Knight shift of Pt into its relative contributions from 
(1) the contact interaction with unpaired electron spins 
Kc, (2) the contact interaction with ion-core s electrons 
which are spin polarized because of their exchange 
interaction with unpaired conduction electrons Kap, (3) 
the orbital interaction KOTb- A fourth interaction, 
(4) the dipolar interaction of nuclear spins with un
paired conduction electrons, gives rise to the shift KdiP 

which vanishes for cubic crystals, provided that spin-
orbit coupling is ignored. Then, in a superconductor, 
there is only the orbital Knight shift left as T —> 0. Of 
the four contributions to the Knight shift, only the 
orbital shift may be considered as a "diamagnetic" 
effect, in the sense that it does not depend on unpaired 
electrons in the vicinity of the Fermi surface, but on all 
the electrons inside this surface. 

As for Al, one is concerned with a nontransition-metal 
superconductor which, because of its simple electronic 
structure16'17 and its weak electron-phonon interaction, 
comes closer to the assumptions of the BCS theory than 
any other superconductor known at present. One can 
ignore Kdiv (cubic symmetry), and K0rb is expected to 
be small compared with Kc. A NMR experiment on Al 
then provides a relevant test on the significance of spin-
reversing scattering in small particles. If the lifetime of 

14 A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet, 
Phys. Rev. Letters 9, 232 (1962); Rev. Mod. Phys. 36, 170 
(1964). 

15 A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134, 
A650 (1964); see also, M. Shimizu and A. Katsuki, J. Phys. Soc. 
Japan 19, 614 (1964). 

16 W. A. Harrison, Phys. Rev. 118,1182 (1960), see, in particular 
Fig. 4 of this paper. 

17 W. A. Harrison in The Fermi Surface, edited by W. A. 
Harrison and M. B. Webb (John Wiley & Sons, Inc., New York, 
1960). 

an electron in a pure spin-up or spin-down state 
Ts)>>h/2eo, where the energy gap 2e^2>.5kTCi the 
Knight shift should vanish as T —> 0.7 For Al, this condi
tion requires r s>10~n sec, which is not a particularly 
large time,18 so that a nearly vanishing Knight shift may 
reasonably be expected as J1—>0. However, careful 
experimental observations by Hammond19 on Al films 
of 200-A thickness show (see Fig. 1) that the Knight 
shift decreases by only 25% of its value at Tc (= tran
sition temperature) as T —> 0. In view of this result, the 
question was raised by Ferrell20 as to whether the spin-
orbit coupling forces, arising from the periodic crystal
line field and causing virtual transitions from the BCS 
ground state to excited states with energies ^>2e0, can 
produce a significant contribution to the spin suscepti
bility which is, as the paramagnetic orbital suscepti
bility of transition metals, temperature-independent 
and of the type known as Van Vleck or high-frequency 
paramagnetism. This spin-orbit coupling effect is a bulk 
effect, that is, it is size-independent and, therefore, 
should be separable from the one caused by scattering 
of electrons at atomic imperfections. 

It is the primary purpose of this paper to calculate the 
effect of spin-orbit coupling, caused by the periodic 
electric field of the perfect lattice, on the Knight shift 
Kc of nontransition-metal superconductors. To this end, 
we calculate the high-frequency or Van Vleck-type con
tribution in the normal state and assume that this 
contribution remains unaffected by the transition to the 
superconducting state. As for the legitimacy of this 
procedure, we follow Anderson7 and Ferrell20 in con-

18 For Na—which has the atomic number 11 as compared to 13 
for Al—G. Feher and A. F. Kip [Phys. Rev. 98, 337 (1955)] find 
an experimental value of 9X10 - 5 sec for the electron spin re
laxation time, in fair agreement with the value of 2X10 - 9 sec 
obtained from Elliott's theory of electron spin relaxation due to 
spin-orbit scattering [Phys. Rev. 96, 266 (1954)]. 

19 R. H. Hammond and G. M. Kelly, Rev. Mod. Phys. 36, 185 
(1964). 

20 R. A. Ferrell, University of Maryland, Technical Report 
No. 329 (unpublished). 
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FIG. 2. Schematic sketch of the spectral decomposition of the 
absorptive part of the spin susceptibility. Curve 1 is a 5 function 
centered at the Larmor frequency coi = 2 \($e | H; with the Kramers-
Kronig relation it yields the Pauli susceptibility of a free-electron 
gas. Curve 2 exhibits spin-orbit scattering and the spin-orbit 
coupling effect arising from the crystalline field with the broad
ening of the low-frequency contribution and the occurrence of a 
high-frequency contribution, respectively. The "paramagnetic" 
part of the residual Knight shift Ks(0) in the superconducting 
state, which depends on the unpaired electron spins, is determined 
by the area under the curve for co>coo = 2€o(0)/#. 

sidering the spectral decomposition of the absorptive 
part of the spin susceptibility, x"(w) ( s e e Fig. 2), ignor
ing the effect of the magnetic field on the orbital motion 
of the conduction electrons. For free electrons, x " ( w ) / w 

is a 8 function centered at the Larmor frequency 
coi (curve 1). Spin-orbit scattering broadens x"(w) to 
an extent depending on rs (see low-frequency part of 
curve 2). Spin-orbit coupling caused by the periodic 
electric field gives rise to the high-frequency contribu
tion of curve 2 (a£>>eo/&=a>o). The residual spin sus
ceptibility and the comparable part of the contact shift 
in the superconducting ground state depend on the area 
under the curve 2 for frequencies co>a>o. Furthermore, 
in the presence of spin-orbit coupling there is a second 
contribution to the contact shift which has no com
parable part in the spin susceptibility; it arises from 
electrons inside the Fermi surface, also because of the 
interplay between spin-orbit coupling and the coupling 
between orbital motion and magnetic field. To calculate 
the total Van Vleck-type contribution to KCJ we employ 
Wannier's powerful and compact formalism for Bloch 
electrons in a magnetic field (see also Kohn,21 Blount,22 

and Roth23). In Sec. I, Wannier's theory is properly 
generalized to a relativistic Bloch electron in a magnetic 
field. Thereby one is led to an effective Hamiltonian 
which couples only Bloch spinors of the same band 
index, but of different, as well as the same, spin indices. 
As an interesting by-product of this calculation, the 
correct g factor for conduction electrons is readily ob
tained. I t may be mentioned that recently Wannier and 

Upadhyaya24 have derived, with a brief calculation, the 
field-independent susceptibility of nonrelativistic Bloch 
electrons and have found the same result as Roth23 and 
Hebborn and Sondheimer.25 With the help of the two-
component wave functions for a Bloch electron in a 
magnetic field obtained in Sec. I, the hyperfine contact 
interaction is treated by perturbation theory in Sec. I I . 
In order to arrive at meaningful and tractable expres
sions for the perturbation energies, we introduce what 
will be called the parabolic approximation] that is, we 
approximate the energy-band functions for the spin-up 
and the spin-down band, in the absence of the field, by 
parabolic functions. The corresponding conduction-
electron wave functions exhibit with fair accuracy the 
effect of the periodic potential, including spin-orbit 
coupling, and will be used to derive explicit expressions 
for the Knight shift Kc and for the nuclear spin relaxa
tion time TCy valid for arbitrary strength of spin-orbit 
coupling. In Sec. I l l , the experimental situation for the 
three non-transition metals Hg, Sn, and Al, on which 
the Knight shift has been measured above and below Tc, 
is analyzed in terms of (a) the spin-orbit coupling effect 
due to the crystalline field, (b) spin-reversing scattering 
caused by spin-orbit interactions between conduction 
electrons and nonmagnetic imperfections and by ex
change interactions between electrons and paramagnetic 
impurities, and (c) the hyperfine orbital interaction. 
Taking the available experimental data on the Knight 
shift and the nuclear spin relaxation time and using the 
known experimental and theoretical results on the 
electron structure, we find that a large fraction of the 
Knight shift observed on the three superconducting non-
transition metals Al, Sn, and Hg can reasonably be 
accounted for by (a), (b), and (c). 

I. RELATIVISTIC BLOCH ELECTRONS IN 
A MAGNETIC FIELD 

As for the relativistic eigenvalue problem for Bloch 
electrons belonging to a simple band, one is concerned 
with the solution of the original Pauli equation26 for a 
single conduction electron moving in an effective 
periodic potential V(r) and a homogeneous magnetic 
field: 

fie eh 
: ( 8 x P ) . « r — £-P <r-H 

Mm2c2 2mc 2m Am2c2 

+ \ Ante2/ 

P2 Wh d ni 
+V(r) U= 

.% dt JJ 
0 . (1) 

21 W. Kohn, Phys. Rev. 115, 809 (1959). 
22 E. I. Blount, Phys. Rev. 126, 1636 (1962). 
23 L. M. Roth, J. Phys. Chem. Solids 23, 443 (1962). 

In the present case, e£= —dV/dr and P = p — (e/c)A is 
the canonical momentum of an electron in the presence 

24 G. H. Wannier and A. N. Upadhyaya, Phys. Rev. 136, A803 
(1964). 

25 T. E. Hebborn and E. H. Sondheimer, J. Phys. Chem. Solids 
13, 105 (1960). 

26 W. Pauli, in Handbuch der Physik, edited by H. Geiger and K. 
Scheel (Julius Springer-Verlag, Berlin, 1932), Vol. XXIV/I, p. 161. 



S P I N - O R B I T C O U P L I N G 1539 

of a vector potential A giving rise to the homogeneous 
magnetic field H. The particular gauge is of no real 
importance; here we take also A= J H x r (see W). 

Bloch and Wannier Spinors 

To find a stationary-state solution of the gauge-
invariant Pauli equation, Wannier's theory27 is extended 
to the relativistic Hamiltonian 3Co, defined by Eq. (1), 
which incorporates spin-orbit coupling, the s shift or 
Darwin correction, and the mass-velocity correction. To 
this end, it is convenient to choose as basic functions the 
two-component Wannier spinors, given by 

Amp(i,Ri) = exp[-±i(e/hc)R-xxRz>mp(r-Rz), (2) 

where 

0mp(r—Rj)= <pmp(r—Ri)a+Xmi)(t—Ri)p. (3) 

Here, R; is a lattice vector in a simple cubic lattice with 
unit cell a3. The Wannier spinor Amp depends on the 
magnetic field through the Peierls phase factor and 
through the spinor components <pmp and Xmp. The index 
p is the quantum number f or I which refers to the 
electron spin but, because of spin-orbit coupling, does 
not correspond to a pure spin state. In order to arrive 
at the basic set of relativistic wave equations for the 
spinors amp, which is uncoupled in the band index m, one 
can proceed in precisely the same fashion as Wannier 
does. Then, one arrives at the following set of defining 
equations for the Wannier spinors amp: 

3C0[p-iG?/<OHX ( r - R i ) , r, < r > m p ( r - R 0 

= L E exp[£i(6/fc)H- (r x R z + R , x R z + R Z , x r ) ] 
P' v 

X & w ( R i - RiOflmp' ( r - RzO. (4) 

The significant difference between this set of equations 
and the corresponding one for the nonrelativistic case 
comes about because of spin-orbit coupling effects. 
These, in the presence of the magnetic field, cause an 
admixture of spinors Amp\p9^p) into the quasicyclic 
expansion of the left-hand side of Eq. (4). The admix
ture is determined by the Fourier components compp> of 
the field-dependent energy-band function 

Wmpp'CkHE <oTOpp/(R0 exp(ik«Rz), (5) 
i 

which, for a finite field strength, is nondiagonal in the 
spin quantum numbers p and p. To find the Bloch 
spinor equation implicitly contained in Eq. (4), this 
equation is multiplied by exp(ik-Rz) and summed over 
/ .By writing a field-dependent Bloch spinor in the form 

i»P(r,k) = X) exp(ik-Rz)awp(r—RO, (6) 
i 

27 G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962), referred to 
as W; G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910 
(1962). 

and by using the identity 

[ p - | ( ^ A ) H x ( r - R z ) > w p ( r , k ) 

= CP" i («A)H x ( r+td /dk)]6 m p ( r ,k) , (7) 

one finds the defining set of equations for Bloch spinors: 

3 e o [ p - i ( c A ) H X ( r + f d / d k ) , r, a> m p ( r ,k) 

= E E WmPP'(Ri) exp(ik-Rj) 
P ' i 

X e x p [ - \i (e/hc)R x R r r ] 

X&mp' fck+i t e / foJHxR, ) . (8) 

This equation defines a Bloch spinor bmp which can be 
written in the conventional splitup form: 

bmp (r,k) = exp (jk • r) [ump ( r ,k)a+ vmp ( r ,k)#] , (9) 

where ump and vmp are field-dependent functions. The 
periodicity of these functions in r follows from the 
observation that on the left-hand side of Eq. (8), r 
occurs in the periodic combination r + i d / d k which, 
operating on bmp, gives i(d/dk)[umpa-{-vmp^']; this 
expression is clearly periodic in r. With the help of 
Eq. (9), Eq. (8) can be rewritten in the form 

3Colp+hk-U(e/c)3CXd/dk, r, <r] 

X [umP ( r ,k)a+ vmp (r,k)/3] 

= Z Z «mPp'(Ri) exp(ik«Rz) 

X[>mp'(r, k+J(« /*^)H xR0a+u m p , j8 ] . (10) 

This equation for the periodic part of the Bloch spinor 
can be decomposed into two simultaneous equations 
for the spinor components ump and vmp and for the copp/. 
In the limit H=Q, the nondiagonal components of the 
energy band function vanish, 

lim TTpp, (k) = 0 , for p^pf, (11) 
#->o 

and, consequently, cowpp'(fir=0) = 0 for p9^p> so that 
Eq. (10) goes into the correct zero-field equation for the 
periodic part of a Bloch spinor. Assuming that the eigen
value problem has been solved for H—0, we can calcu
late for a finite field the ump, vmpy and compp/, as power 
series expansions in H. Before the g factor of conduction 
electrons is determined for arbitrary k in this fashion, 
let us proceed to the derivation of the proper effective 
band Hamiltonian for relativistic Bloch electrons. 

Effective Hamiltonian 

For this purpose, the basic set of uncoupled equations 
for the amp, given by Eq. (4), is not a proper starting 
point. Instead, Wannier27 found it convenient to begin 
with a relation of the form 

[ p - i ( « A ) H x r ] e x p p X ( r ) > m p ( r - R i ) 
= exp[tX(r)][p-i(e/<;)H x ( r - R « ) > m p ( r - R « ) , (12) 
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which follows from Peierls' observation28 that with the 
help of the gauge transformation 

A(r)-*A(r)+gradX(r), (13) 
where 

X(r)=-J(«/kOH-(rxRO, (14) 

the Schrodinger equations for localized functions 
centered at R; (1= 1, 2, 3, • • •) can be brought into one 
and the same form, that is, into a set of equations cyclic 
in Rz. If, for our case, the basic spinors are taken in the 
form of Eq. (2), Eq. (12) yields 

5Co[p-|(^A)H xr, r, <r]^mp(r,Rz) = exppX(r)] 
X0C0[p-i(«A)H x (r-RO, r, a > m p ( r - R i ) . (15) 

Into this equation, one can substitute Eq. (4) and, then, 
one finds a set of uncoupled equations for the Amp 

given by 

5Co[p-i(^A)H xr, r, <r]<4TOp(r,Rj) 

= E E expB*"(«/*<0H-Ri xRj,] 
P' r 

Xc*w (R,- R,,)<4 m,* (r,RiO. (16) 

This equation can readily be rewritten in terms of 
Bloch-type spinors 

Bmp (r,k) = bmp[r, k - 1 (*/fo)H x r] 

= Eexp(4.Rz)i4«p(r,Ri), (17) 
i 

the components of which are not identical to Harper 
functions29 because of the field dependence of the Amp 

beyond that given by the Peierls phase factor, that is, 
because of the field dependence of the <pmp, Xmp. Multi
plication of Eq. (16) with exp(ik»Rz) summation over 
/ yields 

5Co[p-i(^A)H xr, r, <r]£mp(r,k) 

= E E exp(ik-Rz)compp'(Rz) 
P ' i 

XBmp,[r, k+Ue/ftc)E x R J . (18) 

With the help of this equation, one proceeds directly 
to the effective band Hamiltonian if an eigenfunction 
of the original Pauli Hamiltonian is written in the form 

*P(r) = C E f fPP> <&Bmp, (r,k)dk, (19) 

where C is a constant and where 12*= (2x/a)3 is the 
volume of the elementary Brillouin zone. Because of 
spin-orbit coupling effects, Bloch-type spinors Bmp from 
both bands are admixed into an eigenfunction ^p. The 
admixture depends on the amplitude functions jpp> 
for p^p; it must vanish if the spin-orbit coupling 

28 R. Peierls, Z. Physik 80, 763 (1933). 
29 P. J. Harper, Proc. Phys. Soc. (London) A68, 879 (1955). 
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strength vanishes. When 3C0 is applied to an eigenfunc
tion \f/py one finds, after a shift of the momentum 
variable k to k—|(e/fo)H * Rz> 

W P W = C Z I E f /PP,[k-He/^)HxRJ 
P' Pn l> J Q* 

Xw»p'p-(Rj) exp(ik.Rz)^wp-(r,k)^k. (20) 

If the amplitude function /PP'(k) can be Fourier 
analyzed, it is easily seen that 

/pp ,(k-ko) = exp(-Ao-d/dk)/pp,(k). (21) 

With the help of this equation and the Pauli equation 
for the stationary state, Eq. (20) becomes 

E E Wmp,p„Zk-U(e/hc)E. x d/dkl 
p ' p " 

Xf„(k)£mp- (k) = Ep E / „ (k)5»P- (k), (22) 
P' 

where Ep is an eigenvalue of 3Co. Let us now interchange 
the spin indices p" and p on the left-hand side and, 
furthermore, assume that the Bmp are linear-independ
ent; then one arrives at the simultaneous set of eigen
value equations 

E Wmp,,p,(K)fpp,,(k)==Epfpp,(k), (23) 
P" 

where the operator K=k—^(e/hc)H xd/dk. The four 
components Wmpp>(K) represent the effective band 
Hamiltonian for a relativistic Bloch electron in a 
magnetic field; the Wmpp>(k) are given by Eq. (5) and 
can be found as power series expansions in H from Eq. 
(8). The first-order term of this expansion determines 
the g factor30 (see Appendix A). 

II. KNIGHT SHIFT AND NUCLEAR SPIN 
RELAXATION 

The total hyperfine interaction between the conduc
tion electrons and the nuclear magnetic moments, 
located at lattice points Rz, is given by31: 

5Ci=5Cc+5Corb+5CdiP, (24) 

where 

3Cc = E 0Co(/,y) = - W 3 E Vafo)-VnCRi^fe-Ri) (25) 
1,3 1,3 

30 For a detailed theoretical discussion of the g factor in solids, 
the reader is referred to Y. Yafet, in Solid State Physics, edited 
by F. Seitz and D. Turnbull (Academic Press Inc., New York, 
1963), Vol. 14. 

31 A. H. Bethe, in Handbook of Physics, edited by S. Flugge 
(Springer-Verlag^ Berlin, 1957), Vol. XXXV/I, p. 193; here one 
finds a formal derivation of the total hyperfine interaction whereby 
it is shown how its various contributions arise as lowest order 
relativistic corrections, linear in /*„, from the relativistic theory of 
two interacting particles. 
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is the contact interaction, and where32 

\e\ rj-Ri 
SCorb = E l » n (R|) ' — -

mc 1,3 I r y — R z | 3 

X 
/hy2\ fdV\ 

\4mcV VoWJ 
-5CC (26) 

is the orbital interaction. The dipolar interaction 3CdiP 

will not be considered here, since, for most metals, it is 
small compared with 5CC and 5Corb- Furthermore, it 
depends on the number of unpaired electron spins. In 
particular, for the noncubic metals Sn and Hg, the 
observed anisotropic Knight shifts, which are partly 
caused by 3CdiP, amount to only a few percent of the 
total shift.33 3Corb, the spin-orbit interactions between 
nuclear spins and electron orbits, differs from its 
standard form (see Ref. 31) where the spin-orbit inter
action between electron spins and electron orbits is 
ignored. Equation (26) contains the usual convergence 
factor, Y(/) = [ 1 + ( E — V)/2mc2~]~l, which can be 
omitted if Bethe's prescription is used in calculating 
expectation values of 3Corb-

Since for the three superconducting metals, Al, Sn, 
and Hg, the hyperfine contact interaction is the domi
nant source of Knight shift and nuclear spin relaxation, 
we shall treat both in some detail, with emphasis on 
spin-orbit coupling effects, first the effect arising from 
the crystalline field and then the one caused by scatter
ing.7-9 As for the orbital interaction, its relative im
portance for the three nontransition metals will be dis
cussed with the help of recent work by Hebborn34 and 
Yafet.35 

Spin-Orbit Coupling and KG 

In the representation found in Sec. I for Bloch 
electrons in a magnetic field, the contact interaction 
between a single nucleus with moment yin located at 
the origin of a simple cubic lattice, with dimensions 
—Ga/2<x,yyz<Ga/2, and the system of N—Gz con
duction electrons, is treated as a small perturbation. 
Then, from the corresponding thermodynamic perturba
tion expansion for the free energy F of electrons and 
nucleus, the first-order term Fi is taken for the calcula
tion of the Knight shift, Kc= — Fi/yw«H. We write 

F=Fo+Fl+- (27) 

32 See, e.g., Ref. 15, p. A658. 
33 T. J. Rowland, Acta Met. I, 731 (1953); F. Reif, Phys. Rev. 

102, 1417 (1956); a large anisotropic Knight shift, however, has 
recently been observed by R. R. Hewitt and B. F. Williams [Phys. 
Rev. Letters 12, 21b, (1964)] on Bi. The physical origin for this 
experimental result is not dipolar interaction, but the long-range 
part of the orbital interaction which makes the corresponding 
part of i£orb proportional to g2, whereas Kdip^ggo [go = 2, free 
electron g factor; g = effective g factor; this conclusion can be 
drawn from the work of Yafet (Ref. 35)"]. 

34 J. E. Hebborn, Proc. Phys. Soc. (London) 80, 1237 (1962). 
35 Y. Yafet, J. Phys. Chem. Solids 21, 99 (1961). 

where FQ is the free energy of nucleus and conduction 
electrons in the presence of the external field, and where 

Fi=Tr{P w( l ,2, . . . , iV)E«:.(0, i)}. (28) 

Here PN is the electron density matrix operator. Since 
3Cc(0,y) is a one-electron operator and since electron-
electron interactions are ignored to the extent that they 
are not incorporated in the effective local potential V(r), 
F\ is given by 

* i = E (ipl^eCO^IfpJCexp^p-D/ftr+lJ-1. (29) 

In order to determine Fiy correct to first order in H, 
the expectation value of the contact interaction between 
eigenfunctions \pip of 3Co is calculated to this order in 
the field strength. To this end, let us write the conduc
tion electron wave function in the form of Eq. (19); 

tiP=CZ tcPPlfM+H"fi]a(k)^ 

WO], (30) 

where /t-;o is an eigenfunction of Wppio(K). The normali
zation constant C and the coefficients cpp> are deter
mined as in ordinary perturbation theory. It is assumed 
that 

/ (fi;0fi;a"+fi^fi;a)dk = 0. 

A corresponding relation is assumed for the Bloch 
functions bmp;o and #wp;a. Then, from the condition 

/ \fi;o\2dk=l andfrom E l w l 2 = l , (31) 

one has 

cPP, = dpp,/(l+\dpp,\
2) = cpp,*y (P9*pf), (32) 

where d\\, and d^ are given by Eqs. (A19) and (A20), 
respectively. The constant C is determined by the 
normalization condition for Bloch spinors in the absence 
of the field. With 

E f | W ; o ( r , k ) | « r = l , 
p' JQ 

and with 

J imJ | ^ ( r ) | ¥ r = l , 

(33) 

where 12=a3, one has C— (£2*)1/2. Knowing the coeffi
cients C and cpp>, we take the wave function \f/ip, given 
by Eq. (30), and calculate the expectation value of the 
hyperfine interaction. To first order in H=HZ, it is 

file:///4mcV
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given by36 

(*p 13C0 (0,r) | tp) = - (8x/3)/i,,.d8. (I/O*) 

x | l I c A » f */" <&'/i;„*(k)/t;„(k') 
I P' p" 7 ft* ./ft* 

X C W w p ' s O * ^ ) ^ ^ ' ^ ^ ' ) — W f » p ' ; 0 * ( k ) U m p » ; o ( k / ) ] 

+ f f E E v f <*/" dk7.-;o*(k)/,-;0(kO 
p ' p " . /f t* 7 ft* 

X[«»p' ;«*(k)«Wp";o(k /) + «mp'jO*(k)«mp";»(k/) 

— ^ m p ' ; 2 * ( k ) w m p " ; o ( k / ) - ^ m p ' ; 0 * ( k ) ^ m p " ; 2 ; ( k O ] [ • (34 ) 

Here, ump;o(k) = ump;o(t=0, k). In the first term on the 
right-hand side of Eq. (34) we have omitted the term 
linear in Hfi;z since it does not contribute to F±. If the 
expression (34) for the expectation value of the contact 
interaction is inserted into Eq. (29), one has, to first 
order in H, the exact expression for the free-energy 
correction JPI caused by the contact interaction between 
the conduction electron system and a single nucleus. 

In its general form given above, (ip 13CC | ip) is not in 
a suitable form for a quantitative discussion of spin-
orbit coupling effects. Therefore, at this point we 
introduce what will be called the parabolic approxima
tion. The energy band function in the absence of the 
field is approximated by the relation 

WPM=(h2/2nt*)\k\2. (35) 

This equation is to be considered as a rough interpola
tion formula for the energy of Bloch states within the 
occupied part of the Brillouin zone, not as the nearly 
free-electron approximation. For Wpp;o, the effect of the 
lattice, and thus of spin-orbit coupling, is contained in 
m*, which depends in second and higher order on some 
characteristic parameter for the spin-orbit coupling 
strength. The energy levels E^Q of (h2/2ni*)K2, where 
K=k—J(e/ fo)H x d/dk, are highly degenerate, as they 
are for free electrons. For Bloch electrons, the correct 
eigenvalues Eip of WPP'(K) are also degenerate, but each 
degenerate level is broadened into a band, as one knows 
from the work of Kohn37 and Blount.22 Here, this 
broadening is ignored because (a) the correct effective 
Hamiltonian W'pp> is replaced by its zero-order term 
WPP';o (small fields), and (b) the energy band function 
in zero field is taken in the parabolic approximation 

3 61 am indebted to Dr. Y. Yafet for pointing out that the second 
term on the right-hand side of this equation leads to a contribution 
to the contact shift which depends on all occupied states. 

37 W. Kohn, Proc. Phys. Soc. (London) 72, 301 (1958); see also 
A. D. Brailsford, ibid. A70, 275 (1957) and G. E. Zil'berman, Zh, 
Eksperim. i Teor. Fiz. 32, 296 (1957) [English transl.: Soviet 
Phys.—JETP 5, 208 (1957)]. It has been pointed out by Kohn 
and Blount, for example, that at low fields this broadening is small 
compared with Landau splitting when the classical trajectories in 
k space do not touch each other, which is the case if the Fermi 
surface does not come close to the surface of the Brillouin zone. 

[Eq. (35)]. Then, with the gauge38 A={0,Hxfl}, the 
eigenvalues of (&2/2m*)K2 are given by 

Ei;0=E(n,Kz)= (h2s/m*)(n+l)+Kz
2/2w*, (36) 

and the corresponding eigenfunctions have the form 

/*•; o=/(»,«»,** ;k) 

= [^»W/(Q*)1/3]exp[(fA)MJ 
Xexp(-kx

2/2s)Hn(kx/s
1f2) 

X8(l-kz/KMl-ky/Ky), (37) 
where 

s=eH/tic, An(s)=(ir1l2s1l2nl2")-1l\ (38) 

and where Hn(x) is the Hermite polynomial of nth 
degree. The subindex i stands for the three orbital 
quantum numbers n, Km and KZ. The amplitude function 
(37) is the Fourier transform of the Landau wave 
function 

s^2An(s)in 

g(n,Kv,Ke;t) = exppOtyy+M;)] 
S21 '8 

X e x p [ - (is) (x-XoYlHnls1'2(x- * 0 ) ] , (39) 

where xo= —KV/S (see Appendix B). 
With the help of the parabolic approximation, the 

Knight shift can be brought into a simple form which 
clearly demonstrates the spin-orbit coupling effect. 
For this purpose, the expression (37) for the amplitude 
function is substituted into the matrix element given 
by Eq. (34), then the 8 functions are integrated out, and 
it is taken into account that the z part of the contact 
interaction (H=HZ) has vanishing matrix elements 
between Bloch spinors with different spin quantum 
numbers; the final expression for the contact interaction 
is given by 

» ( / 7 , + H G , ) , (*p 13Co 1 *p) = — (&r/3)/*».« 53 k 
P ' 

where 

(40) 

F An,W*) =(&*)-
-1/3 

+ivla 

dk< 
•ir/a 

+T/a 

ir/a 

Xexp 
/1Ky\ j / Kx \ fRx \ 

and where 

s1"/ \s11 

X [ _ ^ m p ' ; 0 \fcx)fcy)fcz)/M"mp' ;0\&x j^Uj^z) 

- U « p ' ; 0 * U m P ' ; o ] , ( 4 1 ) 

+ 7r/o r+irja 

dkj dkj 
-icja J —tela 

Xh 
f kx\ fkx\ 

n[ — )hJ — {exp[ fe / s ) (&/-&*)] 

-u» P ' ; «*V;o]+complex conj.} . (42) 
38 It is convenient to choose this gauge, and not the J(HXr) 

gauge, since it allows for simple Fourier transformations between 
coordinate and momentum representations. 
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The functions hn are denned by the equation 

hnikx/s1'2) = An(s) expi-kj/s^nikx/s1'*). (43) 

Let us substitute this expression for the contact inter
action and the energy eigenvalues of the parabolic 
approximation 

Eip=E (n,Kz) =F §g (n,Kz)0eH, 

[ u p p e r (lower) sign for p = T Q ) ] (44) 

in to E q . (29) for t he free-energy correction. T h e n the 
K n i g h t shift KG= —F/p,nzHz is given b y 

KC=— ( — l j S . D E / dKy dKZ 

3 \2T/ f » J —sail J-w/a 

Z p ' I <V | 2 [ ( l /H) i?> (»,K„,K,)+GP. (»,%,**)] 
X-

exp{[£(»,K,)=Fjg(»^)|8^ff-f]/Ar} + l 
• (45) 

This expression for the Knight shift is correct, in the 
parabolic approximation, for small magnetic fields and 
for arbitrary strength of spin-orbit coupling. The first 
part of Kc depends on Fp, which has opposite signs for 
"spin-up" (p= t) and "spin-down" (p= I) electrons. 
Therefore, only the unpaired spin electrons in the 
vicinity of the Fermi surface contribute. The first part 
exhibits spin-orbit coupling via three parameters, 
namely: the "dressed" g factor g(n,Kz), the coefficients 
cpp> which determine the admixture of Bloch functions 
from both the spin-up and spin-down band into a 
conduction-electron wave function, and the components 
ump;o and ump;o of a Bloch spinor in the absence of the 
field. All occupied states contribute to the second part 
of the Knight shift. It depends on that part of Gp which 
has equal sign for p= t and p= J and which vanishes in 
the absence of spin-orbit coupling. The first-order 
corrections Hzump;z to the field-independent Bloch func
tions occurring in Gp are calculated in Appendix C. At 
r = 0 , the Fermi-Dirac step function leads to the 
formula 

2T0= (&r/3)0, £ E kp'l2[(l/ff)F,+GpO, (46) 
p,p' i 

where £»• represents the number of states given by 

/

-f-ir/a 

dKz. (47) 

-ir fa 

Q2/3 /»+«a/2 /•+7r/a 

E = — £ / dKy\ dKz. 
* 47T2 » J-sa/2 

The upper limit for the oscillator quantum number n 
depends on p; one has 

t±(3egH/2 
(48) n0=-

ffis/m* 

Here g is defined as the mean value of g(n,Kz) over eigen-
states with energies E(n,Kz) = £. The function Fp is of 
interest only at the Fermi surface, where 

Fp= \ump;o(k^)\2~ ump;0(&r)|2. 

Writing Gp in terms of the series expansion (CI) and 
observing that, when H —» 0, the number of states E* 
goes into E k = f p(E)dE, where p(E) is the density of 
states in the parabolic approximation, we obtain the 
Knight shift in the form 

167T fie
2gg0 

KG= —p(f)E ktp!2[Kp;ofe)|2 

3 4 P 

16TT 

3 
+ Kp;ofe)|2]+—&EEKI2 

X{ E E A.(m,p,k;m',p',k) 

/\\J^mp;0 Mm'p'iO ^mp;0 ^m'p^OJ 

+compl conj}. (49) 

Here p(f) is the density of states at the Fermi surface, 
go=2, and, in the second term, ump;o=ump]o(r=0; k). If 
spin-orbit coupling is ignored, g=go, cPP' = 0 for p^p, 
and ump;o=0, so that the first part of KG becomes equal 
to the original expression of Townes, Herring, and 
Knight.39 The second part vanishes since Az(p7£pi) = 0 
for this case. For the special case where spin-orbit 
coupling is weak, g depends in first order and | cpp> |2 

and | ump; o |2 in second order on a smallness parameter 
\{/AE{, where Xf is an average spin-orbit coupling 
energy for Bloch electrons at the Fermi surface and 
where AEf is an average energy gap between conduction 
band states at the Fermi surface and excited states to 
which the orbital angular momentum connects. The 
second part of Kc is proportional to \(E)/[AE(E)~]2; it 
depends on the coefficients Az, which are defined as 
coefficients in the series expansion (A4) for the first-
order correction to the zero-field Bloch spinor bmp;o. 
These coefficients are calculated in Appendix C; it is 
seen that Az is proportional to an energy denominator 
times a matrix element which is of a form similar to the 
g factor. If one assumes that the corresponding spin-orbit 
contribution is positive, the total spin-orbit contribu
tion to the Knight shift is given by 

Kc«°=[8g(t)+ r 
*>(£) X(E) -i 

p(f) [A£(£)]2 J 
(50) 

I t is this part of Kc which remains unaffected when a 
metal becomes superconducting, and T —> 0. The g 
shift 5g is of the magnitude X^/AE^ but its sign cannot 
be predicted, even in this case of small spin-orbit 
coupling. We mention that for the three nontransition 
metals the second term in the bracket of Eq. (50) is of 
the order 

(^ /AE c . b . ) /p ( f )^ l , 

(»/A£e.b.) 

p(f) 
- c - 1 , 

39 C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77, 
852 (1950). 
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if one assumes one conduction electron per atom and if 
AEe.b.^3 eV. (n= concentration of conduction elec
trons; Ac.b. = average energy gap of conduction-band 
electrons.) 

Spin-Orbit Coupling and TV 

In metals the pertinent relaxation mechanism for 
nuclear spins consists in an energy exchange with con
duction electrons, caused by the hyperfine contact inter
action JCC. The corresponding relaxation time T\ is 
determined by the transition probability Pnm of a 
nucleus between two spin states n and m, in a fashion 
well defined by statistical mechanics (see Hebel and 
Slichter40'41). In order to calculate Pnm, the contact 
interaction is conveniently written in the form 

3Cc(0,r) = - (87r /3 )^ n 5( r ) [ / , c r 2 +K/ + cr -+ / -a - + ) ] , (51) 

where Vn—Pnl, and I±—Iz^zily. In the representation 
of Sec. I, the transition probability for a nucleus from 
state n to m and for an electron from state (i,p) to 
(i',p) is given by 

•*n,i,p',m,i',p' ^ [ ^PePnJ 

2T/8T 

—[—t 
ft \3 

X X) (n\Ia\tn)(tn\Ia'\n) 

X (fp18(r)cr«|*V)(i'p'18(r)cr«, \ip) 

X8(Eip-\-En--Ei>P'—Em), (52) 

where En is the energy of a nucleus in state n. Summing 
this expression for all initial and final electron states and 
taking into account the statistical occupation of each 
state with the Fermi-Dirac function f(Eip), we have 
the total transition probability per unit time 

Pnm=Z E i V < . p ; m f ^ P ' / ( £ < p ) [ W ( ^ ' P ' ) ] . (53) 
i,i' p,pr 

To evaluate this expression, let us introduce the 
parabolic approximation for which EiP is given by 
Eq. (44) and for which £ * is given by Eq. (47). Then, 
to lowest order in H, one has 

(*tk+5(r)|*' ̂
 = 4 f 

f dk'hn(kXt 
J a* 

dk 

Z*"1)*.'(*»'/*"*)«(!-V«.) 

X « ( 1 - * » / K » ) 8 ( 1 - * . ' A . 0 8 ( 1 - V A « 0 

(k) iw s o(kO. (54) 
P , p ' 

40 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959). 
41 C. P. Slichter, Principles of Magnetic Resonance (Harper and 

Row, New York, 1963). 

Since 0+ and cr_ are Hermitian conjugates, we also know 
the matrix element of <r+5(r). The third element, i.e., 
that of crz8(r), gives no contribution to Wmn, if one 
assumes Eip=Ei>p'. This assumption, however, is well 
justified since Em—En<^JzT. Then, taking into account 
the ^-function character of /(1-—/), eliminating with its 
help the integration over KZ7 and eliminating the inte
gration over KJ with the help of the 8 function in the 
transition probability [Eq. (52)], we have 

= #oo ]L (n\Ia\m)(m\Ia,\n), (55) 

where the sum excludes the term a=a', and where <zoo 
defines Tifi The low-field relaxation time is given by 

1 4x/87r \ 2 r F 2 ' 3 (2m*) 
-=2a 0 o=—(—PePn)kT \ 
T ft\3 / L 

J/2-

4w2 h J 

J J n,n' 

X C - (ft W ) (« '+*) - gpeHT1 

X | ( i T k + 5 ( O l n ) | 2 . (56) 

Here the matrix element of <r+8(r) is given by Eq. (54), 
with k={kx,Ky,Kz(n)} and with n determined by 
E(n,Kz)—gl3eH=£'. If one assumes that at the Fermi sur
face, the matrix element is constant (i.e., independent 
of the direction of k), the summation over n and the 
integration over tcy can be performed; this leads to the 
density of states per unit volume, 

p(f)=(2w*)3/2f1/2/4x2^3, 

and to the relaxation rate 

1 47T/87T V 
-=— —fcft.) ni ft \ 3 / 

P2(t)kT 

X | v 2 £ ^tp*^p'^mp;o*(^r)^p-o(^r)l2- (57) 
p>p' 

When spin-orbit coupling is neglected, only the term 
with the factor | c t t*cu | = 1 contributes to the relaxa
tion rate; then Eq. (57) becomes a well-known result 
(see Ref. 41, p. 126). For weak spin-orbit coupling, 1/ T\ 
has a contribution quadratic in \/AE. Assuming arbi
trary strength of spin-orbit coupling, we find, from Eqs. 
(49) and (57), the proper low-field Korringa relation for 
noninteracting electrons.43,44 

42 Coherent relaxation of two nuclei is ignored. 
43 For an external field H large compared with the local field 

(^40 G) but small compared with hc/ekf (so that s/k$<£\), the 
high-field Korringa relation contains a factor 2. 

44 To incorporate electron-electron interactions, the right side 
is multiplied by Pines' factor (see Ref. 41). The electron-phonon 
interaction has no effect on the spin susceptibility [J. J. Quinn, 
Ref. 17, p. 58; P. A. Wolf, Phys. Rev. 120, 814 (I960)]; its effect 
on the density of states in Z\ is not known but is likely to be 
temperature-independent, as indicated by the experimental fact 
T i r = const for Al and l ° < r < 1 0 0 0 ° K (J. J. Spokas and C. P. 
Slichter, Phys. Rev. 113, 1462, 1959). 
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As for the effect of spin-orbit coupling on the nuclear 
spin relaxation in a superconductor, the theory of Hebel 
and Slichter remains formally unchanged. The reason is 
that the spin-orbit coupling term in 3C0 has the sym
metry of the Bravais lattice so that a ground pair 
occupies the states (#z,k,f) and (m, — k, J,) related by 
time-reversal symmetry. The corresponding BCS wave 
functions lead, aside from a constant factor, to the same 
nuclear spin relaxation time as that of the original 
theory. Therefore, for a given temperature T<TC) the 
ratio of the relaxation times in the normal and the 
superconducting state, Tin/T\s, is not affected by the 
spin-orbit coupling force arising from the periodic 
crystalline field. 

Spin-Reversing Scattering 

Besides the spin-orbit coupling effects which were 
considered above and found to be of the Van Vleck type, 
there is another effect which gives rise to a broadening 
of the low-frequency contribution of the absorptive part 
x"(o)) of the spin susceptibility (see Fig. 2) and which 
therefore affects KCSJ namely spin-reversing scattering. 
This effect has been discussed in the literature7-9 and 
more recently also the nuclear spin relaxation time Tu 
has been calculated by Griffin and Ambegoakar,45 in
cluding spin-reversing scattering. Here we shall merely 
summarize the results, so that we can assess the relative 
importance of both the total effect arising from the 
crystalline field and the one caused by spin-reversing 
scattering. 

The first quantitative result for the spin susceptibility 
of small particles, where surface scattering plays an 
important role, was derived by Anderson.7 He intro
duced exact one-electron states, the scattered states 
^w ,en , and then calculated the perturbation theoretical 
expression for the susceptibility in terms of the matrix 
elements Snn'= GMo^l^n')- The energy dependence of 
these elements is taken from the function x"(^) 
oc (1-f coVa2)"1, where rs is a spin lifetime. The final 
result is given by 

lim(X8/Xw) = 1 — 2eors/h, h/r8^>eo, 
™ (58) 

= ft/6eaTs, ft/r8<^eo. 

Anderson's consideration ignores the effect of spin-re
versing scattering on the energy gap and on the density 
of states for quasiparticle excitations in a super
conductor. Nevertheless, Eq. (58) will be approximately 
correct, since the major contribution to the second-order 
perturbation expression for Xs comes from matrix 
elements Snn' with energy differences larger than eo 
(Fig. 2). The corresponding density of states, however, 
remains unaffected by spin-reversing scattering, ps(En) 
c^p s(£k) for Z£>>2eo. Therefore, Anderson's result is in 
nearly quantitative agreement with the corresponding 

45 A. Griffin and V. Ambegoakar, Proceedings of the Ninth 
International Conference on Low Temperature Physics, Co
lumbus, Ohio, August, 1964 (to be published). 

one of Abrikosov and Gor'kov,9 although these authors, 
with the help of their Green's-function formalism'for 
impure superconductors, take all the effects of scattering 
into account. I t is necessary to do so in a calculation of 
the ratio of the nuclear spin relaxation time in the 
normal and the superconducting state. Here, it is the 
squared quasiparticle density of states, in particular, 
near the gap edge, which causes the enhancement of 
1/Tu, and not the matrix element Snn/ . In other words, 
it appears that the expression, which Hebel and Slichter 
derive for the nuclear spin relaxation time with the help 
of the BCS theory, remains approximately valid for 
superconductors with spin-reversing scattering centers, 
provided the actual gap is taken for 2eo(r) and 
the actual density of states is used for ps. A correct 
formal theory of Tu will be published by Griffin and 
Ambegoakar.45 

As for the crucial parameter rs , the average spin life
time, a rough estimate can be made if it is limited by 
spin-orbit scattering at displaced surface atoms. Then, 
in the Born approximation, rs is determined by the 
square of the matrix element 

Mk.k' k,k';p,p = ( 6rap(r,k) V,(r) 

4:M2C2 
•dVp/dtxvv bmp> (r. ,k')). (59) 

Here, the spin-orbit coupling term connects the large 
spinor components of bmp and 6mp/, and the perturbing 
potential Vp connects the small spinor component of bmp 

with the large spinor component of bmp>. The first con
tribution is of the order of X/AE times the matrix 
element for ordinary scattering from a screened Cou
lomb potential. The second contribution is of the same 
magnitude, if one makes the reasonable assumption that 
(bmp\ Vp\bmp)-AE.4Q Then rsoc (AE/X)2 and, since the 
ordinary scattering time rr, which determines the residual 
resistance is determined by (Jwp(r,k) | Vp\ Jmp(r,k')), one 
may consider (X/AE)2 to be the probability of a spin 
flip in a single scattering event. For a film with thickness 
d, we have rc^d/v^ where uj- is the average Fermi 
velocity, and thus Ts~(d/vt;)(AE/X)2. 

If the spin lifetime r8 is limited by the exchange inter
actions between a conduction electron and magnetic 
impurities, one also expects rs to be one to two orders of 
magnitude larger than r r , the reason being that non-
exchange interactions, i.e., Coulomb interactions, 
are always smaller than comparable exchange inter
actions.47-48 In a concrete case, namely Zn-Mn alloys, 

46 The major contribution to this matrix element comes from 
the core region of the perturbing potential where Vp(r)c^.V(i) for 
a displaced surface atom. 

47 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 
39, 1781 (1960) [English transit Soviet Phys.—JETP 12, 1243 
(1961)],. 

48 P. W. Anderson, in Solid State Physics, edited by F. Seitz 
and D. Turnbull (Academic Press Inc., New York, 1963), Vol. 14, 
p. 169. 
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the s-d exchange integral | / | , indicated by the re
sistance change when magnetic ordering occurs, is 
~1.5X10~1 2 erg or ~xo °^ the Fermi energy for 
zinc49; in another case, that of dilute Cu-Fe alloys, 
the observed resistance minimum is accounted for by 
Kondo's theory,50 if | J | ~ 2.5 X 10~12 erg. 

Orbital Interaction and Knight Shift 

In the special case where spin-orbit coupling is 
ignored, one takes 7p in Eq. (26), instead of the bracket, 
and then 3C0 on the right-hand side of this equation 
must be omitted, since Kc is exactly compensated for 
by the shift arising from the spin-orbit coupling term 
alone. Ignoring spin-orbit coupling, Hebborn34 has 
derived an exact expression for KOTb', including it, 
Yafet35 has worked out KOT\y for a small number of 
degenerate conduction electrons. In both cases, 3Corb is 
conveniently split into a long-range part, where, in Eq. 
(26), Xj is outside the unit cell centered at Rj, and the 
residual short-range part, which is periodic in ry. Some 
results of these authors are as follows: 

The long-range contribution iTorb(0 consists of a 
diamagnetic part, caused by the interaction between 
nuclear moments and diamagnetic surface currents, 
which give rise to the induced magnetic moment 
M = Xrf(/)H, and a Van Vleck-type paramagnetic part 
arising from the interaction between nuclear moments 
and the orbital magnetic moments of the conduction 
electrons given by Eqs. (A5) and (A6). For a small 
number of degenerate electrons, the total Korh(l) is 
approximately given by 

Kovh(l)~(AT-D)[Xd(l)+ (0e2/2)g(g-go)P(m, (60) 

where we take Xrf(Q = XL P= — e2k{/12irni*c, i.e., the 
Landau-Peierls susceptibility, and where D is the de
magnetizing factor. The short-range contribution 
KQVb{s) plays a significant role in transition metals,15 be
cause of its paramagnetic (Van Vleck-type) contribu
tion which is ignored here. Its diamagnetic contribution 
is difficult to assess, except for Bloch bands which can 
be treated in the tight binding approximation, then it is 
approximately given by the diamagnetic core suscepti
bility of the metal ions.51 For simple metals like Al, how
ever, one knows from the work of Kohn and Kjeldaas52 

(Li,Na) that XLP alone gives too large a value for the 
total diamagnetic susceptibility. Short of a calculation 
of this type, we take the total orbital shift in the form 

KOTh= ( 47 r -Z}) [ x - /5 6
2 ( ^ /2 )p ( f ) ] , (61) 

where % *s the total observed magnetic susceptibility.53 

49 E. W. Collins, F. T. Hedcock, and Y. Muto, Phys. Rev. 134, 
A1521 (1964). 

50 J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964). 
51R. Peierls, Z. Physik 80, 763 (1933). 
52 T. Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957). 
53 As for an evaluation of Kovb (s), in a fashion similar to the 

calculation of Kc in Sec. II , the calculation is straightforward if 
one uses the parabolic approximation. In the limit H = 0, one 
has (ip\3Qoib(s) \ip)=0, since the two contributions from 3C0 

III. DISCUSSION OF THE EMPIRICAL DATA 

For this purpose, the total Knight shift of a non-
transition-metal superconductor is written in the form54 

Ks = K0Th+K^(X/AE)+K^(rse()/h). (62) 

Here, the orbital shift, KOTb, and the Van Vleck part of 
the contact shift Kc

80 are assumed to be temperature-
independent and to remain unchanged by the transition. 
The third term of Ks is given by 

KQ«= (X./Xn) (K0-Kj»)n, (63) 

where Xs/Xn is the temperature-dependent ratio of the 
spin susceptibility determined by the spin lifetime 

l / r s = l / r / ° + l / r s
e x . 

TS is limited by spin-orbit scattering at nonmagnetic 
imperfections and by exchange scattering at paramag
netic impurities. We wish to discuss the relative im
portance of the different contributions to Ks for Al, Sn, 
and Hg, where the Knight shift has been measured in 
the normal and the superconducting state. 

This discussion is confronted with some serious 
difficulties. First, we do not know the signs of the two 
different contributions to Kc

ao. However, it appears un
likely that the two terms nearly cancel one another, 
since the first is determined by spin-orbit parameters at 
the Fermi surface, whereas all occupied states contribute 
to the second. For the following discussion, it is assumed 
that Kc

8°/K<p^.\/AE. Second, there are no quantitative 
values for bulk parameters, such as the average spin-
orbit coupling energy X of electrons at and inside the 
Fermi surface and the corresponding energy gap AE, 
nor for impurity parameters such as the spin lifetime 
rs

so or, if magnetic impurities are present, the exchange 
integral / . Furthermore, in none of these three metals 
has electron-spin resonance, from which one could 
obtain some information regarding X/AE and rs, been 
observed. A convenient theoretical estimate of X/AE 
would presume the knowledge of Bloch functions in 
the orthogonalized-plane-wave (OPW) approximation, 
where55 

6m(r,k) = P W + A O = E C W B [ ( P W , » ) - E CtnVtl. (64) 
n t 

Here, AO= atomic orbital, (PW,^) is a plane wave with 
wave vector k + K n (Kn=27r times vector in the recip
rocal lattice), and <pt is an atomic orbital in the potential 
V(t). The spin-orbit matrix elements between the <pt$ 
can, in a good approximation, be determined from the 
tabulated atomic energy levels. These elements and the 

(=3CC(^)) and from the spin-orbit coupling term, cancel one 
another. To first order in H, there occurs the paramagnetic Van 
Vleck term, i.e., interband matrix elements of the orbital angular 
momentum, and an "intraband" diamagnetic term. 

64 Equation (62) also holds if there is a significant contact 
interaction with ion-core s electrons; then Kc is to be replaced by 
Kc-\-K8p. 55 See V. Heine, Proc. Roy. Soc. (London) 240, 354 (1957). 
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constants Cmn and Ctn determine X. Finally, the experi
mental Knight shift results do not allow for a clear-cut 
interpretation because of the complex temperature de
pendence56 and field dependence57 of the energy gap in 
the small particles used in N M R experiments. These 
dependences have not been measured directly on either 
of the samples on which the N M R phenomena have 
been observed; however, all authors4,5,19 have been 
aware of this difficulty. Because of the reasons given 
above, the following discussion is of a qualitative 
nature only. 

Aluminum 

As for its electronic structure, aluminum is the 
simplest and most carefully studied multivalent 
metal.16,55 Furthermore, because of its small atomic 
number and its weak electron-phonon interaction, it 
comes close to the assumptions of the nonrelativistic 
BCS theory. Why, then, does the Knight shift observed 
by Hammond19 decrease by only 25% of its value at Tc, 
as T—> 0? The orbital shift is calculated from Eq. (61) 
with Z?=0, and with the help of susceptibility values 
tabulated by Knight.58 By taking x = total bulk sus
ceptibility and approximating the paramagnetic term 
in Eq. (61) by the bulk spin susceptibility, we find that 
i^orb amounts to 9% of the observed shift in the normal 
state (see Table I) . The characteristic parameter for 
the two spin-orbit coupling effects, X/AE<<Cl, since (a) in 
an OPW wave function for a conduction electron in Al, 
the plane-wave part has a much larger amplitude than 

TABLE I. Estimated Knight-shift values for 
nontransition-metal superconductors. 

Metal 

Kn in percenta (expt) 
KOIb/Kn 

lim Ks/Kn (expt) 
r-»o 
particles 

2€0(0) in 10-4 eV (expt) 
Spin-orbit energy X in eV 
KC*°/K0Q*\/AE 

(AE = 3eV) 
uf in 10~7 cm/sec (expt) 
rr~d/v{ in 10~14 sec 
r a

8%v=(A£/X)2 

po (A-G parameter0 
X9/Xni (T = 0) 
K0»*/K0 (T=0) 
K.(pdc*)/Kn (T = 0) 

a Reference 61. t> Reference 19. 
ence 59. f S. Berman and D. M. 

Al 

0.162 
0.09 
0.75b 

films 
d~200A 
3.14<> 
0.022 
0.008 

13« 
1.6 
1.9X104 

9.2 X 1 0 - 3 

0.007 
0.007 
0.11 

c Reference 5. 
Ginsberg, Phys 

Sn 

0.709 
0.06 
0.76° 

pellets 
d~50 A 
12.0e 

0.36 
0.12 

5.4h 

0.93 
70 

1.1 
0.45 
0.36 
0.51 

Hg 

2.5 
0.03 
0.66d 

spheres 
rf~500 A 

16.5f 

0.48 
0.16 

10* 
5 

39 
0.27 
0.11 
0.22 
0.40 

d Reference 4. • Refer-
;. Rev. 135, , A306 (1964). 

g.b E. Fawcett, Ref. 62. * Estimated, i Reference 9. k Equation (62). 

56 D. H. Douglass, Jr., and R. Meservey, Phys. Rev. 135, A19 
(1964). 

57 R. Meservey and D. H. Douglass, Phys. Rev. 135, A24 
(1964); P. G. DeGennes and M. T. Tinkham, Physics 1, 107 
(1964). 

58 W. D. Knight, in Solid State Physics, edited by F. Seitz and 
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2, pp. 
114, 116, Table II, column 3. 

the orbital part, and (b) the spin-orbit matrix elements 
between atomic orbitals are small. Assuming that 
T
9o- and x^ of the squared amplitude | bm(k) |2 inside the 

core, where the spin-orbit interaction is strong, corre
sponds to PW and AO, respectively, and that a very 
rough measure for the spin-orbit energy of the 2p 
orbitals in AO is provided by the multiple splitting 
(3s 3 P i - 3 ^ 3P2) = 1741 cm-1 (Al IV59), we have X^0.022 
eV. With a band gap AE=3 eV, one clearly sees that 
both of the spin-orbit coupling effects give a negligible 
contribution to the Knight shift at T=0. The estimated 
spin lifetime r8

so is larger by a factor 103 than the 
experimental value r s(expt)^0.5X10~1 2 sec, necessary 
to account for Hammond's result with Eq. (58). Such 
a small value of the spin lifetime in Al can be explained 
by the presence of paramagnetic impurities, a possibility 
suggested by Matthias.60 If, in fact, the oxide layer on 
the surface of an aluminum film is paramagnetic, so 
that with each surface scattering event an exchange 
interaction occurs, then the value r s (expt ) /Tr^ lO- 3 is a 
reasonable number. I t is mentioned above that the 
relevant exchange integral is one to two orders of mag
nitude smaller than the corresponding Coulomb integral. 
Furthermore, the small (20-30%) enhancement of the 
nuclear spin relaxation rate 1/Tu below Tc observed by 
Hammond,19 and also observed in a systematic study of 
side effects on Tu by Masuda and Redfleld,61 is com
patible with the experimental value of r5, which corre
sponds to the Abrikosov-Gor'kov parameter po^4 , as 
can be seen from the work of Griffin and Ambegoakar.45 

From the observed temperature dependence of Tu, 
Masuda and Redfleld find in their sample a reduction 
of the energy gap by a factor \ with particle sizes be
tween 200 and 700 A. Such a reduction is consistent with 
the effect of magnetic impurities on the energy gap of 
bulk superconductors. Correspondingly, a reduction in 
Tc is to be expected. Hammond,19 for his thin-film 
sample, did not observe a Tc significantly different from 
the bulk Tc of pure Al. This must not be a contradiction 
to the assumption of a paramagnetic oxide layer at the 
film surface, since an increase of Tc with decreasing size 
parameter has been observed for Al by Douglass and 
Meservey56 (the phenomenon is attributed to differ
ential contraction of substrate and film, i.e., to strains 
within the film). 

Tin 

Apparently no band structure calculation has been 
performed for /? tin which crystallizes in a slightly de
formed diamond lattice. From the experimental investi
gation of various electronic-transport phenomena in a 
magnetic field, it is known that the Fermi surface (F.S.) 
of Sn, containing 4 valence electrons, is rather complex; 
it is partly open and extends over a number of Brillouin 

59 C. E. Moore, Natl. Bur. Std. (U.S.) Circ. 467, Vol. 1, (1949). 
60 Private communication. 
« Y. Masuda and A. G. Redfleld, Phys. Rev. 133, A944 (1964). 
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zones.62 The Hall coefficient is small and changes sign 
with temperature.63 Since the Knight shift does not 
depend on the curvature of a surface of constant energy, 
but only on | 6\E/dk|, we estimate an average spin-orbit 
energy X for electrons and holes in unfilled bands by as
suming that one-half of the amplitude of ]Lm|&m(r,k) I2 

corresponds to the AO part of the OPW wave function. 
A rough estimate for the spin-orbit energy of AO is 
provided by the multiplet splitting \ (5s ZD\— 5s 3Z>3) 
= 4311.6 cm"1 (Sn V 64). This number, - 0 . 5 4 eV, is of 
the same magnitude as the one found by Herman, 
Kuglin, Cuff, and Kortum65 in a more reliable estimate 
of the spin-orbit energy for a ^-like valence-band edge 
of gray tin, 0.71 eV. Taking this value, we have calcu
lated Kc

8° and rs
so given in Table I. The spin lifetime 

rs
sor^l0~12 sec for this particular sample. The two spin-

orbit coupling effects are of comparable magnitude and, 
together with KQrh, account for most of the residual 
Knight shift (T—*0). Furthermore, the sizable Van 
Vleck type contribution Kc

BO which arises from the 
spin-orbit force of the periodic crystalline field can well 
account for the observation of Androes and Knight 
that there is no strong dependence on the experimental 
particle size. 

Mercury 

The electronic structure of solid mercury, which 
crystallizes in a rhombohedrally deformed bcc lattice, is 
apparently not known. The measured Hall constant at 
213°K is — 8.7X10 -25 Gaussian units, comparable with 
that of gold at room temperature. The observed Knight 
shift is large compared with that of other heavy metals, 
like Pb and Tl, which have an even larger hyperfine 
coupling constant. To estimate roughly a spin-orbit 
coupling energy, let us assume that a large fraction of 
the conduction electron wave functions, say one-half, 
corresponds to the PW part of the OPW wave func
tion, and that the spin-orbit energy of the AO part 
is given by %(6s*D1-6s*Dz) = 7777.3 cm"1 (Hg III66). 
The corresponding values of Kc

so, r / ° ; etc., are found in 
Table I. The orbital shift K0vb is calculated from Eq. 
(61) with the help of susceptibility values tabulated by 
Knight.58 I t is seen that the spin-orbit coupling effect 
arising from the crystalline field is as important as spin-
orbit scattering. The least reliable assumption here is 
that one-half of the OPW function corresponds to the 
plane-wave part. If, instead, inside the core, where 
spin-orbit coupling is strong, three-fourths and one-
fourth of the squared amplitude of the OPW functions 
for conduction electrons correspond to the PW and the 

62 E. Fawcett, Ref. 17, p. 197; T. Olsen, Ref. 17, p. 237; A. V. 
Gold and M. G. Priestley, Phil. Mag. 5, 1089 (1960); E. S. 
Borovik, lzv. Akad. Nauk (USSR) 19, 429 (1955). 

63 Landolt-Boemstein Tables, edited by K. H. and A. M. 
Hellwege (Springer-Verlag, Berlin, 1959), Vol. 6/1. 

64 Reference 59, Vol. III. 
65 F. Herman, C. D. Kuglin, K. F. Cuff, and L. Kortum, Phys. 

Rev. Letters 11, 540; F. Herman, LMSC report 895374, Sec. 4 
(unpublished). 

66 Reference 59, Vol. 111. 

AO parts, respectively, then K0
8O/Knc^.0.0S and, for 

d=500k, Ko
sr/Kn~0.03. With these numbers, the 

calculated residual shift amounts to only 10% of the 
total shift in the normal state. Therefore, at present, our 
poor knowledge concerning the electronic structure of 
solid Hg does not allow for a quantitative estimate of 
Ks(T=0); one can merely say that such a value lies 
between 10 and 50%. The earlier experimental results 
of Knight, Androes, and Hammond67 for the Knight 
shift in superconducting Hg at 2°K and in a magnetic 
field of 5000 G, Ks/Kn^0.20, cannot be dismissed as 
due to a decrease of Ks in high magnetic fields.68 

IV. CONCLUSIONS 

I t is seen from Table I (Sec. I l l ) that the effect of 
spin-orbit coupling, arising from the periodic crystalline 
field, on the residual Knight shift Ks(0) of the three 
nontransition-metal superconductors Al, Sn, and Hg is 
as important as the effect of spin-orbit scattering at 
displaced surface atoms of small particles. The two 
different spin-orbit coupling effects are separable be
cause the average spin lifetime r / ° is size-dependent. 
Although the two spin-orbit coupling effects account for 
a substantial portion of the residual Knight shift ob
served in Sn and Hg, they play only a minor role in Al. 
To account for the observed residual shift with rs, it 
must be smaller by a factor of 103 than r / ° . Such a small 
TS can occur in small particles with a paramagnetic 
oxide surface layer, so that in each surface scattering 
event a conduction electron undergoes an exchange 
interaction with paramagnetic imperfections. Then, one 
can also understand the small enhancement of the 
nuclear spin relaxation rate observed in small Al parti
cles. I t is emphasized that the true residual Knight 
shift, i.e., the shift in the bulk material which, aside 
from the orbital shift, is determined by the spin-orbit 
coupling effect considered in Sec. I I , can be observed 
only if the nuclear spin relaxation rate exhibits below 
Tc the same enhancement as that in bulk Al. This also 
follows from Sec. I I , where it is pointed out that the 
spin-orbit coupling effect arising from the crystalline field 
affects the residual Knight shift but does not affect the ratio 
of the nuclear spin relaxation rate in the superconducting 
and the normal state. On the other hand, it is known that 
spin-reversing scattering affects both the residual 
Knight shift and the nuclear spin relaxation rate. 
Therefore, in a light nontransition-metal superconduc
tor, where spin-orbit coupling can be ignored (Al), the 
proper enhancement of the nuclear spin relaxation rate 
provides a sensitive criterion for the absence of magnetic 
imperfections. In a heavy nontransition-metal super
conductor, where spin-orbit coupling is important, the 
corresponding enhancement is determined by r8

so, 

67 W. D. Knight, G. M. Androes, and R. H. Hammond, Phys. 
Rev. 104, 1 (1956). 

68 F. Reif, Phys. Rev. 106, 208 (1957). 
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whereas the residual shift is determined by both spin-
orbit scattering and the bulk spin-orbit coupling effect 
depending on A. 
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ADDENDUM 

Assuming that both the spin-orbit interaction and the 
orbital interaction between electrons and magnetic field 
can be treated as a small perturbation with respect to 
the periodic Hamiltonian 3Co=p2/2m+V(r), Y. Yafet 
has calculated the spin density at the nucleus with 
standard second-order perturbation theory. The corre
sponding correction to the contact shift depends on all 
occupied states. From his perturbation-theoretic expres
sion for the spin density at the nucleus, it is concluded 
that the corresponding contact shift is positive, if the 
inner bands involve large energy denominations and if 
the amplitudes of the conduction-electron wave func
tions at the nucleus are much larger than those of higher 
lying bands. Then, the result, which he considers to be 
an overestimate, is given by 

Z c-/^c=[X/(AE)2>/p(f) . 

APPENDIX A 

g Factor 

Strictly speaking, one must distinguish between the 
g factor for a Bloch electron in the state (m,k) of a 
simple (i.e., orbitally nondegenerate) band of a crystal 
with inversion center, and the g factor for an exact 
eigenstate of 5C0, denoted by (i). The former, g(m,k), 
measures the splitting linear in H which occurs between 
a spin-up state (w,k,T) and the corresponding spin-
down state, whereby the effect of the magnetic field on 
the orbital motion is ignored. The latter, g(i)y is defined 
as that part of the energy difference between a spin-up 
state (i, t) and the corresponding spin-down state of 3Co 
which is linear in H. To determine g(w,k), the bmp and 
Wmpp' are written as a power series expansion in H: 

Jwpnr,k+J(«/Ac)HxRi] 
= ^p;0+^mp;a+M^/fe)HxRi 

•(d/dk)Jmp;o+---l (Al) 

Wmpp>(k)=Wmpp>;0+HaWmpp>;a-\ , 
(a=x,y,z), (A2) 

where the bmp;o are Bloch spinors in zero field and where 
the Wmpp; o are the corresponding energy band functions; 
these are spin-degenerate because we assume inversion 
symmetry. The series expansion for bmp and the one for 
Umpp', which is found from Eqs. (5) and (A2), are sub
stituted into Eq. (8). Taking the scalar product of this 
equation with bmp';Qj we obtain to first order in Ha the 
equation 

(bmp,;0\W<>(A==0)\bmp;a)H<* 

+ (bmp>;0\ - (e/2tnc)p-H x (t+id/dk) \ bmp;0) 

+ (*»P';O| (h/±mV)(dV/dt).[_-\{e/c)K 

x (r+fd/dk)]-a|imp.0)+(6mp';o| (*/4wwV) 

X (~e/2c)(dV/dt) • H x {t+id/dk) | bmps0) 

+ (^mp';o|/3eCr*H|5mp;o) 

= Wmpp]0H
a(bmp';o\bmp;a) + ,£ Wm„»;aH« 

P" 

o)+E ^ m p p ; 0 
i 

X[(-*V2fc)HxRr(ftmp,.o|r|imp.o) 

+ («/2fo)HxRr(Jwp,.o|d/dk|Jwp.o)]. (A3) 

The spinor bmp;a, which is periodic in r, is written in 
terms of the complete set of Bloch spinors, 

*«p;«(r,k)= E ^a(w,p,k;raVJO&mp;o(k'). (A4) 
m ' i p ' . k ' 

Then the first term on the left and on the right cancel 
one another. From Eq. (A3), and for p— pr and p^p', 
one finds the result given by 

2 WmpP;aHa= (6mp;o|j#e<r-H|&mp;o) 

+ (bmp.,<,\-Ue/c)(h/4dmV)(dV/dr) 

•Hx(r+*a/dk)|im , .o), (A5) 

E Wmpp.iaH«= (&„p,.0| -i(e/c)E x (r+id/dk) 
a 

• lv/m+ (h/4in2c2)v x dV/dr'] | bmp;Q) 

+i E wwpp;o(Ri) exp(ik-R,)Ke/fcOH xRz 
i 

'(bmp>.,o\r+id/dk\bmp]o). (A6) 

The first expression is the spin magnetic moment plus 
a term which arises from the Darwin correction and 
which has the same sign for the spin-up and the spin-
down band. The second represents the exact expression 
for the orbital magnetic moment of an arbitrary state 
(m,k) and can be considered as the generalization of the 
band edge value for the g factor which results from the 
procedure of Luttinger and Kohn.69 Equation (A6) has 

69 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955). 
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been derived before by Roth23 and by Blount.22 The 
derivations given in their papers are, however, much 
more involved than the one presented here. To obtain an 
explicit expression for g(w,k) one may merely follow the 
diagonalization procedure of Cohen and Blount.70 

As for the g factor g{i) for an eigenstate of 3Co, let us 
consider the effective Hamiltonian for small magnetic 
fields. Then, to first order in H, the four simultaneous 
equations (23) become (the band index m is omitted): 

Trtt;o(K)/tt(k)+ff«^ t ;o(K)/t*(fe) = Et/tt(k) (A7) 

and, similarly, 

H«Wti](Xfu+Wu;ofn = Etfti, (A8) 

Wn;ofii+H«W,t;afu = Eifit, (A9) 

n"Wu;afit+Wii.ofu = Eifu. (A10) 

For the special case where the first-order terms in Ha 

are also ignored, the eigenvalues of Eqs. (A7) and (A9) 
are degenerate, Et = E\, for each state (i) and, further
more, the corresponding amplitude functions ftt and 
fit can only differ by a constant factor, independent 
of H. This factor must be determined by the spin-orbit 
coupling strength since, if it is neglected, / i t must be 
zero. The next step is to consider the nondiagonal 
components of the effective Hamiltonian as a small 
perturbation which is allowed, even for the case of 
strong spin-orbit coupling, provided the magnetic field 
is sufficiently small. Consequently, one may write the 
following perturbation expansions in | H j 7 1 : 

- . , (Al l ) 

(A12) 

/PP- (k) = ^ < [ / o ( k ) + # / 1 ( k ) + • • • ] , (A13) 

where /o stands for an eigenfunction /,-;o of WPP;Q. I t is 
assumed that these functions form a complete ortho-
normal set so that / i can be written as a series expansion 

/ i ( k ) = E ^ i ( 7 ) / i i o ( k ) . (A14) 
3 

Then, proceeding as in stationary perturbation theory, 
we obtain from Eqs. (A7) and (A8) two equations for 
£tt and en, namely, 

C( i |TF t t ; lU - ) -£ t ; l> t t+ ( i | ^ t ; l | ^ t l = 0, (A15) 

(i\Wu;i\i)ctt+l(i\Wu;i\i)-Eulyn==Oy (A16) 

where |i) = /t;o [i-e., an eigenfunction of WPP;Q(K)2- A 
corresponding pair of equations for cu and at can be 
derived from Eqs. (A9) and (A10). The secular equation 
for ctt and ct\ yields for the coefficient of that part of 
the eigenvalue Ep which is linear in H [see Eq. (A12)] 
the value 

Etil=±Z(i\Witii\i)(i\Wn;i\i) 
+ K ^ t t ; * K ) | 2 ] 1 / 2 , (A17) 

70 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960). 
71 Wpp'-i is denned with the help of the direction cosines of H 

so that HW„:,i=H°Wfifi>ta. 

WPAK) = WPP^(K)+HWPP^(^)+-

Ep==Eo-j-HEp;i-\ , 

where it is taken into account that 

(i\Wtt;i\i)=-(i\Wu\i). (A18) 

The positive root is chosen for Et;i, so that /?ea«H 
(where /3e= — \e\h/2mc) has a positive expectation 
value for a "spin-up" electron, provided <r is parallel to 
the field. In a similar fashion, one calculates £ ; ; i , 
takes the negative root i ^ ; i ( l ) [ = £ t ; i ( + ) ] , and has 
Et;i-Ei;i=g(i)\0e\H. From Eqs. (A15)-(A17), one 
has 

en® (i\Wn.,i\i) 
= , (A19) 

cu(i) (i\Wtt;i\i)+Et;1(+) 

and, correspondingly, 

* t ( i ) (i\Wtl;l\i) 
cidi) (i\Wn;i\i)+EUi(-) 

(A20) 

APPENDIX B 

Fourier Transforms72 

In the coordinate representation, the solution of the 
Schrodinger equation, 

( l / 2 w * ) [ p - (e/c)A(T)Jg(x) = Eg(t), 
A= { 0 , ^ , 0 } , (Bl) 

is given by Eqs. (36) and (37) of Sec. I I . In the momen
tum representation, the solution of the eigenvalue 
problem 

(*V2«*)Dk— (e/ch)A (r)] »/(k) = £ / ( k ) , (B2) 

where the operator r = ifod/dk, is given by Eqs. (36) and 
(39). We wish to prove that g(t) and / (k) are the correct 
Fourier transforms of one another, 

/(»,K t f,K,;k)=(l/2-
J Q 

r) 

X e x p [ - i k - r ] J r . (B3) 

To this end, g(r), given by Eq. (39), is substituted on 
the right-hand side. Then, with the integral representa
tion of the 8 function, 

/

+a/2 

-an 
exp[iz(Kz— kz)2dz=5(l — kz/nz), 

(k= wave vector), (B4) 
•at 2 

Eq. (B3) becomes 

/ (k) = ( 1 / 2 T T ) 3 / V / M nW*8 (1 - ky/Ky)6 (1 - *,/*.) 

/

+o/2 
exPC~" (s/2)(x— x0)

2~] exp(—ikxx) 
-at 2 

XHnKsyf^x-Xo^dx. (B5) 

For the calculation of the integral over x} let us assume 
here that a is a length sufficiently large to guarantee the 

721 am indebted to Dr. B. Roos for his help with Appendix B. 
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proper limit values for the integrals below. We take the 
generating function for the Hermite polynomials, 

exp(-*H-2*30 = f; Hn(y)(t»/nl), (B6) 
o 

and evaluate 

X) exp[— (s/2)(x—x0)
22 exp(—ikxx) 

-a/2 ° 
X exp[- t2+ It (\A) (x- x0)ldx. (B7) 

With 

/

OO 

exp{ -±s1/2x- (slt2x0+2t-ikx/s
ll2)J}dx 

= (2Wsr2, (B8) 
the result is given by 

/== (2ir/s)1/2 exp(~ikxx0) exp(—kx
2/2s) 

oo (it)n 

X E Hn(kx/Vs). (B9) 
o n\ 

With Eqs. (B9) and (B5), one readily arrives at 
f(n,Ky,Kz;k) given by Eq. (37). 

APPENDIX C 

Calculation of bmp;z(r,k) 

In order to calculate the spinor bmp; z which represents 
the first-order correction in the field H= Hz to the Bloch 
function &mp;o(r,k) and which can be written in terms of 
the complete set of field-independent Bloch spinors, 
Eq. (A4), one takes Eq. (8) and inserts the power series 

expansions form bmp andcompp> [see Eqs. (Al) and (A2)} 
Then one equates, as in ordinary first-order perturbation 
theory, the coefficients of Hz, takes the inner product 
with 6OT»p»;o(r,k"), and arrives at the following equation 
for the coefficients A z of the expansion (A4): 

Az(m}p^k;mf
9p',k) 

= [^ M p p ; o(k ) -^ v , p , ; 0 (k ) ] - 1 

e&z J Omp; 0 

00) 
+ (W;o(k) | -h(e/c)Zt+id/dk]xTv 

- (r+ id/Sk) yirx~] \bmp-v (k)) 
+iHiUmPP;o(Ri) exp(ik-Rz)J(e/fc) 
Xbm>P>-Ak)\Rl;x(t+id/dk)y 

-Rl;y(T+id/dk)x\bmp;o(k))}, {m^m')y (CI) 
where 

iz=p+h/(4fnc2)<r x dV/dr. (C2) 
On the right-hand side of Eq. (CI) occur only matrix 
elements which are nondiagonal in the band index. The 
corresponding elements which are diagonal in m, but 
nondiagonal in p', determine the g factor, as can be seen 
from Eqs. (A5) and (A6). In general—that is, for 
arbitrary strength of spin-orbit coupling—there is no 
relation in sign and magnitude between the diagonal 
matrix elements (m=m/) determining the g factor and 
the nondiagonal matrix elements (niT^m') which deter
mine the A's and thereby the function G> For the cal
culation of the Knight shift, one is interested in that 
part of Gp which has equal sign for "spin-up" and 
"spin-down" electrons. It is determined by those coeffi
cients Az{m^p)a\ tn',p',k) for which m^m! and p9^pf, 


